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Abstract 
 
 
In the nuclear engineering community, the error propagation of the Monte Carlo fission 

source distribution through cycles is known to be a linear Markov process when the 

number of histories per cycle is sufficiently large. In the statistics community, linear 

Markov processes with linear observation functions are known to have an autoregressive 

moving average (ARMA) representation of orders p and p−1. Therefore, one can perform 

ARMA fitting of the binned Monte Carlo fission source in order to compute physical and 

statistical quantities relevant to nuclear criticality analysis. In this work, the ARMA 

fitting of a binary Monte Carlo fission source has been successfully developed as a 

method to compute the dominance ratio, i.e., the ratio of the second largest to the largest 

eigenvalues. The method is free of binning mesh refinement and does not require the 

alteration of the basic source iteration cycle algorithm. Numerical results are presented 

for problems with one-group isotropic, two-group linearly anisotropic and continuous 

energy cross sections. Also, a strategy for the analysis of eigenmodes higher than the 

second largest eigenvalue is demonstrated numerically. 
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1. INTRODUCTION 

 

Fitting based on time series analysis is useful for the output analysis in Monte Carlo 

(MC) simulations. For example, recent work on the confidence interval estimation of the 

effective neutron multiplication factor (keff) in MC criticality calculations has 

demonstrated that autoregressive (AR) fitting performs better than other methods [1-3]. 

The validity of time series analysis in MC criticality calculations can be argued as 

follows: 

1) The sequence of cycle-wise keff’s is stationary if the stationarity check of the MC 

fission source is properly performed. The Wold decomposition [4] guarantees that 

any stationary stochastic process is decomposed into a deterministic part (a 

singular process with zero prediction error), and a stochastic part (a regular 

process consisting of the infinite series of uncorrelated noises). Since there is no 

reason for assuming that cycle-wise keff’s have a cycle-dependent deterministic 

part, the Wold decomposition dictates that cycle-wise keff’s are reduced to the 

infinite series of uncorrelated noises. On the other hand, AR processes are 

stationary, have constant mean, and can be reduced to the infinite series of 

uncorrelated noises. Therefore, AR fitting should approximate the behavior of 

cycle-wise keff’s if the order of fitting and the fitting coefficients are appropriately 

determined.  

2) For a small natural number p, the autocovariance through the first p+1 lags can be 

evaluated reliably. One can then confine analysis to the stochastic processes with 

a constraint of the first p+1 autocovariances fixed to these evaluated values. The 
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maximum entropy rate process among these stochastic processes is the pth order 

AR process by Burg’s maximum entropy theorem [5].   

 

The above arguments are elegant and based on established theories. However, they lack 

algorithm analysis specific to MC criticality calculations.  

 

The error propagation of MC fission source distribution through stationary iteration 

cycles has been shown to be a linear Markov process driven by uncorrelated noises when 

the number of histories per cycle is sufficiently large [6]. This Markov process governs 

the evolution of the fluctuating part of the MC fission source distribution. One can then 

apply linear operators to that fluctuating part, which defines the observation of 

fluctuating quantities. Such modeling with evolution and observation separated is much 

more general than recent modeling on two component systems [7], and the matrix version 

of the former modeling can be transformed to an ARMA process of orders p and p−1 

(ARMA(p,p-1)) [8]. Since ARMA processes are standard stochastic models in time series 

analysis methods, one can utilize existing numerical libraries or statistics software to 

analyze output corresponding to various observation functions (matrices). For example, 

when the observation matrix is the row vector with unity for the jth component and zero 

otherwise, the output becomes the fluctuating part of the fission source at the jth cell. 

Also, the eigenvalues of the operator of the aforementioned error propagation have been 

shown to be the ratio of the nonfundamental to fundamental mode eigenvalues of the 

original criticality problem [6]. Thus, one is naturally led to speculating that the ARMA 

fitting of MC fission source is closely connected to higher mode eigenvalue computation. 
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This article presents one answer to that speculation: the description of a methodology of 

computing dominance ratio using ARMA fitting. The methodology does not require the 

alteration of the algorithm of source iteration cycles, as the total number of histories per 

cycle is fixed and source normalization is performed at each cycle. This is a major 

difference from recent work on higher mode eigenvalue and eigenfuntion computation 

[9]. Moreover, the methodology is free of mesh-refinement issues because information 

extraction by the analysis of fluctuation is not compromised by binning mesh sizes. This 

is an advantage over MC-based fission matrix analysis. Numerical results are presented 

for problems with one-group isotropic, two-group linearly anisotropic and continuous 

energy cross sections, where the dominance ratio from ARMA fitting is compared with 

the dominance ratio computed by deterministic Green’s function methods [10], 

discontinuous finite element discrete ordinate methods [11], asymptotic diffusion analysis 

[12], or the sphere/slab equivalence formula [13]. Also, the computation of higher modes 

than the second largest eigenvalue mode is demonstrated numerically.  

 

2. TIME SERIES ANALYSIS OF MC FISSION SOURCE 

 

In this section, the results of previous work on the error propagation of MC fission source 

[6] are reviewed. These results will then be cast into the form of time series analysis. 

 

2.1.  Error Propagation of MC Fission Source 
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Let  ( )F r r′ →
G G  be the expected number of the direct descendent particles per unit volume 

at rG resulting from a particle born at r′G . In the case of a position-independent energy 

spectrum, ( )F r r′ →
G G  is the fission kernel defined by the product of energy and angular 

spectrums, an inverse transport operator and a fission operator, with the last operator 

defined as ( , ) ( , , )f r E r E d dEν ψΣ Ω Ω∫ ∫
GG G for the operand ψ and the fissile descendent 

generation cross section fνΣ . The eigenfunctions and eigenvalues of F are denoted by Sj 

and kj:  

 1( ) ( ) ( )j j
j

S r S r F r r dr
k

′ ′ ′= →∫
G G G G  (1) 

where kj are ordered as 0 1 2| | | |k k k> > >" . The eigenvalue kj’s are assumed to be discrete. 

