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INTRODUCTION 

 
Error propagation of Monte Carlo (MC) 

fission source distribution through iteration 
cycles is a noise-driven linear Markov process 
when the number of histories per iteration cycle 
is sufficiently large [1]. We show that the 
discrete version of such a Markov process 
combined with linear observation functions has 
an autoregressive moving average (ARMA) 
representation. Since ARMA processes are 
standard stochastic models in time series 
analysis, one can attempt at ARMA fitting to 
compute physical and statistical parameters 
relevant to criticality analysis. In this article, we 
demonstrate the application of ARMA fitting to 
dominance ratio computation. 

  
ERROR PROPAGATION OF MC FISSION 
SOURCE AND TIME SERIES ANALYSIS 

 
We show how the results of previous work 

on the error propagation of MC fission source [1] 
can be cast into time series analysis. Let  

( )F r r′ →  be the expected number of the first 
generation descendant particles per unit volume 
at r  resulting from a particle born at r ′ . In the 
case of a position independent energy spectrum, 

( )F r r′ →  is the fission kernel defined by the 
product of energy and angular spectrums, an 
inverse transport operator and a fission operator, 
with the last operator defined as 

( , ) ( , , )f r E r E d dEν ψΣ Ω Ω∫ ∫ for the operand 
ψ and the fissile descendent generation cross 
section fνΣ . The eigenfunctions and eigenvalues 
of F are denoted by Sj and kj:  

 
1( ) ( ) ( ) ,j j

j

S r S r F r r dr
k

′ ′ ′= →∫  (1) 

 
where kj are ordered as 0 1 2| | | |k k k> > > . The 
eigenvalue kj’s are assumed to be discrete. Note 
that keff is the largest eigenvalue k0 and S0 is 
called the fundamental mode eigenfunction and 
assumed to be normalized to k0: 

 

0 0( ) .effS r dr k k= =∫   (2)
  
The normalization condition (2) cannot generally 
be assumed for Sj, 1j ≥  because in symmetric 
problems eigenfunctions may integrate to zero 
for some of the non-fundamental modes. In order 
to simplify later derivations, the following 
normalization scheme is imposed on the 
nonfundamental mode eigenfunctions:  

 
( )

( ) when ( ) 0,
( )

j j
j j

j

k S r
S r S r dr

S r dr
← ≠∫∫

 (3) 

 
i.e., the whole domain integral of ( )jS r is 
normalized to the corresponding eigenvalue as 
far as ( ) 0jS r dr ≠∫  and no specification is made 
otherwise. The source (distribution of fission 
sites) after simulating the m-th stationary cycle in 
a MC criticality calculation is written as 

 
( ) ( )ˆ ˆ( ) ( ) ( ), 0,m mS r NS r Ne r m= + ≥  (4) 

 
where ( )ˆ ( )me r  is the fluctuating component of 
the stationary source, N the number of particle 
histories per cycle, the hats indicate a realization 
of stochastic quantities, and ( )S r is the expected 

value (ensemble average) of ( )ˆ ( ) /mS r N . In 
addition, the random noise component ( )ˆ ( )m rε  
resulting from the starter selection and 
subsequent particle tracking can be introduced as 

 
( 1)

( ) ( )
( 1)

ˆ( ) ( )ˆˆ ( ) ( ) ˆ ( )

m
m m

m

N F r r S r dr
N r S r

S r dr
ε

−

−

′ ′ ′→
≡ −

′′ ′′
∫
∫

     (5) 
 
The fluctuating part of MC fission source then 
becomes a linear Markov process driven by 
uncorrelated noises with the nonlinear terms with 
the order of 1/ 2O( )N −  [1]:  

 
( ) ( 1) ( ) 1/ 2

0 ˆˆ ˆ( ) ( ) ( ) ( ),m m me r A e r r O Nε− −= + +  (6)  



( ) ( )ˆ ˆ[ ] 0, ,p qE p qε ε = >   (7) 
 
where A0 is defined as  

 

[ ]0 0
0

1( ) ( ' ) ( ) ( )A F r r S r dr
k

′• = → − •∫  (8) 

 
The operator A0 has the following interesting 
properties:  
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In other words, the operator A0 maps the 
fundamental mode eigenfunction in (1) 
identically to zero and makes the higher mode 
eigenfunctions in (1) decay by a factor of the 
ratio of their respective eigenvalue to the 
fundamental mode eigenvalue. Therefore, the 
transformation of the system of (6) and (7) to a 
standard stochastic model may enable one to 
compute the dominance ratio k1/k0 through time 
series analysis.  

