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Bayesian Model Screening for the
cactan Kerschen § |J@ntification of Nonlinear
sean-claude Gotivval | [Vlechanical Structures

Vibrations & Identification des Structures,

Department of Aerospace, The development of techniques for identification and updating of nonlinear mechanical
Mechanics and Materials, structures has received increasing attention in recent years. In practical situations, there
University of Ligge, is not r)ecessarily a priori knowledge aboyt the nqnlinearity. This suggests the need for

Chemin des Chevreuils 1 (B52), strategies that allow inference of useful information from the data. The present study
B-4000 Liege, Belgium proposes an algorithm based on a Bayesian inference approach for giving insight into the

form of the nonlinearity. A family of parametric models is defined to represent the non-
linear response of a system and the selection algorithm estimates the likelihood that each

Frangois M. Hemez member of the family is appropriate. The (unknown) probability density function of the
Enginesring Science & Applications Division, family of models is explored using a simple variant of the Markov Chain Monte Carlo
ESA-WR, Mail Stop P946, sampling technique. This technique offers the advantage that the nature of the underlying
Los Alamos National Laboratory, statistical distribution need not be assumed a priori. Enough samples are drawn to guar-
Los Alamos, New Mexico 87545 antee that the empirical distribution approximates the true but unknown distribution to
g-mail: hemez@lanl.gov the desired level of accuracy. It provides an indication of which models are the most

appropriate to represent the nonlinearity and their respective goodness-of-fit to the data.
The methodology is illustrated using two examples, one of which comes from experimental
data. [DOI: 10.1115/1.1569947

1 Introduction growth in interest in a particular class of identification techniques

. . Lo o . based on a finite element model and referred to as finite element
The importance of diagnosing, identifying and modelling non- odel updating techniqud20—22.

linearity has been recognized for a long time, e.g., for the Olesig')’The roblem of variable selection is one of the common issues
of shock absorbers and engine mounts. The identification of non- P . o ; ;
the field of identification of nonlinear systems. The purpose is

lf'cr)]ﬁ:zr Zﬁ;g::nes(l?bli%ann:gt%]%gg ;V)'/thwtlgi ;int;%gu%lggg%fgaﬁ risr:orlr,% model the relationship between the response variable of interest

) e d a subset of predictor variables, possibly with interactions be-
equivalent method, referred to as force-state mapping, was pJo- ) ! . . )
posed independently by Crawley, Aubert and O’Donf2[3]. V‘ﬁ?;;gsjtev\ﬁg ;/Skr)lé;g?g.u(s:nerally speaking, there is uncer
S_lnce ther_l, numerous methods were proposed. It is not our mté%A possible means of determiﬁing which variables should be
tion to review all the methods available but rather to cite the most

. ; : ncluded in the model is through least-squares parameter estima-
Rt,)g:tlsryézﬁgnlques that have been considered during the Il(%(ir\ and the use of the significance fac{d2]. Cumulative and

The first application of the Hilbert transform was made in th% ilijfl]tli)l'llee gggzirsgr?: dfllfg\(l:;l:‘?es r;tz?]y f(?:?ult;?i{ﬁu;]e deI]ne C?gjsinnitlon
frequency domairf4]. The time-domain Hilbert transform was P ' b

also utilized to solve an inverse problei,6]. The use of the study investigates an inference technique based on the Bayesian

Volterra series in the field of structural dynamics began in the Ia‘tjeeflnltlon of probability—as opposed to the frequentists point-of-

1980s[7]. NARMAX models consist of polynomials that incIude\/'ehv.\l/_,[fr(])r ]lcdentlfyltr_\gt prtomlsu:gt_sub;eft_s of prek;mg'(l)'[tm_t?ﬂti
various linear and nonlinear terms combining the inputs, outp \géel gumie;eggigéir;gnegggeg '22 e?/é?}‘fsaﬁ:gna Ial Zosllcrelgti\)//eaf)f
and past errors and were introduced by Leontaritis and Billiné)rossibilities the Bayesian approach defines rob%bilit as the sub-
[8,9]. Another area of signal processing that has gained impar-_. > f P]/ | Pp T P hy dife

tance in studying nonlinear systems deals with higher-order spi%gt've oplk?lon of the anahyst or ex_gert.h 0 _strelss the di er“(\e/r\}ﬁe
tra [10,11]. These are a natural extension of the ordinary line retweent e two approaches, consider the simple question at