Note that keff is the largest eigenvalue k0, and S0 is called the fundamental mode 

eigenfunction and assumed to be normalized to k0: 

 

 0 0( ) effS r dr k k= =∫
G  (2) 

 

The fundamental mode eigenvalue k0 and the effective neutron multiplication factor keff 

will be used interchangeably. The normalization condition (2) cannot generally be 

assumed for Sj, 1j ≥  because in symmetric problems the higher-mode eigenfunctions 

may integrate to zero. In order to simplify later derivations, the following normalization 

scheme is imposed on the nonfundamental mode eigenfunctions: 

 
( )

( ) when ( ) 0
( )

j j
j j

j

k S r
S r S r dr

S r dr
← ≠∫∫

G
G G

G  (3) 
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 i.e., the whole domain integral of ( )jS rG is normalized to the corresponding eigenvalue as 

far as ( ) 0jS r dr ≠∫
G  and no specification is made otherwise. The source distribution after 

simulating the mth stationary cycle in a MC criticality calculation can be written as 

 ( ) ( )ˆ ˆ( ) ( ) ( ), 0m mS r NS r Ne r m= + ≥
G G G , (4) 

where ( )ˆ ( )me rG  is the fluctuating component of the stationary source, N the number of 

particle histories per cycle, the hats indicate a realization of stochastic quantities, and 

( )S rG is the expected value (ensemble average) of ( )ˆ ( ) /mS r NK . In addition, the random 

noise component ( )ˆ ( )m rε G  resulting from the starter selection and subsequent particle 

tracking is introduced as 

 
( 1)

( ) ( )
( 1)

ˆ( ) ( )ˆˆ ( ) ( ) ˆ ( )

m
m m

m

N F r r S r dr
N r S r

S r dr
ε

−

−

′ ′ ′→
≡ −

′′ ′′
∫

∫

G G G
G G

G . (5) 

Then, the fluctuating part of the MC fission source becomes a linear Markov process 

driven by uncorrelated noises with the nonlinear term with the order of 1/ 2O( )N −  [6]:  

 ( ) ( 1) ( ) 1/ 2
0 ˆˆ ˆ( ) ( ) ( ) ( )m m me r A e r r O Nε− −= + +

G G G , (6) 

 ( ) ( )ˆ ˆ[ ] 0,p qE e p qε = > , (7) 

 ( ) ( )ˆ ˆ[ ] 0,p qE p qε ε = > , (8) 

where A0 is defined as 

 [ ]0 0
0

1( ) ( ) ( ) ( )A F r r S r dr
k

′ ′• = → − •∫
G G G . (9) 

The operator A0 has the following features: 

 0 0 ( ) 0 for 1iA S r i= ≥
G , (10) 
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 0 0 0
0

( ) ( ) ( ) ( ) for 1 with ( ) 0 1
i

ji
j j j

k
A S r S r S r S r j S r dr j

k
 

   − = − ≥ ≠ ≥    
 

∫
G G G G G , (11) 

 0
0

( ) ( ) for 1 with ( ) 0 1
i

ji
j j j

k
A S r S r j S r dr j

k
 

= ≥ = ≥ 
 

∫
G G G . (12) 

In other words, the operator A0 maps the fundamental mode eigenfunction in (1) to zero 

identically and makes the higher mode eigenfunctions in (1) decay by a factor of the ratio 

of their respective eigenvalue to the fundamental mode eigenvalue. Therefore, the 

transformation of the system of (6)-(8) to a standard stochastic model may enable one to 

compute the dominance ratio k1/k0. In the next subsection, we derive an ARMA 

representation corresponding to the system of (6)-(8). 

  

2.2. Autoregressive Moving Average Representation 

 

First, let us consider the discrete form of (6) and (8) with 1/ 2O( )N −  terms ignored: 

 ( ) ( 1) ( )
0

m m me A e ε−= +
GG G , (13) 

 ( ) ( )( ) 0p q tE ε ε  = 
G G , (14) 

where ( )meG  and ( )mεG  are p×1 matrices, and A0 is assumed to be the operator in (9) for 

functional cases and the corresponding p×p matrix for discrete cases. In actual MC 

calculations, the binned source at each cycle subtracted by the sample average of binned 

sources over cycles yields an estimate of ( )meG . Let us introduce an observation matrix C 

with p columns: 

 ( ) ( )m my Ce=
G G . (15) 
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Then, Akaike’s theory of Markovian representation of stochastic processes [8] enables 

one to transform the system of (13) and (14) combined with (15) to an ARMA process. 

This is a new aspect that is not explored in previous work on discrete models [14, 15].  

 

In order to proceed to ARMA models, the characteristic polynomial of the matrix A0 is 

introduced: 

 0
1

| |
p

p p n
n

n
I A aλ λ λ −

=

− = + ∑ , (16) 

where λ is scalar and I is the identity matrix. The largest root of (16) is assumed to be the 

dominance ratio k1/k0 by Eqs. (10)-(12). This is equivalent to assuming that statistical 

binning of source distribution preserves the most dominant eigenmode in Eqs. (10)-(12). 

These aspects will be revisited in Section 3.  Also note that stationarity is equivalent to 

the roots of the characteristic polynomial being inside the unit disk [16]. The Hamilton-

Cayley theorem states that the coefficient a’s in (16) satisfy 

 0 0
1

0
p

p p n
n

n
A a A −

=

+ =∑ . (17) 

Then, Eq. (15) yields   

 ( ) ( 1) ( ) ( ) ( 1) ( )
1 1( )n p n p n n p n p n

p py a y a y C e a e a e+ + − + + −+ + + = + + +
G G G G G G" "  (18) 

The expression inside the parentheses in the right hand side of Eq. (18) is rewritten, using 

Eq. (13), as  
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( )
( )

( ) ( )
( )

( ) ( 1) ( )
1

( ) 1 ( 1) ( ) 1 ( ) 2 ( 1) ( 1)
0 0 1 0 0

( ) ( 1) ( )
1 0

1 ( ) 1 2 ( 1)
0 1 0 0 1 0 1

( 1)
0 1

n p n p n
p

p n p n n p p n p n n p

n n n
p p

p p n p p n
p p

n p

e a e a e

A e A a A e A

a A e a e

A a A a I e A a A a I

A a I

ε ε ε ε

ε

ε

ε

+ + −

− + + − − + + −

+
−

− − − +
−

+ −

+ + +

= + + + + + + + +

+ + +

= + + + + + + +

+ + + +

G G G"
G G G GG G" " "
GG G

GG" "
G" ( ) .n pε +G

 (19) 

Using Eqs. (17) and (19) and defining 

 ( )1
0 1 0 0,i i

i iE C A a A a I E C−= + + + =" , (20) 

one can rewrite Eq. (18) as  

 ( ) ( 1) ( ) ( ) ( 1) ( 1)
1 0 1 1 .n p n p n n p n p n

p py a y a y E E Eε ε ε+ + − + + − +
−+ + + = + + +

G G GG G G" "  (21) 

Eq. (21) is a multivariate ARMA process of order p and p−1, denoted by ARMA(p,p-1). 

However, when the observation matrix C is 1×p row vector, the observation yG  becomes 

scalar and the right hand side of Eq. (21) is also scalar. In this case, one can easily 

perform a time series analysis of Eq. (21) since many statistical libraries and software 

have the routines to analyze scalar ARMA models and/or the least square routines to 

compute these model coefficients.  

