INTEGRATING N-SPECT WITH THE DEVELOPMENT OF A MANAGEMENT PLAN FOR THE KINGSTON LAKE WATERSHED

Tammie Middleton GIS/Web Specialist

8.

Dr. Susan Libes Director, Waccamaw Watershed Academy

> GEOTOOLS March 06, 2007

Collaborative Demonstration Project

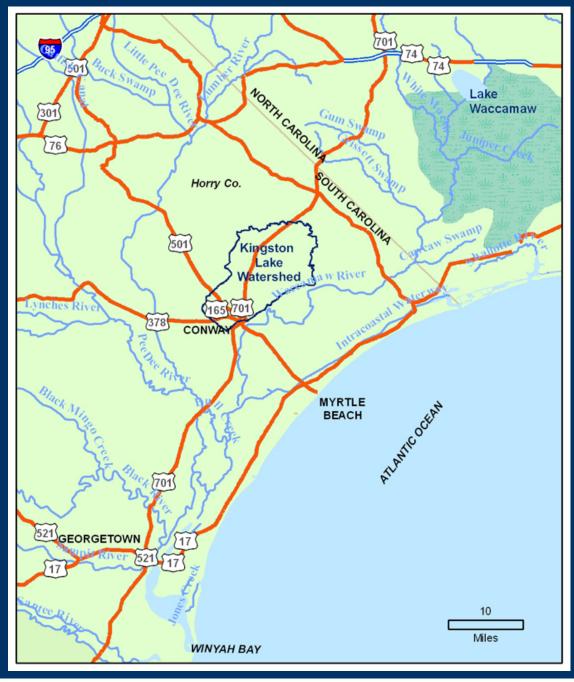
NOAA Coastal Services Center

Waccamaw Regional Council of Governments

Strom Thurmond Institute, SC Water Resources Center

US EPA Region IV Wetland Program Development Program

CCU's Waccamaw Watershed Academy Pro Bono



Overview

- KLW Watershed Planning Project
- N-SPECT
- Project Modeling Scenarios
- Modeling Output
- Role of N-SPECT in public outreach for KLW project
- Future work plan

Waccamaw River

Lake Waccamaw to Atlantic Ocean: 140 mi 1,243,000 acres drainage

COASTAL CAROLINA

KLW

- 83,446 acres
- 166 stream mi
- 3 subwatersheds
- Two 303(d) listed sites
- Only urban area on River

KLW Project

- Funded by EPA Region IV
- 06/05 to 03/09
- Watershed
 management
 plan
 development
- Builds on prior
 WQ research by
 CCU's WWA

COASTAL CAROLINA U N I V E R S I T Y

Quick Links | Search | Home Waccamaw Watershed Academy

COASTAL CAROLINA

Done

Collaborators

City of Conway Horry County Waccamaw Regional Council of Governments Waccamaw Riverkeeper (Winyah Rivers Foundation) SC Department of Health & Environmental Control – BOW SC Department of Health & Environmental Control - OCRM US Fish and Wildlife Service Winyah Bay Focus Area Task Force **Natural Resources Conservation Service** Center for Watershed Protection US Environmental Protection Agency SC Sea Grant Consortium North Inlet – Winyah Bay National Estuarine Research Reserve SC Water Resources Institute Center for Watershed Protection Earthworks Group

Why Kingston Lake Watershed and Crabtree Canal?

- Clean up polluted areas & reduce stormwater flooding
 Two 303(d) listed sites
- Plan for rapid growth
 - Preserve water quality
 - Preserve traditional uses (hunting, fishing, boating)
 - Increase ecotourism
 - Conserve natural areas for wildlife

<u>Nonpoint Source Pollution and</u> <u>Erosion Comparison Tool (N-SPECT)</u>

- Helps coastal managers and local officials predict potential water quality impacts to rivers and streams from nonpoint source pollution and erosion.
- Compares different land-use change scenarios
- Simulates effects of site-specific stormwater BMPs
- Output types
 - Annual accumulated load & concentrations
 - Rain event loads & concentrations
- Pollutants
 - Nutrients & Sediment
 - Zinc & Lead