o X P h
specual analyis For  celaied descrplon of all hese teqy . POCACTY I o e planel WAt Such sestn
nlqruhe:’dtgserlngﬁér:ts geffi;;%é%é;f?z%ge function-based &&" obviously not be obtained from a collective of planets similar
proaches has received increasing attention in recent years. éhsebgzrﬁ;giﬁ't Sn']rg::arlyrsbr:g;gi@éﬂf?nggtmgtmgg rr‘](;tm?(l:‘s
reverse path technique has been proposed by Rice and Fitzpat - » many p ’ ) ynamic
[13] and applied to simulated and experimental da#15. The at require probability to be defined in terms of our a priori
conditioned reverse path formulatiph6] extends the application knr(r)nwffdagiwgtjter;eispgﬁgZTcehnorr]of)tlgﬁwle:dJrzgslgsTgflfmziglsvnoflj the
of the reverse path algorithm to systems characterized by nonlm-_l_he rocedure developed ﬁ] this work exploits riors"—tHat
earities away from the location of the applied force. This methaod procec p pIOItS ~priors —th:
exploits the spectral conditioning techniques introduced by Bely: 2 probability structure _that re_flects the analysts_a prior opinion
dat[17]. A related series of papers by Adams and Allemang alsaobout the phenomenon investigated—on the variables of the re-

A ssion model in order to give the list of all visited models to-
Flegelgp the frequency response function-based approacgé er with their relative posterior probabilities. Models are vis-

Finally, it is worth pointing out that there has also been %ed a(;cordlng to their goodness-of-flt_to Fhe data, Wh'(?h'. in the
ayesian framework, represents the likelihood of predicting the

Contributed by the Technical Committee on Vibration and Sound for publicatioﬁbserved r_esponse. _ThIS |mp||es that mpdels well fitted to the
in the .\DURNAL OF VIBRATION AND ACOUSTICS Manuscript received May 2002; data—that is, more likely models—are visited more often. The

Revised January 2003. Associate Editor: M. I. Friswell. marginal probabilities of inclusion of single variables are also
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computed. To avoid the overwhelming burden of calculating therror and minimize it. The most straightforward choice is to adopt
posterior probabilities of all models, a Gibbs sampler is consighe Euclidean norm of the prediction err@,{=yk7xlﬁ:

ered to perform an efficient stochastic search of the model space.
It is emphasized that the main difficulty of this inference problem
is that the multi-dimensional probability density functid®DF of

the family of models must be sampled. However, this PDF is . ) . . '
unknown, making random walk techniques such as the Markd¥ which case the best, linear, unbiased estimator of the coeffi-
Chain Monte CarldMCMC) sampling the only possible choice.Cl€ntsB is provided by:

IB)= > ele=¢cle ®)
k=1...N

Gibbs sampling has been proposed as a computationally attractive B=(XTX)"IXT 6)
alternative to MCMC, vyet, it can explore an unknown PDF y
[24,26]. where the column-vectarcollectsN observations and the rows

While the principle of Bayesian inference has previously bedsy m columns matrixX evaluates then effects for each of thé
applied to various problems in structural dynamiesg., Refer- observations:
ences[28,29), no attempt has been made, to the best of the au-

thors’ knowledge, to adapt the Bayes updating rule to the screen- 2 X121 X2 7 Xam

ing of model form during nonlinear system identification. After a Yo Xa1 Xap v Xom

brief discussion of model fitting in Section 2, the Bayesian screen- y=43 i X=| . . : (7
ing algorithm for model selection is outlined in Section 3. The )

methodology is illustrated using two examples. Section 4 dis- YN XN1 XNz XNm

cusses a numerical simulation intended at demonstrating the over(':IearIy, other objective functions yield different estimators. The

all performance of the screening method. The second exam%l@neralization of the objective functidb) is commonly referred

involves experimental data sets collected during the Europegn . : :
. . . i as the generalized least-squaf€4.S) estimator{31]. Weight-
COST-F3 prograniSection 3. The numerical predictability of the ing matrices are introduced and a regularization term penalizes

identified model is finally assessed in Section 6. solutions too distant from the user-defined starting pgint Egs.
(8) and (9) show the GLS objective and the corresponding GLS