 

3. DOMINANCE RATIO COMPUTATION 

 

There are two candidates for observation matrices in dominance ratio computation. The 

first one produces the fluctuating part of the source at the qth cell: 

 N
( ) ( ) ( ) ( ) ( )component of (0, ,0, 1 ,0, ,0)

th

n n th n n n
q

q component

y y q e C e e= = = =
G G G G… …  (22) 

The second one produces the fluctuating part of keff estimates: 
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 ( ) ( ) ( ) ( )
eff fluctuating part of  estimate (1,1, ,1)n n n n

ally y k C e e= = = =
G G G… . (23) 

The observation matrix Cq in (22) is a preferred choice for dominance ratio computation 

due to the following reasons. The integration of (10)-(12) over the qth cell yields the local 

modes of the cycle-to-cycle error propagation in the original functional form: 

0 0
cell

0 0 0
0cell cell

0
0cell cell

( ) 0, 1,

( ) ( ) ( ) ( ) if ( ) 0 and 1,

( ) ( ) if ( ) 0 and

th

th th

th th

i

q

i
i j

j j j
whole domainq q

i
i j

j j j
whole domainq q

A S r dr i

k
A S r S r dr S r S r dr S r dr i

k

k
A S r dr S r dr S r dr

k

= ≥

 
   − = − ≠ ≥    

 

 
= = 

 

∫

∫ ∫ ∫

∫ ∫ ∫

G

G G G G G

G G G 1.i ≥

 (24) 

The discrete form of (24) is 

0 0

0 0 0
0

0
0

0, 1,

if 0 and 1,

if 0 and 1.

i
q

i
i j

q j q j all j

i
i j

q j q j all j

C A S i

k
C A S S C S S C S i

k

k
C A S C S C S i

k

= ≥

    − = − ≠ ≥     

 
= = ≥ 

 

G

G G G G G

G G G

 (25) 

 Using (3), the integration of (10)-(12) over the whole domain yields the global modes of 

the cycle-to-cycle error propagation in the original functional form:  

 

0 0
whole domain

0 0 0
0 0whole domain whole domain

0
whole domain whole domain

( ) 0, 1,

( ) ( ) 1 if ( ) 0 and 1,

( ) 0 if ( ) 0 and 1.

i

i
i j j

j j

i
j j

A S r dr i

k k
A S r S r dr k S r dr i

k k

A S r dr S r dr i

= ≥

   
 − = − ≠ ≥    

   

= = ≥

∫

∫ ∫

∫ ∫

G

G G G

G G

   (26) 

The discrete equivalent to (26) is 
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0 0

0 0 0
0 0

0

0, 1,

1 if 0 and 1,

0 if 0 and 1.

i
all

i
i j j

all j all j

i
all j all j

C A S i

k k
C A S S k C S i

k k

C A S C S i

= ≥

    − = − ≠ ≥        

= = ≥

G

G G G

G

 (27) 

The repeated application of (13) yields 

 
1

( ) ( ) 1 (0)
0 0

0

m
m i m i m

i
e A A eε

−
− −

=

= +∑ GG G , (28) 

where (0)eG  stands for the fluctuating part of the source at the last inactive cycle. 

Therefore, under the assumption that the 'sεG  and (0)eG  can be expanded by the 

eigenvectors jS
G

, Eqs. (27) and (28) imply that the factor 0 0( / 1)jk k k −  makes the ARMA 

fitting of the fluctuating part of keff ( ( )m
allC eG ) hopeless when the dominance ratio 1 0/k k  is 

close to unity. On the other hand, the cancellation effect resulting from the factor 

0 0( / 1)jk k k − and the complete cancellation in the third equation of (27) (or (26)) do not 

exist in Eq. (25) (or (24)).  Therefore, the ARMA fitting of the fluctuating part of the 

fission source at the qth cell ( ( )m
qC eG ) is much more favorable against the ARMA fitting of 

( )m
allC eG . Moreover, we choose the simplest source binning; binary cells q=1,2 (p=2). This 

should work if one is interested in computing only dominance ratio ( 1 0/k k ) because, in 

general, 1 0 0qC S S − ≠ 
G G

 and 1 0qC S ≠
G

, and one can overlay several different sets of 

binary cells. 

 

When the ARMA(p,p-1) process in (21) is scalar (C  is 1 p×  matrix), its lag i 

autocovariance ( )iγ  satisfies [16]: 
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 1( ) ( 1) ( ) 0,pi a i a i p i pγ γ γ+ − + + − = ≥" . (29) 

The general solution of Eq. (29) (see, e.g., Appendix A4.1 in Ref. [16]) is known to be 

 1 1 2 2( ) ,i i i
p pi b b b i pγ λ λ λ= + + + ≥" , (30) 

where 1| | | |pλ λ> >…  are the roots of the characteristic polynomial (16). Since the term 

1 1
pb λ  becomes dominant for large lags, the fitted coefficients yield an accurate estimate of 

1λ  if the number of samples, i.e., active cycles in MC criticality calculations, is 

sufficiently large. On the other hand, (28), (7) and (8) yield 

 

th

( ) ( )

 cell  cell

1
( ) ( )

0 0 cell  cell
0

(0) (0)
0 0 cell

lag  autocovariance of the  cell
1 ˆ ˆ[ ( ) ( ) ]

1 ˆ ˆ( ) ( )

1 ˆ ˆ( ) ( )

th th

th th

th

m i m

q q

m
i j m j j m j

q q
j

i m m

q

i q

E e r e r drdr
N

E A r A r dr
N

E A e r dr A e r dr
N

ε ε

+

−
+ − −

=

+

′ ′=

 ′ ′=   

′ ′+

∫ ∫

∑ ∫ ∫

∫

G G

G G

G G 3/ 2

 cell
O( ),

thq
N −  +  ∫

 (31) 

where the first equality is due to stationarity. Assuming that m is sufficiently large 

( 1m� ), which is valid when the number of observations (stationary cycles computed) is 

much larger than the decay of the geometric power of  1 0/k k , Eq. (31) can be rewritten as 

 

th

1
( ) ( ) 3/ 2

0 0 cell  cell
0

lag  autocovariance of the  cell
1 ˆ ˆ( ) ( ) O( ).

th th

m
i j m j j m j

q q
j

i q

E A r A r dr N
N

ε ε
−

+ − − −

=

 ′ ′≅ +  ∑ ∫ ∫
G G  (32) 

Moreover, Eqs. (10)−(12), the completeness assumption of , 0,1,jS j = …  and the 

previous assumption of 1m�  enable one to rewrite (32) in the following form: 