N-SPECT

• Advantages

- It's not US EPA's BASINS
- User Friendly
- Low data requirement
- Low computer complexity
- Limitations
 - It's not US EPA's BASINS
 - Not as sophisticated
 - Not necessarily site specific unless you collect a whole lot of data

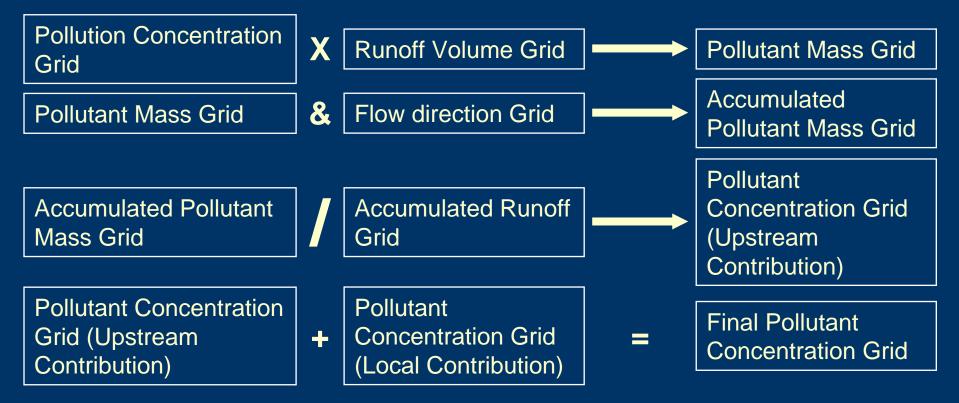
NOAA Modelers

Development team

 Dr. David L. Eslinger, Jamie Carter, Margaret VanderWilt, Bev Wilson, Ed Dempsey, Andrew Meredith

- Major contributors
 - Hawaii Coastal Zone Management Program
 - NOAA Coastal Services Center (CSC)
 - National Ocean Service Pacific Services Center
 - Hawaiian management community

N-SPECT Data Requirements

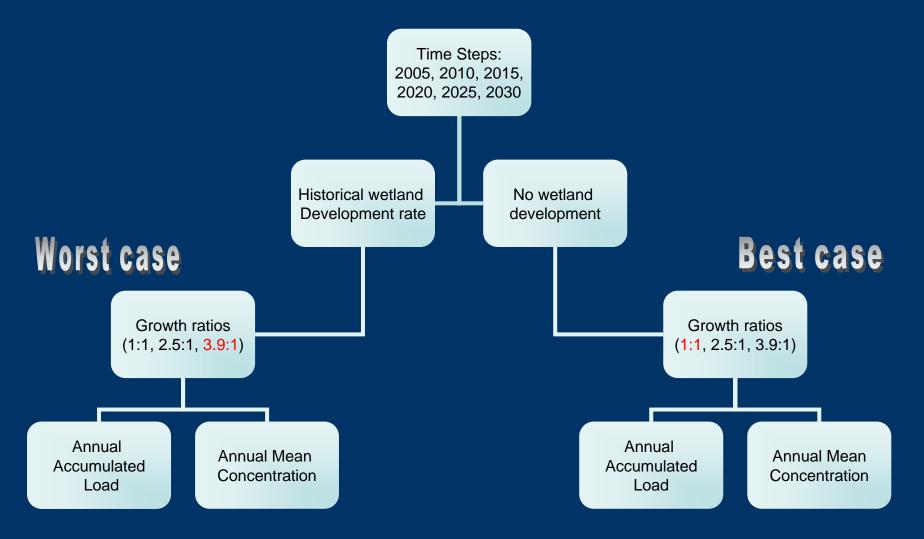

KLW Management Scenario 8w2005							
File Help							
Project Information							
Name: KLW Management Scenario 8w2	Working Directory:						
Land Cover	Soils	Miscellaneous					
Grid: C-CAP Land Cover 1995	Soils Definition: Kingston_Lake	E Selected Polygons Only					
Grid Units: meters	Hydrologic Soils Data Set:	Layer: KLW_bnd_Dissolv					
Type: Kingston_Lake_CCAP 💌	C:\NSPECT\kingstonlakedata\	soils1					
Precipitation Scenario Watershed Delineation Water Quality Standard							
Name: Kingston_Lake 💌 Na	ame: Kingston Lake	Name: Long Term Criteria					
Pollutants Erosion Land Uses Management Scenarios							
Apply Pollutant Name	Coefficient Set	Which Coefficient					
Phosphorus	Kingston_Lake_Phosphorus	Type 1					
Nitrogen	Kingston_Lake_Nitrogen	Type 1					
Total Suspended Solids							
Zinc							
Lead							
		Run Cancel					