2 Model Fitting estimator, respectively:
Model fitting generally refers to the calibration of model coef- J(B)=e"W e+ (B—Bo) "W, (B—Bo) (8)
ficients B given a sequence of pointg(y,) in the design space. .
It is assumed that a model is available: B= (XWX + Wy " XTW, ly 9)
y=M(B;t) (1) In general, weighting matrices are chosen arbitrarily or based

on experience, for example, to weight the importance of some

, N observations more than others. When covariance matrices are

and8 den(_)tes the F“Ode'.s coeff|C|ents. used, the GLS estimator becomes similar to the Bayesian estima-
For clarity, the discussion will assume that the model form ig, " pigorously speaking, other factors should appear in the defi-

polynomlal-llk(_a. Nevertheles_s, nothlng prevents ‘h*? Bayesialkion of the Bayesian objective function. Because these addi-

model screening proposed in Section 3 to be applied t0 Othgf, | tactors are constant, however, the same estimator as the one

functional forms. Fractional models could be considered, for €%hown in Eq.(9) is obtained. An important benefit of Bayesian

ample, to fit the poles and zeros of frequency response f”nCt'oﬂﬁfrence is that it provides a posterior estimate of the covariance

wheret denotes the input variablegdenotes the output variables

Exponential models could be considered to represent the deca
propagating waves as a function of time or distance. Atrtificia

trix

_neural networks are increasingly used in a variet_y of applic_ations M%Ostemﬂ:(wgbhr XTW;91X)‘1 (10)
in structural dynamics because they can, depending on their form, ) o ) ) )
approximate any non-linear functiggol. Correlation coefficients of the posterior covariance ma(ti®y

Another notion that must be clarified before proceeding witArovide insight into the quality of the estimator. Refereigg]
the discussion is the notion of “effect.” The model shown in Eqdiscusses a shock propagation application where significant pos-
(1) depends on inputswheret does not necessarily refer to time t€rior correlation is obtained between coefficients that have no
Functions of the input variables can be defined that will be Physical reason to be correlated. The authors conclude that the
referred to as effects and denoted %yn the following. Such form of the model is inappropriate. They further demonstrate that
functions can assume any form, linear or non-linear. For exampleiS indeed the case when improved goodness-of-fit and posterior

the 2-input, 1-output nonlinear model: correlation indicators are obtained with a different model.
) et With the exception of investigating the posterior correlation,
y=0.3;+2.0sinty) —1.5%e™ 12 (2)  however, no practical tool is available to select the appropriate

can equivalently be defined through the three effagtst;, X, fo"g |°f a non_linea’\r/l rr(;onljefl, Whi?h is the plrocessl we refe:_ to a
=sin(t,) andxz=e""1"2 as: model screening. Model form—for example, replacing a linear

contribution by a cubic stiffness—is usually selected based on
y=0.3x; +2.0x,— 1.5¢3 (3) experience or empirical observation. Sometimes, several choices
seem equally likely and the analyst has to go through the pains-

While the input variabled,; andt, might be independent, note - " - ;
that the effects(;, x, andxs are neither independent nor unCOIr_taklng process of fitting each model and assessing their goodness-

related. The Bayesian model screening discussed in Sectior?filtbgsﬁ?gzg;ttc')sOti/aesffﬂt%n the concept of goodness-of-fit, such
does not require the effects to be independent or uncorrelat€fP 9.

With the definition of effectx that can be functions of the input ré\g‘;ﬁnﬁr 2?2“%?#&“2?%3”; 'Z:us 'Sogide?grzﬁ;e lth?elp?r?tegr?r
variablest, the polynomial-like model can be simply represente Y pa - PP . ply refying
as: e goodness-of-fit. By definition, the posterior probability is con-

ditioned on the evidence available—that is, experimental observa-

T tions. Posterior probability and goodness-of-fit complement each

y=k712 X Brk=xpB (4)  other because the former indicates if the analyst's prior opinion of

“heem the form of the model is consistent with the evidence. In Section

The commonly encountered method of fitting the coefficights 3, a practical tool is proposed for model screening based on the
is to define an objective function that represents the predicti@oncept of posterior probability.
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3 Bayesian Model Screening

In the previous section, the state of the practice in model fitting
has been briefly overviewed. Polynomial models have been con-
sidered for simplicity. It is emphasized that the Bayesian model
screening technique proposed here applies to any model, no mat-
ter which functional form it takes. Essentially, the only two gen-
eral assumptions made are as follows. First, a mogel
=M|(B;x) must be available. As previously mentioned, the effects
x can be linear or nonlinear functions of the input variakies
Second, an inference is available for calibrating the coefficignts
The inference procedure is usually referred to as “best-fitting”
with polynomials and “training” with neural networks.