 

th

3
31 2 2

1 2 3
0 0 0

lag  autocovariance of the  cell

1
i i i

i q

kk kB B B O N
N k k k

−        
 ≅ + + + +       
         

"
, (33) 
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 where B’s are constant with respect to i  and m, and Eq. (24) implies that B’s are 

proportional to the following quantity: 

 
0

q-th cell

q-th cell

( ) ( ) if ( ) 0,

( ) if ( ) 0.

j j
whole domain

j

j j
whole domain

S r S r dr S r dr

B
S r dr S r dr

  − ≠ ∝ 
=



∫ ∫

∫ ∫

G G G

G G  (34) 

Comparing (30) with (33), one may conclude that if the number of observations is 

sufficiently large, 1 1 0/k kλ = (dominant modes) and 0/ ( 2,3, )jk k j = …  are lumped 

together into 2 , , pλ λ… . This is the reason we focus our effort on computation of the 

dominance ratio. Eq. (30) also indicates that if 1 1 0( / ) 1p pk kλ = � , the dominance ratio 

computed by ARMA(p,p-1) fitting would have large statistical uncertainty. 

 

The parameters of ARMA models can be estimated by least-squares methods. [16] 

Since these least-squares methods have been firmly established and are in use in the field 

of time series analysis, we utilize the IMSL statistical library [17] to compute the 

coefficients and covariance matrix of the ARMA(2,1) fitting of the MC binary fission 

source. The ARMA(2,1) representation is 

 

( )

( 2) ( 1) ( ) ( 2) ( 1)
1 2 0 1

0

1 0 1

,
,

.

n n n n n

q

q

y a y a y E E
E C

E C A a I

ε ε+ + + ++ + = +
=

= +

G G

 (35) 

 
The characteristic polynomial (16) of the ARMA(2,1) representation (35) is 

 2
1 2 0a aλ λ+ + = . (36) 

The dominance ratio is estimated as the larger of the roots of (36): 
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2

1 1
22 4

a a aλ+ = − + −  . (37) 

 
We always perform the stationarity diagnostics of the MC fission source distribution 

[6,18] before attempting an ARMA(2,1) fitting because stationarity is equivalent to the 

absolute value of the roots of the characteristic polynomial being smaller than unity [16]. 

The variance of the dominance ratio is estimated as 

 

( ) ( ) ( ) ( )

( ) ( )

( )

2 2

1 2 1 2
1 2 1 2

2

1
1 222

1 21 2

1
1 22 2

1 2 1 2

var var var 2 cov ,

1 1var var
2 42 4

2 1 cov , .
24 2 4

a a a a
a a a a

a a a
a aa a

a a a
a a a a

λ λ λ λλ + + + +
+

      ∂ ∂ ∂ ∂
= + +      ∂ ∂ ∂ ∂      

 
 = − + +
  −− 

 
 + −
 − − 

 (38) 

  
 

4. NUMERICAL RESULTS – DOMINANCE RATIO 

 

In this section, numerical results are presented for systems with one-group isotropic, two-

group linearly anisotropic and continuous energy cross sections. Stationarity check with 

relative entropy [6,18] has been performed for all computations to ensure that cycle-wise 

binned source data come from stationary cycles. The word “active cycles” in this and 

later sections is meant to imply that the computation has passed the stationarity check.  

 

4.1 One dimensional slab with one-group isotropic scattering cross sections 
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The first problem involves loosely-coupled one-dimensional slabs with one-group 

isotropic scattering cross sections investigated in previous work:  

 

Problem 1-1 

• 5 region slab, with void boundary conditions on both sides and one-group isotropic 

cross sections, 

• the regions are (left to right) 1.0, 1.0, 5.0, 1.0, and 1.0 cm thickness, 

• the materials are (left to right) 2 (fuel), 1 (scatterer), 3 (absorber), 1, and 2, 

• material 1 (scatterer) 

1 1 11.0 , 0.8 , 0.2total scattering capturecm cm cm− − −Σ = Σ = Σ = , 

• material 2 (fuel) 

1 1 1 11.0 , 0.8 , 0.1 , 0.1 , 3.0total scattering capture fissioncm cm cm cm ν− − − −Σ = Σ = Σ = Σ = = , 

• material 3 (absorber) 

1 1 11.0 , 0.1 , 0.9total scattering capturecm cm cm− − −Σ = Σ = Σ = . 

Problem 1-2 

• Same as problem 1-1 except the rightmost slab has a thickness of 1.01 cm. 

 

The binary source binning boundary is set up at the middle of the central absorber slab in 

both problems. Sixty thousand (60000) active cycles of sixty thousand (60000) histories 

are computed for these problems. Table I shows the dominance ratio appeared in previous 

work [19] computed by deterministic Green’s function methods [10] and an ARMA(2,1) 

fitting. Results from both methods agree within statistical uncertainty. The large 
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statistical error of Problem 1−2 is observed to be about four times that of Problem 1−1. 

This appears to be caused by a significantly large distortion in the fission source 

distribution of loosely coupled systems; the fission source of Problem 1-2 is about 0.97 to 

0.03 for the rightmost slab to the leftmost slab. 

 

4.2 Two dimensional checkerboard with one-group isotropic scattering cross 

sections 

 

The second problem involves a two-dimensional heterogeneous system: 

  

Problem 2 

• Two dimensional checkerboard with size and cross sections shown in Figure 1. 

 

Forty thousand active cycles of eighty thousand histories are computed for this problem. 

Figure 2 shows a dominance ratio computed by an ARMA(2,1) fitting and estimated by 

the analysis of the spectral radius of outer iterations in discontinuous finite element 

discrete ordinates methods [11]. It is observed that the results from ARMA(2,1) fitting 

agree with the estimation by discontinuous finite element discrete ordinates methods 

regardless of binning meshes. Figure 3 shows a dominance ratio computed by 

AR(1)=ARMA(1,0), and AR(2)=ARMA(2,0), and an ARMA(2,1) fitting, where 2 0a =  

(fixed) and 1 0E =  (fixed) in AR(1) and 1 0E =  (fixed) in AR(2). Both AR(1) and AR(2) 

are observed to be reasonably good approximations in this problem. 
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4.3 Three dimensional homogeneous cube with one-group isotropic scattering cross 

sections 

 

The third problem is a three dimensional homogeneous cube system with one-group 

isotropic cross sections: 

 

Problem 3 

• Three dimensional cube with various sizes. 