- Primary
 - Landcover
 - Soils
 - Precipitation
 - Digital
 Elevation
 - Water Quality Coefficients
 - Water Quality Standards
- Derivative
 - Watershed Delineation
 - Soil Erosivity
 Factor

Annualized Pollutant Load & Concentration

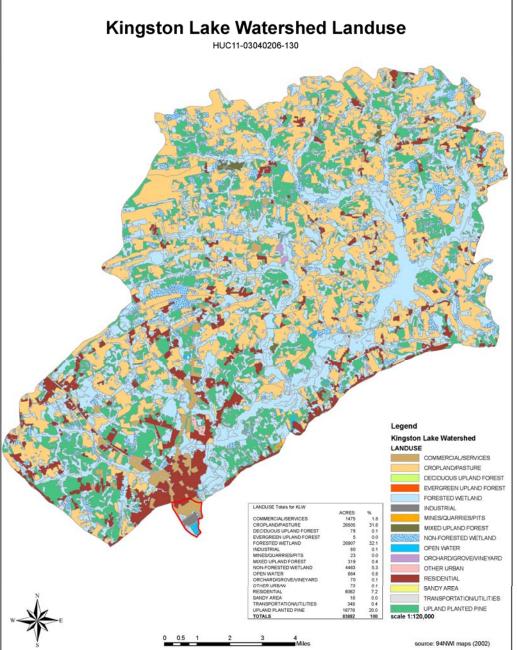
• Doesn't cover first flush issues

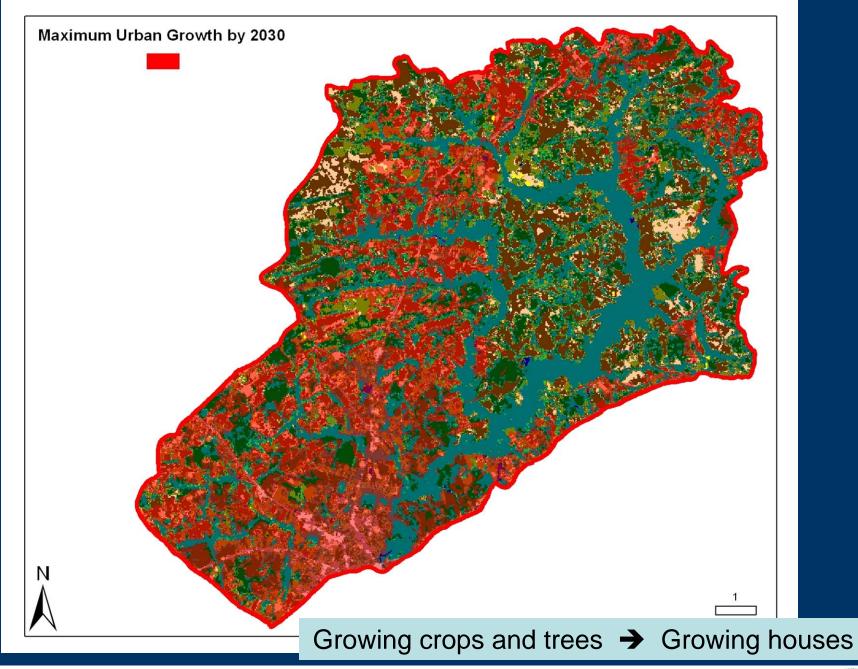
Growth Scenarios


The Strom Thurmond Institute

- Historical growth rates projected forward
 - Spatial
 - % areal growth rate : % population growth rate
 - 1:1 (low)
 - 2.5:1 (medium)
 - 3.9:1 (observed for 1992-2001)
- Wetlands Loss rate (8% in 9 yr © 1992-2001)
- Only projects development
 - Doesn't differentiate low from high intensity
 - First iteration, used high intensity pollutant coefficient
- Does not include impacts from proposed I-73