Model screening consists in identifying the most probable mod-
els based on a family of models defined by the user and reference
data that the model’s predictions must reproduce with the highest
possible fidelity. It is emphasized that model screening does not
necessarily identify the best model but rather ranks potential mod-
els according to their posterior probability of occurrence.

The procedure starts by, first, defining a family of models. This
is achieved by defining various effects and how these effects
are allowed to interact to form the population of potential models.
Figure 1 illustrates the concept of a family of models by showing

two effectsx, andx, that interact with each other. The modelyosteriors of thenth iteration become the priors of the ¢ 1)th
forming rule illustrated in Fig. 1 is that linear and quadratic intefiyeration. All models visited are kept in memory and, once enough
actions are allowed between the effexfsandx,. The horizontal samples have been drawn, the probability of occurrence of each
plane represents the family of all potential models that must lpeodel is estimated by the frequency of occurrence—that is, the
explored. The vertical dimension represents the likelihood thatratio between the number of times each model is visited and the
particular model is appropriate to represent the data. It is tHigtal number of models visited. The iterative procedure is summa-
notion of likelihood that will be employed to guide the search fofized in Fig. 2. ) ) i .
the most appropriate models. Figure 1 illustrates a hypotheticalln SUmmary, Bayesian model screening provides the probabili-
situation where the model shown with a star symbpk 3, ties of occurrence of the most appropriate members of a user-

+ B1Xo+ BoX2+ BaXoX3, is the maximum likelihood model.

The second step of the procedure is to assign the prior prob-
ability of occurrence of each effect,. The priors can reflect
empirical observations, experience or the analyst's knowledge of
the system investigated. In the application discussed in Section 5,
for example, no specific knowledge of the system can be used to v
guide a pertinent choice of priors. Probabilities of occurrence are Define the effect’s
therefore set to a uniform 25% level for all effects. prior probabilities

The next step is to let the Bayesian screening method find the
most appropriate models among all possible combinations of ef- L 2
fects. To identify the most probable models a measure of Select a model

Fig. 1 Concept of “family” of models

Define effects and
model-forming rules

goodness-of-fit to the reference data must be defined. This can be randomly —
assessed using a conventional root mean sqURIVES) error be-
tween data and predictions. Assuming Gaussian distributions, the L 2
RMS error becomes proportional to the likelihood function Evaluate the medel’s
L(y|B) that estimates the likelihood that the model is appropriate likelihood (11)
given the available data: 3
_ _ T2 Accept or reject the model |Reject
L(y|'8) - k:;. N (Yx Xk'B) 11 using Chi-square testing
Note that the likelihood functioiill) is similar to Eq.(5) previ- Yy Accept

ously discussed. Other functions can be used, in particular the
Bayesian objectiveé8), as well as the many objective functions
commonly used in test-analysis correlation and model updating ¥
[33].

Once the likelihood of a particular model has been estimated, Update the effect’s
the posterior probabilities of the model’s effects can be updated posteriors (12)
according to the Bayes Theorem that states that the posterior prob-
ability PDF(8|y) is equal to the likelihood functioh(y|8) mul-

Store the accepted
model in memory

L 7

Have enough samples

tiplied by the prior probability PDFR8) and divided by the prob- No
ability of the data PDR():
L(y|B)PDHB)
PD = 12
RBly) PDRyY) (12)

The probability of the observed data PDfr(is generally kept

been drawn?

v

Estimate the model’s
occurrence probabilities

constant and omitted in the updating E#j2). Because the proce- Fig. 2 Simplified flow chart of the Bayesian model screening
dure is iterative in nature, the Bayes updét®) is repeated and algorithm

Journal of Vibration and Acoustics JULY 2003, Vol. 125 / 391



The main difference between the two is that the Gibbs algorithm
samples one direction of the design space at a time, which makes
for simpler numerical implementation. Figure 4 illustrates the dif-
ference between MCMC and Gibbs sampling. It pictures two ran-
dom walks from the lower left cornex&0;y=0) to the upper
right corner k=1;y=1). A constraint is enforced that prevents
the 30 points drawn in both sequences from being repeated and
from moving backwards. Pentagram symbols show a sequence of
Gibbs samples while hexagram symbols picture a realization of
the MCMC chain. In the former case, the solution is advanced in
one direction at a time whereas the MCMC chain randomly ad-
vances the solution in the two dimensions simultaneously.