• Cross sections are 1 1 1 11.0 , 0.75 , 0.25 , 0.275 .t s a fcm cm cm cmν− − − −Σ = Σ = Σ = Σ =  

 

Forty thousand active cycles of eighty thousand histories are computed for each size of 

the cubes. The binary binning boundary is set up at z=0 for the domain |x|<D, |y|<D, and 

|z|<D, where D is the half length of the cube side. Figure 4 shows a dominance ratio 

computed by an ARMA(2,1) fitting, evaluated by discontinuous finite element discrete 

ordinates methods and asymptotic diffusion analysis [12]:  

 dominance ratio of homogeneous cube  eff

infinity

k
k

≅  , (39) 

where kinfinity is calculated for the same cross sections. Eq. (39) is expected to yield a good 

estimate for large homogeneous cubes. The dominance ratio by the ARMA(2,1) fitting is 

observed to be in good agreement with the deterministically evaluated dominance ratio. 

A small statistical error is observed for the large cubes. This can be explained as follows: 

The large size implies a small leakage through the exterior surfaces and small 

communication through the binary binning boundary compared to the number of histories 
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per cycle. This causes strongly positive correlation over sources at adjacent cycles ( ( 1)ny +G  

and ( )nyG  in (35)). To offset that effect, the coefficients 1a  and 2a  are strongly negatively 

correlated. For example, the correlation coefficient of 1a  and 2a  is larger than –0.95 in 

magnitude for larger sizes than 70 cm. On the other hand, strong positive correlation of 

( 2)ny +G  and ( 1)ny +G  implies that these centered binary sources fluctuate to the same side with 

respect to their common mean (zero). This also implies that 1a  is negative and the 

coefficient of the cross term in (38) becomes positive. Therefore, the cross term in (38) 

becomes large and negative, and the variance of the dominance ratio estimate λ+  

becomes small for large cubes. 

 

4.4 One dimensional homogeneous slab with linearly-anisotropic two-group cross 

sections 

 

The fourth problem is a critical U-D2O slab [20]: 

 

Problem 4 

• Critical U-D2O slab of thickness 1858.9 cm. 

• Linearly-anisotropic two-group cross sections (See Table II). 

 

Forty thousand active cycles of thirty thousand histories were computed on the MCNP5 

code [21]. The binary binning boundary is set up at the center of the slab. The result in 

Table III shows that the dominance ratio by an ARMA(2,1) fitting agrees with the 

evaluation by discontinuous finite element discrete ordinates methods.  
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4.5 One dimensional homogeneous slab with continuous energy cross sections 
 

The fifth problem has continuous energy cross sections: 

 

Problem 5 

• Homogeneous slab of various sizes. 

• Continuous energy cross sections for 8 g/liter Pu-239 in a water solution.  

 

Since deterministic methods are not available for continuous energy cross section 

systems, the dominance ratio computed by an ARMA(2,1) and an AR(2) fitting is 

compared with two approximate methods. One method is the asymptotic diffusion 

analysis [12]: 

 
3

dominance ratio of homogeneous slab  eff

infinity

k
k

 
≅   

 
 , (40) 

and another method is a sphere-slab equivalence formula that is valid for any 

homogeneous slab with isotropic scattering [13]: 

 
( )
( )
sphere of diameter 

dominance ratio of slab with thickness 
slab of thickness D

eff

eff

k D
D

k
≅  , (41) 

where both keff in (41) are for the same cross section systems as the original slab problem. 

Five thousand active cycles of ten thousand histories are computed for the kinfinity and 

sphere problems, and ten thousand active cycles of ten thousand histories are computed 

for the slab problems. Both of these computations were implemented on the MCNP5 
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code [21]. The binary binning boundary is set up at the center of each slab. Figure 5 

shows the dominance ratio computed by the ARMA(2,1) fitting of the slab problems and 

the approximations in (40) and (41). The standard deviation of dominance ratio computed 

by (40) and (41) is the order of the fifth fractional digit, which is too small to be shown as 

error bars. Therefore, error bars are shown for only the ARMA(2,1) fitting results. All 

three methods are observed to agree well for sizes larger than or equal to 100 cm. Figure 

6 shows the dominance ratio computed by the AR(2) fitting. It is observed that the 

performance of the AR(2) fitting is as good as the analytic diffusion approximation in 

(40). Combining the results from Figures 3, 5 and 6, one may hope that the AR(2) fitting 

performs as well as diffusion approximations. Also, as observed and discussed in 

Subsection 4.3, the statistical error of the dominance ratio is small for large slabs. 

 

5. NUMERICAL RESULTS − HIGHER MODES 

 

5.1. Symmetric Problem 

 

As the ARMA fitting of keff was dismissed in Section 3, Eq. (34) implies that if the 

integral of the first mode cancels out over the qth cell and over the (entire) domain, which 

is sometimes the case in symmetric problems, one cannot compute the dominance ratio 

through the ARMA(2,1) fitting of the source at the qth cell. Eq. (34) also implies that if 

the integral of the second mode over the qth cell does not cancel out and the integral of 

the first mode cancels out over the qth cell and over the (entire) domain, one can compute 

the second to fundamental mode eigenvalue ratio 2 0/k k  through the ARMA(2,1) fitting 
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of the source at the qth cell. This is because for the qth cell so chosen, 1 0B =  in Eq. (34), 

and therefore the coefficients 1a  and 2a  resulting from actual ARMA(2,1) fitting yield 

1 2 0/k kλ = , the new dominant mode in Eq. (33). Similarly, if the integrals of the first and 

second modes cancel out over the qth cell and over the (entire) domain, but the integral of 

the third mode over the qth cell does not cancel out, one can compute the third to 

fundamental mode eigenvalue ratio 3 0/k k  through the ARMA(2,1) fitting of the source at 

the qth cell. To demonstrate these strategies, we have analyzed a huge homogeneous cube 

with the same cross sections as those of Problem 3.  

 

Problem 6 

• Cube with side length of 200 cm, 

• Cross sections are the same as those of Problem 3. 

 

Table IV shows the nonfundamental to fundamental mode eigenvalue ratio for the first 

through third modes computed by the ARMA(2,1) fitting, where thirty-six thousand 

active cycles of fifty thousand histories are computed. Table V shows the first through 

third mode eigenvalues computed by the discontinuous finite element discrete ordinates 

method with Krylov subspace iterations [22]. Table V also contains the first through third 

to fundamental mode eigenvalue ratios by the straightforward extension of the asymptotic 

diffusion analysis in Ref. [12]: 

 
nonfundamental to fundamental
mode eigenvalue ratio

n

eff

infinity

k
k

  
≅        

, (42) 
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where 1, 2, and 8 / 3n =  for the first, second, and third mode, respectively [23]. It is 

observed that all the ARMA(2,1) fitting results contain the discontinuous finite element 

discrete ordinates results within statistical uncertainty.  

 

We have also analyzed a huge homogeneous sphere problem. 

