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ABSTRACT 

 

The iteration cycle-to-cycle correlation (autocorrelation) in Monte Carlo (MC) criticality 

calculations is analyzed concerning the dominance ratio of fission kernels. The 

mathematical analysis focuses on how the eigenfunctions of a fission kernel decay if 

operated on by the cycle-to-cycle error propagation operator of the MC stationary source. 

The analytical results obtained can be summarized as follows: When the dominance ratio 

of a fission kernel is close to unity, the autocorrelation of the tallies of the neutron 

effective multiplication factor is not strong and may be negligible, while the 

autocorrelation of the MC stationary source is strong and decays slowly. The practical 

implication is that when one analyzes a critical reactor with a large dominance ratio, the 

MC confidence interval estimation of quantities like the fission rate at individual 

locations must account for the strong autocorrelation. Numerical results are presented for 

sample problems with a dominance ratio of 0.85-0.99, where Shannon and relative 

entropies are utilized to exclude the influence of initial nonstationarity. 
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I. INTRODUCTION 

It has been argued in the MC criticality analysis community that the tallies of a neutron 

effective multiplication factor (keff) from stationary source iteration cycles are directly 

related to the dominance ratio of fission kernels.1 It is also widely accepted that the larger 

the dominance ratio is, the stronger the autocorrelation of the MC stationary source is. 

Recent work2 has shown that when the immediate importance, i.e., importance to the first 

generation descendent particles, is spatially flat, the autocorrelation of the keff tallies is 

negligible. This appears to yield contradictory conclusions because in large homogeneous 

reactors the dominance ratio may be close to unity and the immediate importance is 

nearly flat except in the peripheral regions. What is wrong in the above arguments? Here, 

one can easily notice that a distinction between the stationary source distribution and its 

integrated quantities is missing. In this paper, the effect of dominance ratio on 

autocorrelation is analyzed concerning the fission source at individual spatial locations 

and keff, the integral of the source over the whole fissile domain. The effect of symmetry 

is also investigated in terms of the location of spatial binning. Mathematical analysis is 

performed within the framework of the fission site generation and keff estimator of 

absorption and collision types. Numerical results are presented for sample problems with 

a dominance ratio of 0.85-0.99, where great care is taken to exclude the influence of 

initial nonstationarity using the Shannon and relative entropies3 of MC source. 

 

II. RANDOM NOISE PROPAGATION IN STATIONARY CYCLES 

Let   be the expected number of the first generation descendant particles per 

unit volume at resulting from a particle born at 

(F r r′ →G G

r

)

G r ′G . In the case of a position independent 
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energy spectrum,  is the fission kernel defined by the product of energy and 

angular spectrums, an inverse transport operator and a fission operator in that order (from 

right to left) with the last operator defined as 

(F r r′ →G G)

Ω( , ) ( , , )f r E r E d dEν ψΣ Ω∫ ∫
GG G for the 

operand ψ and the fissile descendent generation cross section fνΣ . The eigenfunction 

and eigenvalue of F are denoted by Sj and kj:  

) ( )F r r dr′ ′ ′→G G

0 0dr k=

1j ≥

when ( ) 0jS r dr← ≠∫S r G

(jS r 0

( )ˆ ( ), 0mNe r m ≥Gˆ

 1( ) (j j
j

S r S r
k

= ∫
G G , (1)  

where kj are ordered as k k . As in previous work0 1 2| | | |k> > >" 1, the eigenvalue kj’s are 

assumed to be discrete. Note that keff is the largest eigenvalue k0 and S0 is called the 

fundamental mode eigenfunction and assumed to be normalized to k0: 

 ( )S r∫
G . (2) 

The normalization condition (2) cannot generally be assuemed for Sj,  because in 

symmetric problems eigenfunctions may integrate to zero for some of the non-

fundamental modes. In order to simplify later derivations, the following condition is 

imposed on the nonfundamental mode eigenfunctions:  

 
( )