4 Numerical Application

The first application presented is extremely simple and aims at
illustrating the overall performance of the model screening proce-
dure. Consider an output variable defined by the following
input-output model:

y=2 sin(2t) +3 cogt)— 1.5 sin3t)cog 2t) (13)

wheret is an input variable that varies from zero to fifty with
increments ofAt=0.05. It is assumed that the model form shown
in Eq. (13) is unknown. Instead, observatiogg=y(kAt), for k
=0...100, are obtained and the problem consists in identifying
the numerical model that best matches the observed data. It is
emphasized that, in this numerical simulation, no actual experi-
ment is performed. The continuous solutid®) is shown in Fig.

5 with a solid line. The hexagram symbols represent the discrete

Fig. 3 Concept of random walk optimization

0.9

0.8

0.7

0.6

Dimension 2
(=]
o

04 samples assumed to be collected.
03 Next, consider a set of candidate predictors:
02 X1=Ssin(t)
Xo=Cogt)
04 -~ Gibbs Sampling X3=Sin(2t) 14
&~ MCMC Sampling Xq= COiZt) ( )
01 02 03 04 05 06 07 08 09 1 Xs=Sin(3t)
Dimension 1
Xg=c0g 3t)

Fig. 4 lllustration of MCMC and Gibbs random walk sampling

. In addition to the six predictors of Eql4), six other predictors
strategies

labeledxy;, Xg, Xg, X19, X11 andXx,, are defined as random func-
tions. It can be observed that, if the functional form of the output
variabley were known, it could be written as:

defined family of models, their goodness-of-fit indicators and the

posterior probabilities PDI|y) of effects involved in the most y=3%y+ 2X3— 1.X4Xs (15)
likely models.
To do so, however, the unknown posterior probability function
must be sampled. The problem of exploring an unknown PDF is
solved with the Markov Chain Monte Carlo algorithm. The s ' ; ! — True Response

MCMC sampling is advantageous in this situation because it c: ; & Available Data
sample any distribution, whether it is Gaussian or not. Th :
MCMC sampling can be viewed conceptually as an optimizatio 1, , B i
solver that performs a random walk through the optimizatiol ? ¢ ﬁ '

space. This concept is illustrated in Fig. 3 where points in th_ 1

optimization space are sequentially visited. More appropriate s & oL
lutions are guaranteed more frequent visits because the accepta,?E
criterion of a given solution is based on its likelihood function. E p ﬂ
Each candidate point in the design space—here, the desiy o
space is the horizontal plane of potential models illustrated i§
Figs. 1 and 3—is accepted or rejected based on its value of t §

likelihood function(11) and a Chi-square test. This particular ac-" 2 \ ‘ : a

ey,
——
-

-l

-

-
——
St

ceptance criterion implies that inappropriate models have a sm
chance of being accepted just like appropriate models have
small chance of rejection. If rejected, a new point is random| -4 : "

selected in the neighborhood of the last accepted point. The ¢ V v

i i i 1 | 1 L 1 1 L L
guence of points accepted is stored to estimate, once the proc 5 : T 0 % W »m 2 % %

has been completed, the probability of occurrence of each mod Time (second)
The sampling procedure used in this work is the Gibbs sam-
pling, the simplest of the many variants of the MCMC algorithm. Fig. 5 Simulated non-linear function  (13)
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Table 1 Top five models and number of appearances These uniform probabilities reflect the fact that little is known
about the form of the model before starting the analysis. It can be

Model Effects Posterior Probability  ohserved that effects 2, 3 and 43, namely x5 and X,Xs, are
1 Xz, X3, X4Xs 52.0% associated with a probability of 100% while the other effects may
2 X2, X3, X4Xs5, X109 3-03/0 be ignored because their posterior probabilities are reduced to
2 G2 X3 s aka %802 insignificant levels.
5 X X XX XoXey 2 0% In conclusion, the Bayesian model screening clearly suggests a

model that includes the three effects, X3 andx,xs. The iden-
tified coefficients corresponding to these effects are equal to 2.99,
2.02 and—1.52, respectively, and they are in good agreement with