 
Now, we consider the discrete form of (6) 

and (7) with 1/ 2O( )N −  terms ignored and 
introduce its observation function:  

 
( ) ( 1) ( )

0( ) ( ) ( ),m m me r A e r rε−= +   (12) 
( ) ( )( ) 0,p q tE ε ε  =     (13) 

( ) ( ) ,m my Ce=    (14) 
 

where ( )me  and ( )mε  are p×1 matrices, A0 is 
assumed to be the operator in (8) for functional 
cases and the corresponding p×p matrix for 
discrete cases, and C is an observation matrix 
with p columns. The addition of a linear 
observation function (14) is a new approach 
compared to previous work on discrete models 
[2, 3], which enables one to apply Akaike’s 
theory of Markovian representation of stochastic 
processes [4] to derive an ARMA representation 
of the system of Eqs. (12) and (14). To proceed 

further, the characteristic polynomial of the 
matrix A0 is introduced:  

0
1

| |
p

p p n
n

n
I A aλ λ λ −

=

− = +∑   (15) 

 
where λ is scalar and I is the identity matrix. The 
largest root of (15) is assumed to be the 
dominance ratio k1/k0 by Eqs. (9)-(11). For 
sufficiently large p, the ith largest root of (15) 
would give ki/k0 The Cayley-Hamilton theorem 
states that the coefficient a’s in (15) satisfy 

 

0 0
1

0.
p

p p n
n

n
A a A −

=

+ =∑    (16) 

 
The system of Eqs. (12) and (14) combined with 
(16) yields  

 
( ) ( 1) ( )

1

( ) ( 1) ( 1)
0 1 1 ,

n p n p n
p

n p n p n
p

y a y a y

C C Cε ε ε

+ + −

+ + − +
−
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= + + +
 (17)  

 
where matrices Ci are defined as  

 
( )1

0 1 0 0,i i
i iC C A a A a I C C−= + + + =  (18)  

 
Eq. (17) is a multivariate ARMA process of 
order p and p-1. However, when the observation 
matrix C is 1×p row vector, the observation y  
becomes scalar and the right hand of Eq. (17) is 
also scalar. In this case, one can easily perform 
time series analysis of Eq. (17), since many 
numerical and statistical libraries have routines 
for scalar ARMA models and/or the nonlinear 
least square routines to compute these 
coefficients. In addition, Eq. (17) with Eq. (13) is 
a general statistical model that can be applied to 
any criticality problem unlike a previous model 
specific to two fissile component systems [5].  
When the observation matrix C has unity for one 
component and zero otherwise, the observation 
y  becomes the source at the bin corresponding 

to the unity component. Thus, one can compute 
the coefficients a’s through the ARMA fitting of 
the source, and the largest root of the 
characteristic polynomial yields the dominance 
ratio k1/k0. In the next section, we compute the 
dominance ratio through binary source bins 
(p=2).  
 
 
 
 



NUMERICAL RESULTS 
 

We compute the dominance ratio of two-
dimensional homogeneous squares of various 
sizes with isotropic and energy-independent 
cross sections; 11.0 ,t cm−Σ =  10.3 ,a cm−Σ =  and  

10.24 .f cmν −Σ =  The reference values of the 
dominance ratio are obtained by analyzing the 
spectral radius of the outer iterations in a 
discontinuous finite element discrete ordinate 
computation [6]. For the ARMA fitting of the 
source, we utilize a time series analysis routine 
in the IMSL statistical library [7], which is based 
on a standard nonlinear least square algorithm 
[8]. The largest root of the characteristic 
polynomial is the MC estimation of dominance 
ratio.  Its statistical error is evaluated by the error 
propagation formula using the covariance matrix 
of the coefficient a’s. For quality assurance 
purposes, a stationarity check is performed for 
each MC result using relative entropy [1]. As 
shown in Fig. 1, Monte Carlo computations 
agree very well with deterministic computations. 
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Fig. 1. Dominance ratio of 2D homogeneous 
square problems of various sizes (error bars 
showing 95% confidence interval; 40000 
histories per cycle and 20000 active cycles) 
 
REFERENCES 
 
1. T.Ueki, F.B. Brown, D.K. Parsons and D.E. 

Kornreich, “Autocorrelation and Dominance 
Ratio in Monte Carlo Criticality 
Calculations,” Nucl. Sci. Eng. submitted.  

2. R.J. Brissenden and A.R. Garlick, “Biases in 
the estimation of Keff and its error by Monte 
Carlo methods,” Annals of Nuclear Energy, 
13, 2, 63 (1986). 

3. E.M. Gelbard and A.G. Gu, “Biases in 
Monte Carlo eigenvalue calculations,” Nucl. 
Sci. Eng., 117, 1 (1994). 

4. H. Akaike, “Markovian representation of 
stochastic processes and its application to 
the analysis of autoregressive moving 
average processes,” Annals of the Institute 
of Statistical Mathematics, 26, 363 (1974). 

5. T. Yamamoto, T. Nakamura and Y. 
Miyoshi, “Fission source convergence of 
Monte Carlo criticality calculations in 
weakly coupled fissile arrays,” Journal of 
Nuclear Science and Technology, 37, 41 
(2000). 

6. T.A. Wareing, J.M. McGhee, J.E. Morel and 
S.D. Pautz, “Discontinuous finite element SN 
methods on three-dimensional unstructured 
grids,” Nucl. Sci. Eng., 138, 256 (2001). 

7. IMSL Stat/Library Volume 2, Visual 
Numerics, Inc., Houston TX (1997). 

8. G.E.P. Box, G.M. Jenkins and G.C. Reinsel, 
Time series analysis: forecasting and 
control, 3rd ed. Prentice-Hall, Inc., Upper 
Saddle River, NJ (1994).  


