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INTRODUCTION 

 
Stationarity diagnostics of the Monte Carlo 

fission source distribution have been proposed 
which utilize Shannon and relative entropies. 
[1,2] These diagnostics are motivated by the 
empirical observation that for some problems the 
“apparent” convergence of keff to the 
neighborhood of its stationary level is much 
faster than the “real” convergence of the fission 
source distribution to its stationary distribution. 
In this article, the Shannon and relative entropies 
of the fission source distribution are utilized in 
an integrated manner to give practitioners a 
workable criterion. Its effectiveness is 
demonstrated for the PWR fuel storage facility 
with a checkerboard array of fuel bundles and 
water lattices, which was recently investigated in 
OECD/NEA Working Party on Nuclear 
Criticality Safety, Expert Group on Source 
Convergence Analysis [3,4]. 

  
PRELIMINARIES 

 
Let S(i) and T(i) be the binned source 

normalized to unity. The Shannon entropy of S is 
defined as 
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where B is the number of bins. Shannon entropy 
satisfies 20 ( ) logH S B≤ ≤ . The relative entropy 
of S w.r.t. T is defined as 
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The relative entropy is non-negative and zero 
only when ( ) ( ) for all S i T i i= . These entropies 
are required quantities in the instantaneously 
decodable binary encoding of the particles 
emerging from bins. Here, the instantaneous 
decodability states that no codeword is the prefix 
of any other codeword. Let l(i) be the binary 
codeword length of the particles emerging from 

bin i. The descriptive length of the particles born 
under the law of S is defined as 
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Then, the following inequality holds for Shannon 
entropy and descriptive length [5]: 
 

( )( ) ( )
instantaneously decodable
     encoding schemes

( ) min 1H S L S H S≤ ≤ + . (4) 

 
One might think of the minimization over the 
schemes with a weaker constraint of unique 
decodability. However, the non-negativity of 
relative entropy and the Kraft inequality 
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conditions necessary to derive (4), any uniquely 
decodable encoding must satisfy the Kraft 
inequality and there exists an instantaneously 
decodable encoding for any set of codeword 
lengths that satisfies the Kraft inequality. [5] In 
other words, the restriction to the instantaneous 
decodability does not place any further 
restriction to minimum descriptive length 
property. Thus, we proceed with instantaneously 
decodable binary encoding schemes. Note that 
(4) is achieved by the Shannon code 
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, where x    denotes the 

smallest integer larger than or equal to x. This 
implies that the data description by the Shannon 
code is optimal in terms of shortest binary 
description with one bit uncertainty. Therefore, 
we seek to characterize the distribution S by the 
descriptive length using the Shannon code. But, 
in reality, we do not know the true distribution 
that governs the observed data, i.e., bins from 
which particles are born. To overcome this 
problem, an assumption is made such that the 
particle source distribution follows the 
distribution T. Usually, the distribution T is 
computed based on observations. For example, T 
may be computed as the average distribution 
over the second half of active cycles. Under the 
assumption of T, the bin i  is encoded by 
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This descriptive length satisfies the following 
inequality [5]: 
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Comparing (6) with (4), one may interpret 
D(S||T) as the penalty incurred by the 
assumption. In previous work [2], assuming that 
T is the average binned source over the second 
half of active cycles and assigning at each cycle 
the unity-normalized realization of the source to 
S, the stationarity of the source is diagnosed in a 
posterior manner by checking whether or not 

( || )D S T crosses the mean level determined 
from the second half of active cycles. However, 
it is not clear whether or not this criterion is 
always conservative. Also, there may be cases 
where the criterion is too conservative. In the 
next section, we propose a remedy to overcome 
these problems. 
 