Clearly,y does not depend on predictots, Xs, X7, Xg, X9, X10, the actual cqefficients shown in EG.5). The algorithm is imple-
X,1 andX;,. The objective of model screening is to identify themented as interpreted Matlab™ functions and it performs the
model form(15). Equivalently, it can be stated that the objectiv@nalysis in a few seconds of CPU time with a typical desktop
of model screening is to identify the linear effests, x; and the Personal computer.
linear interaction effeck,xs from all the potential combinations . L
defined by the family of models considered. 5 Experimental Application
The family of models defined for this illustration is composed In this Section, Bayesian model screening is applied to the
of the linear models that include the twelve linear effectand problem of identifying the form of a nonlinear model using real,
the linear interaction models, defined as the previous models aegperimental data. The analyzed data sets are chosen from those
mented with the 66 interaction effectsx; . The total number of proposed by the VTT Technical Research Center of Finland within
different effectsx; and x;x; with twelve predictors is therefore the framework of the European COST action F3 working group
equal to 78. The total number of different models that can ki “Identification of Nonlinear Systems’34].
defined belonging to this family by combining the 78 effects is in The structure investigated consists of wire rope isolators
excess of 3.02 10*® models, a number that approaches the nunmounted between the load mass and the base mass, as shown in
ber of atoms in the known Universe. Clearly, exploring such Big. 7. The load mass acts like a free inertial mass. The motion
large number of combinations without focusing on the models ahd forces experienced by the isolators are measured. In particu-
highest likelihood would not be feasible. lar, the acceleration responsks and X,;, of the load mass and
The procedure described in the foregoing section is applied bottom plate, the applied fordeand the relative displacemext,
the data using 50 samples dedicated to the initialization of tlxetween the top and bottom plates are measured. The excitation
Gibbs sampler and 100 samples for the computation. Initializingoduced by an electro-dynamic shaker corresponds to a white
the Markov chain is referred to as “burn-in” and guarantees thaise sequence, low-pass filtered at 400 Hertz. What makes this
the remainder of the chain is not biased due to a particular choggstem interesting for identification is that the attenuation of the
of starting point. The samples drawn during burn-in are disreibration across the interface is difficult to characterize because
garded and only the 100 samples drawn during the optimizatittiee mechanics of the isolators is unknown to a large extent. Sig-
itself are kept to estimate the final probability of occurrence dfificant nonlinear dynamics are expected due to the geometrical
each model in the family. The top five models are listed in Tablgonlinearity—pre-loading in the wire rope isolators changes with
1. It can be observed that the best model in terms of posteribie load mass.
model probability is the actual model. The mean-square error for
the top five models is about 0.003%. This means that it is not
necessary to include other terms than the ones present in the best
model.
Figure 6 represents the marginal posterior probability of each
effect being in a particular model. The prior probabilities—that
reflect the prior knowledge—are set to 25% for each linear effect
Xi; 10% for the interaction effectgx; if one of the parent effect
X; or x; is selected in the model; and 1% only for the interaction
effectsx;x; when neitherx; nor x; are considered in the model.

3

=)

kS

Mgrgigal Bro%abiﬁty

40 50 60 70 80
Effects

Fig. 6 Marginal posterior probability of each effect included in
the family of models Fig. 7 Wire rope isolators
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Table 2 Testing matrix of the VTT benchmark The next step of the RFS method is to describe the restoring
force by means of a mathematical model. This is achieved through

Forcing Level Mass 12.2 kg Mass 2(5.8 k9 model fitting such as described in Section 2. The generic form of
Level 1(0.5 vol) Test 1 — models sought is usually given by:
Level 2 (2.0 volY Test 2 —
Level 3 (4.0 voly Test 3 Test 5 mnAn o
Level 4 (8.0 volt Test 4 — f(x,X)= 2 2 ;X% (18)
=0 =0

To resolve the problem of order determination, which refers to the
identification of the most appropriate dimensions in Eq. (18),
o ) ) an over-determined system of linear equations is formed with the
Four excitation levels are considered ranging from 0.5 Volt ugyailable restoring force data. The singular value decomposition is
to 8.0 Volt. A nominal series of four tests are performed with ghen used to select the appropriate order. Refer¢@8kdetails
load mass of 2.2 kg. Afifth test is also carried out with the heavighe identification procedure and shows that the final model in-
load mass of 5.8 kg. Table 2 defines the testing matrix from Whl(a’]udes a linear stiffness term, a viscous damping term and a non-

data sets have been collected. linear stiffness contribution:
Referencg 35] discusses the identification of the VTT bench- ] ) )
mark structure using the RFS. The main idea behind the RFS faL(X12,X12) = KiXqo+ CiXaot KnilX12 “Sign(xsp)  (19)

method is briefly overviewed to explain the system identificatiogpere the coefficient , ¢, , k, and « identified with the RFS

approach and the reader is referred to Referd8&¢ for more method and singular value decomposition are listed in Table 3.