( )
( )

j j
j

j

k S r
S r dr∫

G
G

G , (3) 

i.e., the whole domain integral of ( )jS rG is normalized to the corresponding eigenvalue as 

far as  and no specification is made otherwise. The source (distribution of 

fission sites) after simulating the m-th stationary cycle in a MC criticality calculation is 

written as 

)dr ≠∫
G

 ( ) ( ) ( )mS r NS r= +G G , (4) 
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where e  is the fluctuating component of the stationary source, N the number of 

particle histories per cycle, the hats indicate a realization of stochastic quantities, and 

is the expected value (ensemble average) of 

( )ˆ ( )m rG

( )S rG ( )ˆ ( ) /mS r NK :  

 ( )1 ˆ( ) ( ) .mS r E S r
N

 =  
G K  (5) 

Note that Eq. (5) implies ( )ˆ[ ( )]mE e r = 0G . The scaling by N and N  in (4) is based on the 

random nature of individual particle tracking processes. In other words, the relative 

fluctuation of particle population ( ) ( ) ( )ˆ ˆ ˆ( ) [ ( )] [ ( )]m m mS r E S r dr E S r d − ∫ ∫ rG G G  can be scaled 

by the inverse of the square root of population when the population is sufficiently large. 

In addition, the number of particle histories is assumed to be fixed throughout cycles. The 

bias of is of order 1/N for discretized( )S rG 4 and continuous5 models: 

 0( ) ( ) O(1/ )S r S r N− =G G . (6) 

The explicit form of is ( )ˆ ( )mS rG

 
( )

( )

1

ˆ ( ) ( )
I m

m
i

i
S r w r rδ

=

=∑ i−G G G , (7) 

where I(m) is the number of collision or absorption events in the m-th stationary cycle, ri
G  

is the position vector of these events and wi is the statistical weight of a fission event at 

. The kir
G

eff estimate at the m-th stationary cycle is then 

 ( ) ( )1ˆ ˆ ( )m mk S r
N

= ∫ drG . (8) 

Eqs. (7) and (8) are equivalent to employing the fission site generation scheme and Keff 

estimator of a collision or absorption type. Eqs. (2), (5), (6) and (8) imply 

 , (9) ( ) 1
0

ˆ[ ] O(mk E k k N −≡ = + )
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where  is used to imply the stationarity assumption. ≡

 

The expected value (ensemble average) of the normalized source conditional on 

 is written as  ( 1)ˆ ( )mS − Gr

 
( 1)

( 1)

ˆ ( )
ˆ ( )

m

m

NS r
S r d

−

− ′ ′∫ r

G
G . 

Then, the random noise component ( )ˆ ( )m rε G  resulting from the starter selection and 

subsequent particle tracking can be introduced as 

 
( 1)

( ) ( )
( 1)

ˆ( ) ( )ˆˆ ( ) ( ) ˆ ( )

m
m m

m

N F r r S r dr
N r S r

S r dr
ε

−

−

′ ′→
≡ −

′′ ′′
∫
∫

′G G G
G G

G . (10) 

As is shown in previous work2, Eqs. (4) and (10) yield 

 , (11) ( ) ( 1) ( ) 1/ 2ˆˆ ˆ( ) ( ) ( ) ( ) ( )m m me r A r r e r dr r O Nε−′ ′ ′= → + +∫
G G G G G −

where A is defined as 

 2

1 1( ) ( ) ( ) ( )A r r F r r F q r S q dq
k k

′ ′→ ≡ → − →∫
G G G G G G G . (12) 

The kernel A is rewritten, using (1), (6) and (9), as 

 , (13) ( 1
0( ) ( )A r r A r r O N −′ ′→ = → +G G G G )

where A0 is defined to be 

 [0
0

1( ) ( ) (A r r F r r S r
k

′ ′→ ≡ → −G G G G G ]0 )

−

. (14) 

Eq. (11) then becomes  

 . (15) ( ) ( 1) ( ) 1/ 2
0 ˆˆ ˆ( ) ( ) ( ) ( ) ( )m m me r A r r e r dr r O Nε−′ ′ ′= → + +∫

G G G G G

The operator notation of Eq. (15) may be introduced as 
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 , (16) ( ) ( 1) ( ) 1/ 2
0 ˆˆ ˆ O( )m m me A e Nε−= + + −