Modeling Scenarios for Predicting Impact of Increased Growth on Phosphorus, Nitrogen & Sediment Loads & Concentrations





LANDUSE	%
COMMERCIAL/SERVICES	1.76
CROPLAND/PASTURE	> 31.60
DECIDUOUS UPLAND FOREST	0.09
EVERGREEN UPLAND FOREST	0.01
FORESTED WETLAND	> 32.08
INDUSTRIAL	0.10
MINES/QUARRIES/PITS	0.03
MIXED UPLAND FOREST	0.38
NON-FORESTED WETLAND	5.32
OPEN WATER	0.82
ORCHARD/GROVE/VINEYARD	0.08
OTHER URBAN	0.09
RESIDENTIAL	7.23
SANDY AREA	0.02
TRANSPORTATION/UTILITIES	0.42
UPLAND PLANTED PINE	→ 20.00

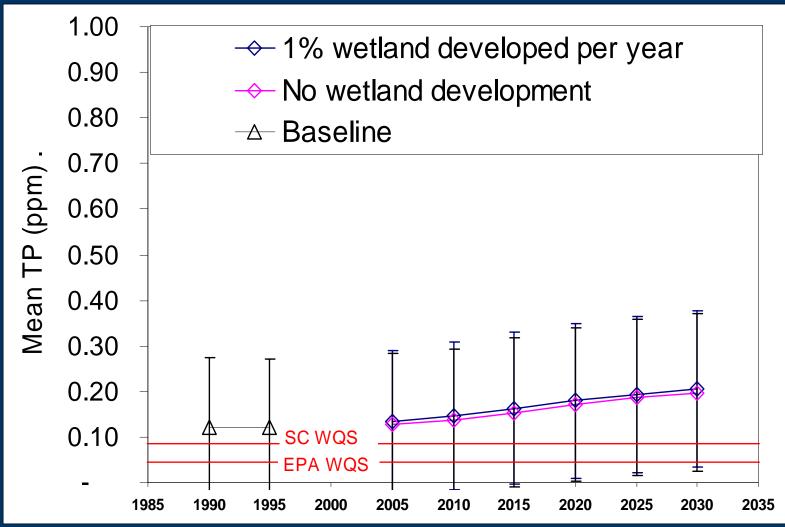
Coastal Carolina University, Burroughs & Chapin Center for Marine and Wetland Studies

COASTAL CAROLINA

Pollutant Coefficients by Land Use Type

Landcover Type		Nitrogen Coefficient		Phosphorus Coefficient		
High Intensity Developed		1.7			0.47	
Low Intensity Developed		2.68		0.18		
Cultivated Land	2	2.48			0.42	
Grassland	1	1.25			0.48	
Deciduous Forest	1.25		0.05			
Evergreen Forest	1.25		0.05			
Mixed Forest	1.25		0.05			
Scrub/Shrub		1.1		0.05		
Palustrine Forested Wetland		1.1		0.2		
Palustrine Scrub/Shrub Wetland		1.1		0.2		
Palustrine Emergent Wetland		1.1		0.2		
Bare Land		0		0		
Water		0		0		