details. ) ) These results are used in the remainder as the reference through
The derivation of the main equations of the RFS method stafiich the performance of the Bayesian model screening is

by writing Newton’s second law for the load mass, which  5ocegsed.

yields: The final model features a mean square efM8E) equal to

(16) 2.11%, which indicates an excellent correlation to test data. The

MSE indicator is a normalized metric that measures the goodness-

wherefy,_ denotes the nonlinear internal force. Clearly, the forcef-fit between model predictions and physical observations. It is

fyo IS unknown but it can be ascertained, as shown in(E6), defined as:

that its value depends on the displacement and velocity of the load

MpXo+ L (Xo—Xqp , X2 —X1p) =0

mass relative to those of the bottom plate. Introducing the relative _ 100 T2
displacementx,,=X,— Xy, EQ. (16) becomes: MSE= Ng'§ k:;_ N (Y= *u) (20)
FuL(X12,X12) = — MpXyp— MyXyH (17)  where, to comply with notations introduced in SectioryRrep-

Equation (17) can be viewed as describing the response of
SDOF system subjected to a base acceleration. Because the a
eration signals shown in the right-hand side of Ey) are mea-

sured and the mass is known, it is possible to compute the res The exercise of identifying the most appropriate model form is
ing force fy_ at each instant from Ed17). 9 pprop

The value of the restoring force is shown in Fig. 8 in the fou?eocvtvsrgfeesz?ngg?ntge rBez)rfeer]?r\]Nm?céelgicheheenInzgr.e':tlﬁztyli;hergre ef-
cases where the load mass is equal to 2.2Tkepts 1-4. At low 9 49). y

excitation level, the system’s behavior is predominantly linear bgyﬁnaess X12, “Eear damp”ég X12 a#.d. nonllnegr st|ff£ess
cause the restoring force varies linearly with the displacement, 82 “Sign(12). The corresponding coefficients are denotedpy
can be observed for the 0.5 Volt and 2.0 Volt levels. As the excy, @Nd ki, as before. Second, model-forming rules are defined

tation level is increased, a softening stiffness nonlinearity appeafd!ich are that main effects and linear interactions between the
as can be observed from the 4.0 Volt and 8.0 Volt levels. main effects are allowed. This means that a total of six effects

leading to sixty two different model forms are allowed. Such com-

binatorial complexity is trivial compared to the example discussed

in Section 4. The complexity here stems from the fact that real

data sets are analyzed with all the risk of erroneous identification

sl / caused by “noisy” measurements and signal conditioning issues.
10 Because the exponent is unknown, the Bayesian model

resents the available restoring force data afds the standard
éfee iation of datay, . The vectorg collects the coefficientk, , c,
andk,,, assuming that the exponesmtis known and equal to 1.5,
t%'?—d the vectok, collects the corresponding effects in Ed9).

screening is repeated for several assumed values dhe value

Zz Z
%0 g 0 that leads to the smallest MSE is retained. Repeating model
8 & screening could become CPU-time intensive if long MCMC
A0 - chains are requested for each analysis. For this application, an
* bl initial chain of length 50 is dedicated to burn-in and a chain of
0.5 0 05 -2 - 0 1 2 length 300 is requested for the optimization. It has been verified
Displacement (mm) Displacement (mm} that requesting more samples does not improve the quality of the

final results. Figure 9 shows the evolution of the MSE as a func-
tion of the exponent. The minimum value is obtained fax

3 . z
g 0 _ e @ 0
K / 8 Table 3 RFS identification of Eq.  (19)
AQf :
20
20 et [— 4.0Volt | ~ Coefficient Value Units
2 . 1] 2 5 0 5 kl 1.09 10LS N/m
Displacement {mm} Displacement (mm) ¢ 183.44 N.sec/m
Kni -8.52 107 N/mt-°
Fig. 8 Estimation of the restoring force at the four levels 0.5 a 15 Unitless

Volt, 2.0 Volt, 4.0 Volt and 8.0 Volt
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Table 5 Bayesian identification of Eq.  (19).