 

Problem 7 

• Sphere with radius of 100 cm. 

• Cross sections are the same as those of Problem 3. 

Since  

 ( )
2

2 2 2
2 2 2

1 11
1

r
r r r

µ
µ µ µ ϕ

 ∂ ∂ ∂ ∂ ∂
∇ = + − + ∂ ∂ ∂ ∂ − ∂ 

, 

where µ  is the cosine of the polar angle θ  and ϕ  is the azimuthal angle,  asymptotic 

diffusion analysis (assuming the separation of radial and angular variables for space 

representation) dictates that the eigenfunctions of a homogeneous sphere take the 

following form: 

 

( )

| |

sin ( 1) /

( ) cos( ), 0,..., ,
0,1, , and 0,1, ,

( )sin(| | ), 1,..., ,

S

S

S

S

L

M
N S S S

L SM
N S S S

R r R
r

P M M N
R N

P M M N

π

µ ϕ

µ ϕ

+

 =× = =
= − −

… …
 (43) 

where 0 r R≤ < , 1 1µ− ≤ ≤ , 0 2ϕ π≤ < , and S

S

M
NP  is the associated Legendre function 

[24]. The angular part of (43) denoted here by ,Y
S SN M  satisfies 

 ( ) ( )
2

2
, ,2 2

11 Y 1 Y
1 S S S SN M S S N MN Nµ

µ µ µ ϕ
 ∂ ∂ ∂

− + = − + ∂ ∂ − ∂ 
, 
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because the associated Legendre function satisfies 

 ( ) ( )
2

2
21 1 0.

1
S S

S S

M MS
N N S S

MP P N Nµ
µ µ µ
∂ ∂

− − + − =
∂ ∂ −

 

Therefore, the eigenmodes have a multiplicity of 2NS+1. Table VI shows the fundamental 

and next five eigenmodes computed by the discontinuous finite element discrete 

ordinates method with Krylov subspace iterations. In the MC simulation, forty thousand 

cycles of forty thousand histories were computed with various overlaid binary meshes. 

Table VII shows the first through third to fundamental mode eigenvalue ratio computed 

by the ARMA(2,1) fitting. It is observed that the results from discrete ordinates and MC 

methods agree within statistical uncertainty. To compute the fourth to fundamental mode 

eigenvalue ratio, two subcells were combined with multipliers as shown in Table VIII. 

These multipliers are determined by 

( )

( )

( )

( )

( )

( )

( )

( )

0.5 0.52 2

0 03

1 12 20
0 0

1 12 2

0.5 0.53

1 12 20
0 0

sin 2 sin

0.816,
sin 2 sin

sin 2 sin

0.812,
sin 2 sin

r r
r dr r drk r r

r rk r dr r dr
r r

r r
r dr r drk r r

r rk r dr r dr
r r

π π

π π

π π

π π

 
− = − 

 

 
− = 

 

∫ ∫

∫ ∫

∫ ∫

∫ ∫

 

in order to cancel out the third mode error propagation expressed in the second equations 

of (24) and (25). Note that the factor k3/k0 results from (3). This two-subcell combination 

corresponds to the following observation matrix: 

 (0,...,0,0.812,0.816,0,...0)C = . 
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Note that the angular integrals ( )
/3 5 /3

0 0 2 /3 4 /3
d d

π π π π

π π
ϕ θ + + •  ∫ ∫ ∫ ∫  and 

( )
/ 6 5 / 6 3 / 2

0 / 6 / 2 7 / 6
d d

π π π π

π π π
ϕ θ

−

 + + •  ∫ ∫ ∫ ∫  cancel out the first and second mode error propagation 

expressed in the third equations of (24) and (25). Also note that Eq. (6) holds for 

( ) ˆ( )c r e rG G  and ˆ( ) ( )c r rεG G  instead of ˆ( )e rG  and ˆ( )rε G  if ( )c rG  is a cell-wise constant 

function. It is observed that the corresponding results in Tables VI and VIII agree within 

statistical uncertainty. To compute the fifth to fundamental mode eigenvalue ratio, four 

subcells were combined in a multilevel manner as shown in Table IX. In order to cancel 

out the first, second, and fourth mode error propagation expressed in the third equations 

of (24) and (25), the multipliers –1.01 and 2.17 are determined by 

 ( ) ( )0.5 1.02 2

0 0.5

sin sin
1.01 and 2.17

r r
r dr r dr

r r
π π

= =∫ ∫ . 

The multipliers 1 and –1 for the next level cell combination cancel out the third mode 

error propagation expressed in the second equations of (24) and (25) because of the 

rotational symmetry of that mode. These multipliers correspond to the following 

observation matrix: 

 
2.17, 1.01, 0, 0

(1, 1)
0, 0, 2.17, 1.01

C
− 

= −  − 
. 

It is observed that the corresponding results in Tables VI and IX agree within statistical 

uncertainty. 

 

5.2 A Realistic Application – PWR Fuel Storage Facility 

 

At first glance, the computational strategy in Section 5.1 appears to be restrictive. 
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However, many challenging problems in criticality safety and reactor physics consist of 

loosely coupled components/subdomains, which may allow one to assume the separation 

of the horizontal-plane and vertical-direction modes. Once such separation is assumed, 

one can attempt to compute an eigenvalue ratio for the first and second modes. For 

example, if a fitted cell spans over the whole horizontal domain, the ARMA(2,1) fitting 

of that cell yields the eigenvalue ratio of the mode for the vertically first and horizontally 

fundamental mode. The vertically fundamental and horizontally first mode can be 

computed by the fitting of a cell spanning over the whole vertical domain. Note that Eq. 

(10) holds for the vertically and horizontally fundamental mode. Moreover, realistic 

problems usually have some symmetry. This can be further utilized to compute the 

eigenvalue ratio for the third or higher modes.  

 

To demonstrate these strategies, we have analyzed a PWR fuel storage facility: 

 

Problem 8 

• A checkerboard array of fuel bundles and water lattices surrounded by water and 

concrete investigated in the OECD/NEA Working Party on Nuclear Criticality Safety, 

Expert Group on Source Convergence Analysis [25]. 

• Geometry and materials are shown in Figure 7. 