Source: N-SPECT Technical Guide, Appendix B

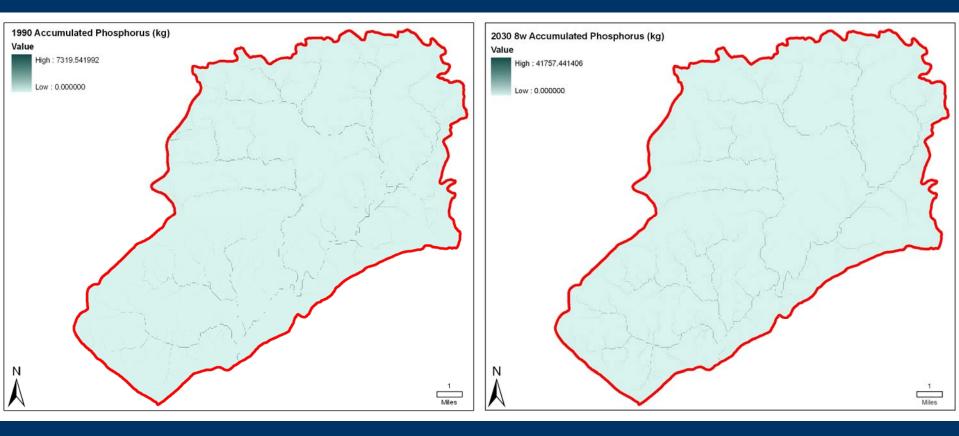


Phosphorus Benchmarks

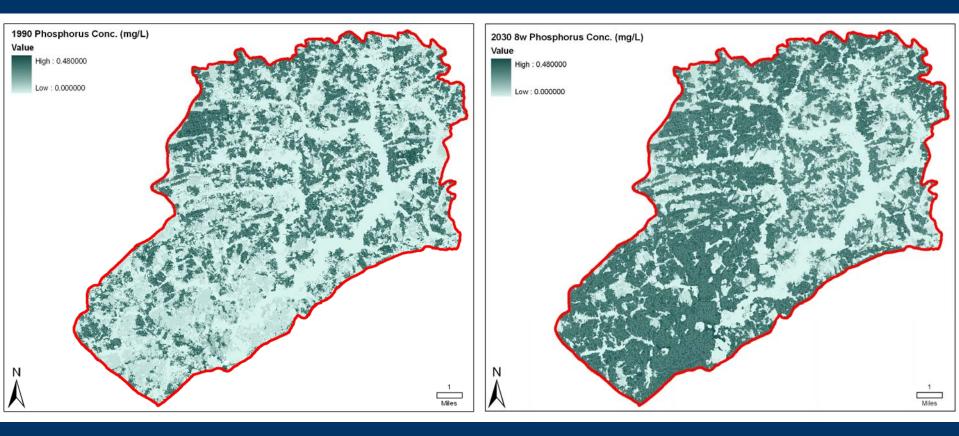
• Water Quality Standards

- SC State Standards
 - 0.09 ppm P as TP
- EPA Ambient Water Quality Criteria Recommendations: Rivers and Streams in Nutrient Ecoregion XIV, Level III Ecoregion 63 (2000)
 - 0.05 ppm P as TP
- Observational Data
 - Storet from Crabtree and Kingston Lake as TP
 - 2003: Crabtree Mean 0.04 <u>+</u> 0.01 ppm P as TP
 - 2003: Kingston Lake 0.03 + 0.01 ppm P as TP
 - 2005: Kingston Lake 0.05 <u>+</u> 0.02 ppm P as TP
 - US EPA 319 Project (1999-2001) in KLW
 - Median dry weather: 0.01 <u>+</u> 0.02 ppm P-phosphate
 - Median wet weather: 0.28 <u>+</u> 0.09 ppm P-phosphate

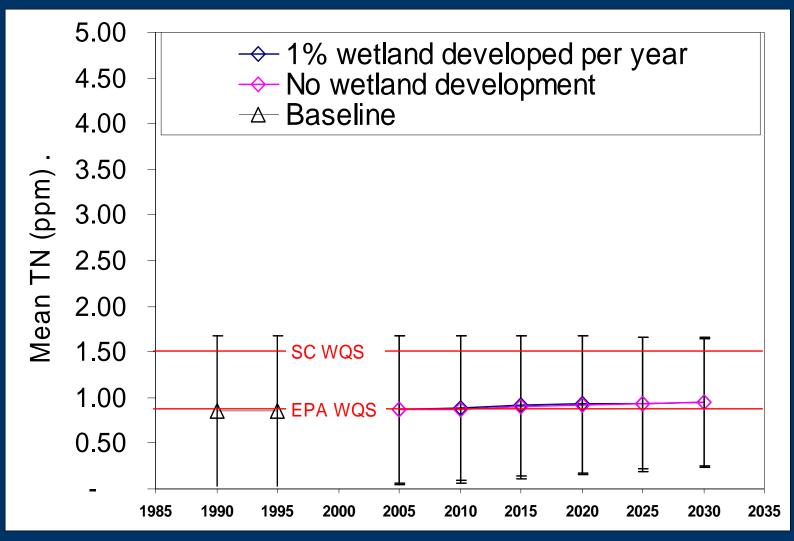
Model scenarios exceed both State and EPA WQS