Coefficient Value Differendg)
k, 1.12 10° N/m 2.75%
(o 198.19 N.sec/m 8.04%
Kni —-9.07 1077 N/m** 6.46%
a 1.5 0.00%

)Difference relative to coefficients in Table 3.

MSE (%)

in Table 4 includes only the main effectg;,, X;», and
[x12 5sign(x;,) and appears 86% of the time in the Markov chain.
The main effects, labeled 1-3 in Figure 10, have a posterior
probability of 100% while interaction effects, labeled 4—6, may
be considered negligible because their posterior probability is be-
low 10%. For this application, the prior probabilities were set to a
uniform 20% for the main effects; 10% for an interaction effect
when at least one of the “parent” main effect is selected in the
model; and 1% only for an interaction effect when none of the
parents are selected. The increase in probability for effects 1-3 in
Figure 10 and the reduction for effects 4—6 are therefore signifi-
) o ) cant. From these results it can be concluded that a suitable model
=1.5, the same value as the one identified in Referg8Bewith  for the restoring force is given by EGL9) with an exponent equal
the RFS method and singular value decomposition. It may seemqy=1.5.
paradoxical that the MSE greatly increases dor 1, i.e., for a  The coefficientk, , ¢, k, and« identified with the Bayesian
linear model while its value remains low in the neighborhood ghodel screening are listed in Table 5. The last column in Table 5
a=1 (e.g., «=0.99). The reason is that there is still a slightompares the identification results to those of the RFS method in
curvature for values ok different from 1 that can be enhanced byReferencd35]. To calibrate the model's coefficients, the Bayesian
taking high values of the corresponding nonlinear paramefer model screening currently relies on the least-squares estirf@tor
Table 4 and Figure 10 display the top five models and thgen though other solvers could be implemented. Although the
marginal posterior probability of each effect, respectively. Th&rue” solution is unknown, it can be stated that both methods
mean square error for each of the top five models is aroupgbvide consistent results because the maximum difference is less
2.37%, very similar to the RFS results previously reported. Su¢han 10%.
low MSE values indicate that the agreement with experimental The small differences witnessed between the RFS identification
data meets the expected level of accuracy. The most likely mo@gld Bayesian model screening may be attributed to the different
data sets used. Referring to Table 2, the RFS identification was
conducted using the five combinations of input levels and load
Table 4 Top five models and number of appearances massegTests 1-5 The Bayesian model screening is restricted to
four of the five cases, as discussed in Section 6, to provide a
Posterior validation of the model’s predictive accuracy.

Exponent

Fig. 9 Evolution of the MSE as a function of the non-linearity
exponent a

Model Effects Probability
; X1z X1z, X1 sign(xs,) 87662% 6 Validation of the Identified Model
Model 1+ Xq5|X45| ~ sign(x U7 . . )
3 Model 1+ xijxijl.ssigngxg 3.0% It was pointed out previously that only four of the five data sets
4 Model 1+ X;5% 1, 2.6% are considered during the identification. These are Tests 1, 2, 4
5 Model 1+ x4 x15 ° sign(x,,) + 0.3% and 5. The remaining data s@test 3, 2.2 kg load mass, 4.0 \olt
X121 X1 5 sign(x1) level) is exploited to assess the predictive accuracy of the identi-

fied model.

Although it might not yet be the state of the practice in struc-
tural system identification, many authors, among whom we cite a
recent discussion of model validation in Referef®@], have em-
phasized that identified models should be independently validated.
It essentially means that independent experiments or data sets
should be used for model screening and parametric calibration, on
one hand, and model validation and predictive accuracy assess-
ment, on the other hand. The predictive accuracy of a model can-
not be objectively assessed over the operational range of interest
as long as the independence between training data and validation
data is not met.

Here, data sets collected during Tests 1, 2, 4 and 5 are used for
model screening and system identification while the data collected
1 during Test 4 are used for model validation. Essentially, (E6)
is evaluated with the coefficients of Table 5 to predict the restor-
ing force. Displacement and velocity time series in ELP) are
estimated from numerical integration of the measured acceleration

Marginal probability

s Effects4 5 6 _signals. The evolution of the predicted_ restoring force versus t_ime

is then compared to the “true” restoring force measured during

Fig. 10 Marginal posterior probability of each effect included Test 3. The true restoring force is estimated directly from accel-
in the family of models eration measurements, as shown in Eg). In Fig. 11, the two
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