• All fuel bundles are fresh; the pellet density is 0.06925613 atoms/b-cm, and 

U238 : O : U235 2.238 : 4.6054 : 0.082213= . 
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Since concrete is a superior reflector to water, the fission source distribution has a large 

peak at the (1,3) lattice location as shown in Figure 8. Here one should note a similarity 

between Problems 1 and  8. Problem 1-2 corresponds to Problem 8 and Problem 1-1 to 

Problem 8 with the rightmost column in the checkerboard removed. The fission source 

distribution is 0.5:0.5 for Problem 1-1 and 0.03:0.97 for Problem 1-2. The statistical error 

of their dominance ratio is 0.00027 for Problem 1-1 and 0.00102 for Problem 1-2 when 

their binary binning boundary is placed at the middle of the central absorber slab. The 

fission source distribution in Figure 8 is more skewed to the left than the 0.03:0.97 

skewness. Therefore, the binary binning boundary in Problem 8 should not be placed 

between the 12th and 13th columns. Table X shows the statistical error of dominance ratio 

for different binary binning boundaries. One clearly sees the increase of standard 

deviation as the binary binning boundary moves to the right. Table XI shows the 

dominance ratio for the vertically fundamental mode and the largest two eigenvalue ratios 

for the horizontally fundamental mode. It is observed that the vertically second and 

horizontally fundamental mode is statistically evaluated to be smaller than the vertically 

first and horizontally fundamental mode and the vertically fundamental and horizontally 

first mode. The vertically fundamental and horizontally first mode is evaluated to be 

smaller than the vertically first and horizontally fundamental mode within statistical 

uncertainty of two standard deviations.  

 

6. A REMARK ON COMPLEX HIGHER-MODE EIGENVALUES IN 

CONTINUOUS-ENERGY CROSS-SECTION PROBLEMS 
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The authors of this article are aware of no literature that has proved that all eigenvalues of 

continuous-energy cross-section problems are real. Thus, we briefly mention what kinds 

of statistical properties of the MC fission source would be associated with the existence 

of complex higher mode eigenvalues. Suppose that 1λ  and 2λ  as well as 1b  and 2b  in Eq. 

(30) are complex conjugates: 
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 (44) 

The autocovariance of lag j would then become 

 ( ) ( )2 2 2 2 2
3 3( ) 2 cos , .

j
j j

R I R I p pj b b j b b j pγ λ λ ϕ θ λ λ= + + + + + + ≥"  (45) 

 Therefore, when the autocorrelation of a MC fission source is dominated by sinusoidal 

decay, the first and second mode eigenvalues may be complex. We have not yet 

discovered such a continuous-energy cross-section problem. 

 

7. A REMARK ON MACMILLAN’S FORMULA FOR CONFIDENCE 

INTERVAL ESTIMATION 

 

Eq. (33) has the same form as the expression of autocovariance that MacMillan [26] first 

assumed in order to derive a quick fix-up formula for the confidence interval estimations 

in iterated source calculations. Eq. (30) is the corresponding expression in ARMA(p,p-1) 

models. Both of these expressions consist of the sum of geometric powers. Therefore, the 
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ARMA(p,p-1) fitting of source could also be developed as an improvement to the 

confidence interval estimation in MC criticality calculations. 

  

8. CONCLUSIONS 

 

The ARMA(2,1) fitting of the MC binary fission source has been successfully developed 

as a method to compute the dominance ratio. The method can also be applied to the 

computation of modes higher than the second largest eigenvalue mode. All the results by 

ARMA(2,1) fitting have been successfully tested against reference results computed by 

established deterministic methods, except for continuous-energy cross-section problems. 

The ARMA(2,1)-based dominance ratio computation is free of binning mesh refinement 

issues. In other words, information extraction by the analysis of fluctuation through 

ARMA(2,1) fitting is not compromised by binning mesh size. This may encourage the 

future study of other statistical analysis methods of eigenmodes like principal component 

analysis. 
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 Problem 1-1 Problem 1-2 
GFM 0.99957 0.99250 

ARMA(2,1) 0.99944 ± 0.00027* 0.9921 ± 0.0010* 
 

 

 

 

 

Table I: Dominance ratio of Problems 1 computed by deterministic Green’s function methods 
(GFM) and ARMA(2,1) fitting. 

* two standard deviations
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Fast energy group cross-sections* for linearly anisotropic scattering (cm-1) 
Material ν2 Σ2f Σ2c Σ22s0 Σ22s1 Σ12s0 Σ12s1 Σ2t χ2 
UD2O 2.50 0.0028172 0.0087078 0.31980 0.06694 0.004555 -0.0003972 0.33588 1.0 

Slow energy group cross-sections* for linearly anisotropic scattering (cm-1)  
Material ν1 Σ1f Σ1c Σ11s0 Σ11s1 Σ21s Σ1t χ1 
UD2O 2.50 0.097 0.02518 0.42410 0.05439 0.0 0.54628 0.0 

 

 

 

 

 

 

Table II: Cross-section data for Problem 4 

* group 2 is the fast group and group 1 is the slow group 
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 ARMA(2,1) discontinuous finite element Sn 
Dominance ratio 0.9989±0.0005∗ 0.9993 

 

 

Table III: Dominance ratio of Problem 4 computed by discontinuous finite element discrete 
ordinates methods and ARMA(2,1) fitting. 

* two standard deviations 



 37

 

 

 

 

 

 

 

ARMA(2,1) fitting 
Mode Eigenvalue 

Ratio Fitted cell**  
(one cell in binary binning) 

fundamental *1.09894 0.00002± 1 N/A 

first N/A *0.99933 0.00038± 0 x<  

second N/A *0.99781 0.00069± [( 0, 0) or (0 , 0 )]x y x y< < < <

third N/A *0.99773 0.00072± | | 33.3x <  

Table IV: Nonfundamental to fundamental mode eigenvalue ratio of Problem 6 computed by 
ARMA(2,1) fitting 

*   two standard deviations 
** Domain is assumed to be  -100<x<100,  -100<y<100,  -100<z<100  
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Asymptotic diffusion analysis Discontinuous finite 
element SN Mode 

Mode Ratio Eigenvalue Ratio 

Fundamental cos(1)-cos(1)-cos(1) 1 1.09893 1 

sin(2)-cos(1)-cos(1) 

cos(1)-sin(2)-cos(1) first 

cos(1)-cos(1)-sin(2) 

0.99903 1.09787 0.99903 

cos(1)-sin(2)-sin(2) 

sin(2)-cos(1)-sin(2) second 

sin(2)-sin(2)-cos(1) 

0.99806 1.09681 0.99807 

cos(1)-cos(1)-cos(3)

cos(1)-cos(3)-cos(1)third 

cos(3)-cos(1)-cos(1)

0.99741 1.09611 0.99743 

Table V: First ten eigenvalues of Problem 6 computed by discontinuous finite-
element discrete-ordinate method with Krylov subspace iterations 
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SN 
Mode Asymptotic diffusion analysis 