•67% increase from baseline to 2030 (61% nw)

•Large standard deviation due to watershed accumulating effect


Phosphorus Accumulated Load

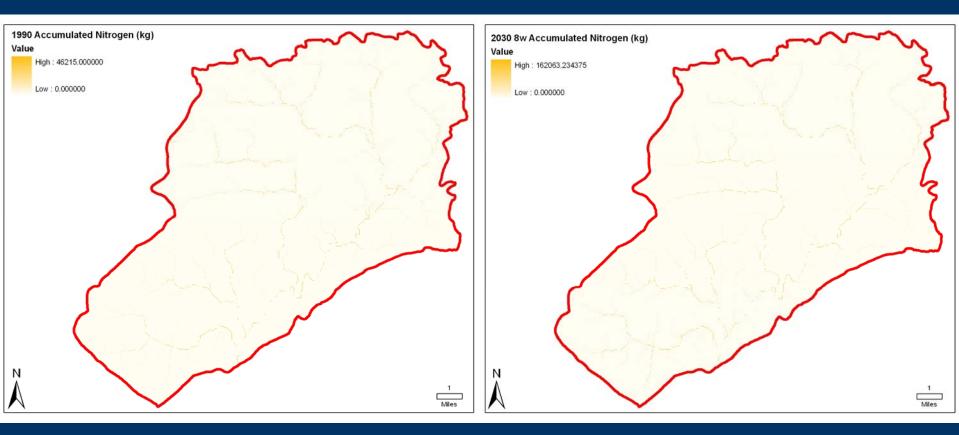
Phosphorus Concentrations



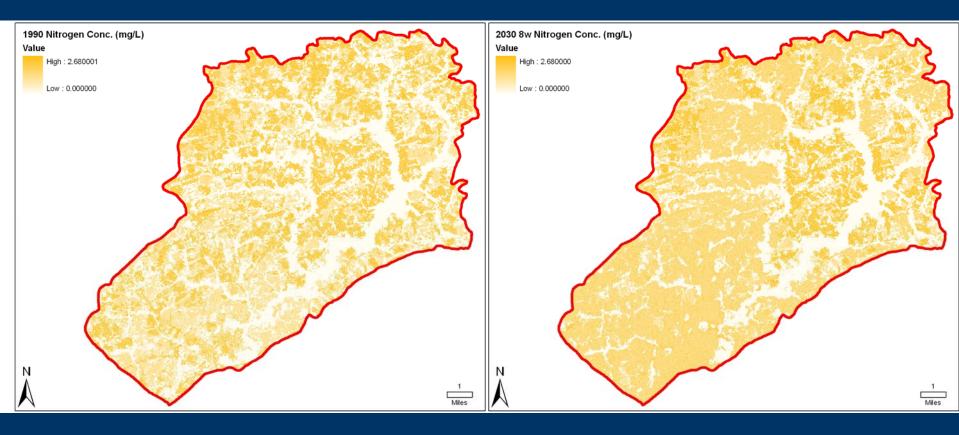
Nitrogen Benchmarks

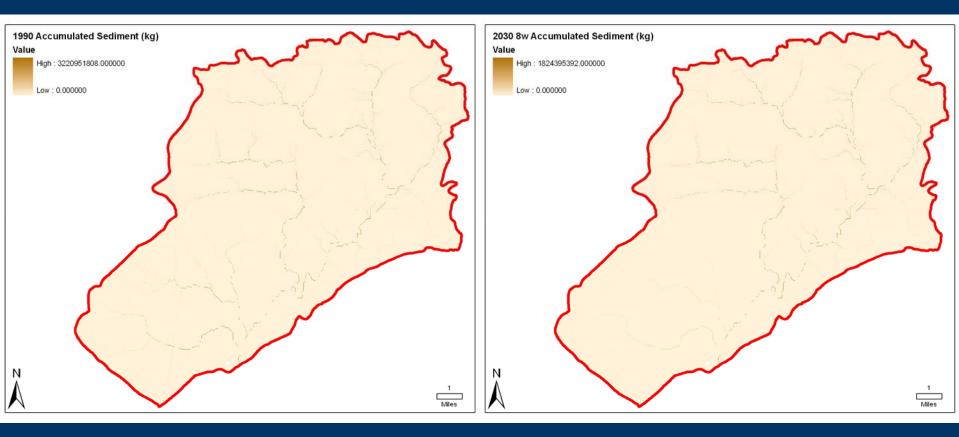
- Water Quality Standards
 - SC State Standards
 - 1.5 ppm N as TN
 - EPA Ambient Water Quality Criteria Recommendations: Rivers and Streams in Nutrient Ecoregion XIV, Level III Ecoregion 63 (2000)
 - 0.87 ppm N as TN
- Observational Data
 - Storet from Crabtree and Kingston Lake as TN
 - 2003: Crabtree 1.486ppm + 0.0933 as TN
 - 2003: Kingston Lake 1.6343ppm + 0.5299 as TN
 - 2005: Kingston Lake 1.2783ppm <u>+</u> 0.2551 as TN
 - US EPA 319 Project (1999-2001) in KLW
 - Median dry weather (urban): 0.81 <u>+</u> 0.40 ppm TDIN
 - Mean wet weather peak (2001): 0.37 <u>+</u> 0.25 ppm TDIN

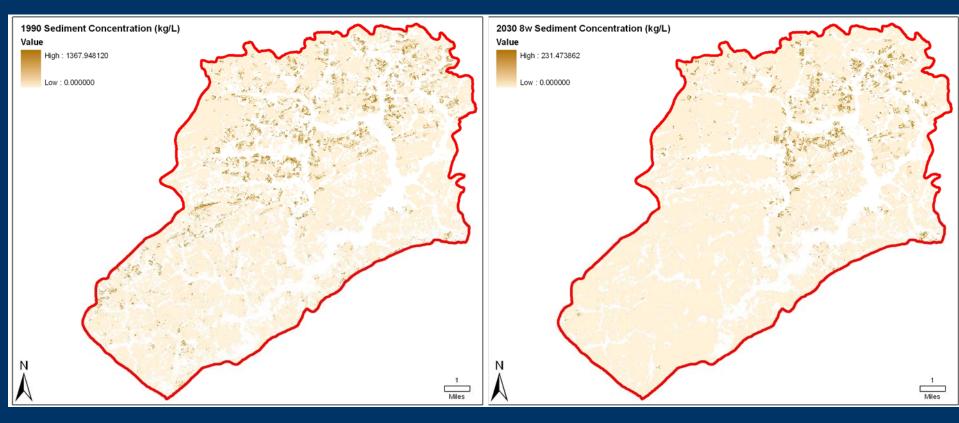
Within State WQS, Exceeds EPA WQS by 2015


12 % increase over time (10.5% nw)

Large standard deviation due to the accumulating effect across the watershed


Nitrogen Accumulated Load


Nitrogen Concentrations


Sediment Accumulated Load

Sediment Concentrations

- Sediment concentration initially increases 7% (1990 to 1995), then decreases by 69% (65% nw)
- As more land is developed less sediment is available to be mobilized
- No longer growing crops & trees instead growing houses

COASTAL CAROLIN

Outreach Plan

- Conceptual tool for community-based land-use planning
- Educational tool for the new NPDES Phase II Program requirements for SMS4's (Conway and Horry County)
 - Coastal Waccamaw Stormwater Education Consortium
 - Nonpoint source education for municipal officials style presentations
 Coastal Waccamaw Stormwater Education Consortium

Future Directions

- Create site-specific pollutant coefficients using water quality data from US EPA 319 Project (1991-2001)
- Partition development into low and high intensity
- Create rain event scenarios with site-specific data
- Create stormwater BMP scenarios
 - Assign special pollutant coefficient and soil curve number to a particular polygon
- Develop datalayer animations
- Develop strategy for using continuous monitoring data from USGS gauging stations established in 2006 & 2007

Acknowledgements

- NOAA Coastal Services Center
- Waccamaw Regional Council of Government
- Environmental Protection Agency
- Clemson University, Strom Thurmond Institute, South Carolina Water Resources Center