STATIONARITY DIAGNOSTICS 
 

Let B
iS  be the binned source normalized to 

unity at cycle i , where 1, ,0,1,i N M= − + … …  
with 1i =  being the first active cycle. Let us 
define ( ) / 2 1
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approximate the Shannon entropy by 
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stationary level (msl) is defined as 
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Since (6) is a relation with inherent uncertainty 
of one bit, the factor f is chosen to be 0.05 so as 
to not disturb (6). Then, a posterior diagnosis is 
performed by checking whether or not 

( || )B B
iD S T  crosses msl downward before the 

active cycle begins ( 0)i ≤ . Since 

20 logBH B≤ ≤ where the maximum is attained 

when all B
iS  are uniform and the minimum is 

attained when all B
iS  concentrate on the same 

bin, msl f≅  except when B is a small positive 
integer or the source has an extremely 
concentrated mass in one bin. This is indicative 
of the integrity of the posterior diagnostics 
criterion against refinement of the mesh for 
binning. For example: 
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Furthermore, in parallel with 1) ( * 2B B= , 
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entropy is not affected by uniform halving the 
mesh spacing: 
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In other words, the relative entropy is not 
sensitive to binning mesh refinement in the limit 
of sufficiently fine meshes. The posterior 
diagnosis has integrity against binning mesh 
refinement.  

For progressive diagnostic purposes, 
1( || )B B

i ND S S− +  is plotted against 
1, ,i N M= − + … . Since the penalty against the 

assumption 1
B
NT S− +=  should increase initially 

and reach equilibrium, 1( || )B B
i ND S S− +  can be 

utilized as a visual diagnosis.  To overcome the 
singularity that may arise from the bins at 

1i N= − +  with a zero score, the following sum 



of relative entropies is plotted in practical 
analyses: 
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We call this progressive relative entropy.  
We have implemented the proposed stationarity 
diagnostics in the MCNP5 code [6] and analyzed 
a PWR fuel storage facility consisting of a 
checkerboard array of the fuel bundles and water 
lattices [3,4]. This problem is one of the 
benchmark problems in OECD/NEA Working 
Party in Nuclear Criticality Safety, and the 
details of the problem specification can be found 
in the participants’ reports, for example, Ref. [7]. 
Brief problem description is as follows: The 
PWR fuel storage area consists of a 24 by 3 
checkerboard array. For the first column, fresh 
fuel bundles are placed at (1,1) and (1,3), and 
(1,2) is occupied by water. For the second 
column, the fuel bundle is placed at (2,2), and 
(2,1) and (2,3) are occupied by water. These 
placements are repeated alternately through 24 
columns. The entire placement is surrounded by 
concrete on three vertical sides and by water on 
one vertical side. The lower exterior vertical side 
of (1,1) through (24,1) is faced with water. Since 
concrete is a superior reflector to water, the 
fission source has a strong peak at (1,3). Thus, 
computations from two initial fission source 
distributions are analyzed; one is uniform over 
all the fuel bundles, and other concentrates on 
the fuel bundle at (1,3). Figure 1 shows the 
cyclewise keff for computations with 50000 
histories per cycle. Upon inspection, both the 
computations appear to be stationary after the 
500th cycle. Figure 2 shows 95% confidence 
intervals assuming 500 inactive and 500 active 
cycles. It is observed that the result from a 
uniform initial source is far away from the 
separately computed reference result. Figure 3 
shows the progressive relative entropy, where 
each fuel bundle is assigned equally spaced five 
vertical bins (total number of bins = (24×3/2)×5 
). One can clearly observe that the computation 
from a uniform initial source does not converge 
even at the 700th cycle, while the computation 
from a source concentrating on (1,3) lattice does 
converge at around 200th cycle. Figure 4 shows 
the posterior relative entropy diagnosis with 

( 0.05)msl f = . One can again observe that 500 
inactive cycles are not enough for the 
computation from a uniform initial source, while 

300 inactive cycles are enough for the 
computation from a source concentrating on 
(1,3) lattice. 

 
CONCLUSION 

 
We have shown that relative entropy is 

useful to both the progressive and posterior 
diagnosis of Monte Carlo fission source. 
Furthermore, the posterior relative entropy 
diagnosis can be performed in an integrated 
manner with a maximum stationary level 
determined by Shannon entropy. 
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Fig. 1 A realization of cyclewise keff for two 
different initial fission source distributions  

Fig. 2 Confidence intervals (95%) assuming 
500 inactive and 500 active cycles 
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