(radial & spherical-harmonic mode) Eigenvalue Ratio 

fundamental RL= 0, NS= 0, MS= 0 1.09858 1 

first RL = 0, NS= 1, MS= −1, 0, 1 1.09710 0.99866 

second RL= 0, NS= 2, MS= −2, −1, 0, 1, 2 1.09525 0.99697 

third RL= 1, NS= 0, MS= 0 1.09436 0.99616 

fourth RL= 0, NS= 3, MS= −3,−2, −1, 0, 1, 2, 3 1.09305 0.99497 

fifth RL = 1, NS= 1, MS= −1, 0, 1 1.09153 0.99359 

Table VI: First twenty eigenvalues of Problem 7 computed by discontinuous finite 
element discrete ordinates method with Krylov subspace iterations 
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ARMA(2,1) fitting 
Mode Eigenvalue 

Ratio Fitted cell**  
(one cell in binary binning) 

fundamental *1.09857 0.00002± 1 N/A 

first N/A *0.99886 0.00044± 0 100, 0 , 0 .r θ π ϕ π≤ < ≤ ≤ ≤ <  

second N/A *0.99659 0.00077±
0 100, 0 ,

[0 0.5 or 1.5 ]
r θ π

ϕ π π ϕ π
≤ < ≤ ≤

< < < <
 

third N/A *0.99612 0.00082± 0 50, 0 , 0 2r θ π ϕ π≤ < ≤ ≤ ≤ <  
 

 

Table VII: Nonfundamental to fundamental mode eigenvalue ratio of Problem 7 computed by 
ARMA(2,1) fitting 

*   two standard deviations 
** Domain is assumed to be  0 100 (radial), 0 (polar), 0 2 (azimuthal).r θ π ϕ π≤ < ≤ ≤ ≤ <  
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Combined cells for fitting** 
Combination 

scheme Subcell Multiplier 
Eigenvalue ratio 

    

0 50, 0 ,
[0 / 3
or 2 / 3
or 4 / 3 5 / 3]

r θ π
ϕ π
π ϕ π
π ϕ π

≤ < ≤ ≤
< <

< <
< <

 0.812 

1 

   

50 100, 0 ,
[0 / 3
or 2 / 3
or 4 / 3 5 / 3]

r θ π
ϕ π
π ϕ π
π ϕ π

≤ < ≤ ≤
< <

< <
< <

 0.816 

*0.9949 0.0014±  

0 50, 0 ,
[ / 6 / 6
or / 2 5 / 6
or 7 / 6 3 / 2]

r θ π
π ϕ π
π ϕ π

π ϕ π

≤ < ≤ ≤
− < <

< <
< <

 0.812 

2 50 100, 0 ,
[ / 6 / 6
or / 2 5 / 6
or 7 / 6 3 / 2]

r θ π
π ϕ π
π ϕ π

π ϕ π

≤ < ≤ ≤
− < <

< <
< <

 0.816 

*0.9944 0.0014±  

 
 
 

 

Table VIII: Fourth to fundamental mode eigenvalue ratio of Problem 7 computed by 
ARMA(2,1) fitting 

*   two standard deviations 
** Domain is assumed to be  0 100 (radial), 0 (polar), 0 2 (azimuthal).r θ π ϕ π≤ < ≤ ≤ ≤ <  
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Combined cells for fitting** Eigenvalue 
ratio 

Multiplier Multiplier 
1 −1 

Subcell Multiplier Subcell Multiplier 
0 , 0 ,
0 50r

θ π ϕ π< < < <
< <

 2.17 
0 , 2 ,
0 50r

θ π π ϕ π< < < <
< <

 2.17 

0 , 0 ,
50 100r

θ π ϕ π< < < <
< <

 −1.01 
0 , 2 ,
50 100r

θ π π ϕ π< < < <
< <

 −1.01 

*

0.9927
0.0012±

 

 

 

 

 

 

 

Table IX: Fifth to fundamental mode eigenvalue ratio of Problem 7 computed by 
ARMA(2,1) fitting 

*   two standard deviations 
** Domain is assumed to be  0 100 (radial), 0 (polar), 0 2 (azimuthal).r θ π ϕ π≤ < ≤ ≤ ≤ <  
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Bin 
0  < x < 27 cm 
54 <y < 81 cm 
((1,3) lattice) 

x < 81 cm 
(column 1-4) 

x < 162 cm 
(column 1-7) 

x < 324 cm 
(column 1-12) 

Standard 
Deviation 0.0007 0.0011 0.0013 0.0025 

 

 

Table X: Standard deviation of dominance ratio of Problem 8 computed by horizontal 
binary binning (50000 histories per cycle and 7000 active cycles)  
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Mode ARMA(2,1) fitting 

Horizontal Vertical Eigenvalue ratio Fitted cell 
(one cell in binary binning) 

first fundamental *0.9930 0.0016±  0 27, 54 81, 180 180.x y z< < < < − < <

fundamental first *0.9959 0.0012±  0 648, 0 81, 0 180.x y z< < < < < <  

fundamental second *0.9807 0.0027±  0 648, 0 81, 60 60.x y z< < < < − < <  

Table XI: Nonfundamental to fundamental mode eigenvalue ratio of Problem 8 computed 
by ARMA(2,1) fitting (20000 active cycles of 60000 histories per cycle) 

* two standard deviations
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Vacuum boundary conditions 

H: Σt = 1.0 cm-1, Σa = 0.3 cm-1, νΣf = 0.39 cm-1

 

C: Σt = 1.0 cm-1, Σa = 0.3 cm-1, νΣf = 0.24 cm-1

Figure 1: Problem 2 and two different binary binnings 

H C H C H C

H C H C H C

H C H C H C

HC H C H C

HC H C H C

HC H C H C

Boundary of 
binary binning 1 

Boundary of 
binary binning 2 
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Figure 2: Dominance ratio of Problem 2 by ARMA(2,1)  
(two standard deviations for half length of error bars) 
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Dominance ratio of 2D checkerboard computed by 
y+ & y- binary division scheme 

(6x 6 array of 4 cm x 4 cm units, 95% (1.96σ) CI)
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Figure 3: Dominance ratio of Problem 2 by AR(1), AR(2), and ARMA(2,1) 
fitting of binning scheme 1 (two standard deviations for half length of error bars) 
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Dominance ratio of 3D homogeneous cube 
problems (95% (1.96σ) CI)
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Figure 4: Dominance ratio of Problem 3 
(two standard deviations for half length of error bars) 
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Figure 5: Dominance of Problem 5 
(two standard deviations for half length of error bars) 
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Figure 6: Dominance ratio of Problem 5 by AR(2) approximation 
(two standard deviations for half length of error bars) 
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Figure 7: Geometry and materials in Problem 8 
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Figure 8: Average of stationary fission source distributions (arbitrary units) 
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