−

.q

]]
]]

′G

′G

The repeated application of Eq. (16) yields 

 . (17) 
1

( ) ( ) (0) 1/ 2
0 0

0

ˆˆ ˆ O( )
m

m j m j m

j

e A A e Nε
−

−

=

= + +∑

To proceed further, we need two lemmas about ’s and ’s. The first one is a result 

obtained in previous work

ê ε̂

2: 

  (18) ( ) ( )ˆ ˆ[ ] 0,p qE e pε = >

Using this, one obtains the second lemma  

  (19) 

( ) ( ) ( ) ( ) ( ) ( 1)

( ) ( ) ( ) ( 1)

( ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ [ | ,
ˆ ˆ ˆ ˆ[ [ | ,
ˆ ˆ ˆ[ [ | ]]

0, ,

p q p q q q

q p q q

q p q

E E E e e
E E e e
E E e

p q

ε ε ε ε
ε ε
ε ε

−

−

=
=
=
= >

where the vertical bar stands for conditioning on the accompanied quantities, the second 

equality is due to the fact that the conditioning on e and  is equivalent to the 

conditioning on and S  by (4), under which  is a fixed function by (10), and 

the third equality due to the Markovity in a sense that the conditioning on ’s, i.e., e ’s, 

depends on only the most recent previous cycle. Since the operation of taking expectation 

is equivalent to the integral by a probability measure, one may change the order of 

integrals in the following manner: 

( )ˆ q

(ˆ qε

( 1)ˆ qe −

( )ˆ qS ( 1)ˆ q− )

Ŝ ˆ

 , ( ) ( ) ( ) ( )
0 0 0 0ˆ ˆ ˆ ˆ[ ( ) ( )] ( ) [ ( ) ( )]p i q j p q i jE A r A r A A E r rε ε ε ε′ ′=G G G

 , ( ) (0) ( ) (0)
0 0 0 0ˆ ˆˆ ˆ[ ( ) ( )] ( ) [ ( ) ( )]p i q p q iE A r A e r A A E r e rε ε′ ′=G G G

 
where the prime in (  stands for the operation on 0 )qA ′ ( )ˆ ( )j rε ′G . Thus, Eqs. (17), (18) and 

(19) yield 
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  (20) 

( ) ( )

1
( ) ( ) (0) (0) 1/ 2

0 0 0 0
0

ˆ ˆ( ) [ ( ) ( )]

ˆ ˆ ˆ ˆ[ ( ) ( )] [ ( ) ( )] (

m i m
S

m
i j m j j m j m i m

j

C i E e r e r

E A r A r E A e r A e r O Nε ε

+

−
+ − − + −

=

′≡

′ ′= +∑

G G

G G G G ),+

where the stationarity assumption is implied in the usage of . The integration of (20) 

yields 

≡

 

( ) ( ) ( ) ( )

( ) ( )

1
( ) ( ) (0) (0)

0 0 0 0
0

3/ 2

ˆ ˆ ˆ ˆ( ) {[ ( )][ ( )])}
1 ˆ ˆ[ ( ) ( ) ]

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

O( ).

m i m i m m
k

m i m

m
i j m j j m j i m m

j

C i E k E k k E k

E e r e r drdr
N

E A r dr A r dr E A e r dr A e r dr
N N

N

ε ε

+ +

+

−
+ − − +

=

−

≡ − −

′ ′=

  ′ ′ ′ ′= +  

+

∫ ∫

∑ ∫ ∫ ∫ ∫

G G

G G G 


G

r∑

(21) 

Eqs. (20) and (21) imply that the decay of the autocorrelation of sources and keff tallies 

depends on how fast or slow ,  decays as i  increases if the completeness 

assumption of ’s is valid:   

0
i

jA S 0,1,j = …

jS

 ( ) (0) 0

0 0

ˆ ˆ( ) ( ) and ( ) ( ).p p
j j j j

j j

r s S r e r s Sε
∞ ∞

= =

= =∑ G G  (22) 

Obviously, it is of considerable importance to know precisely what are the restrictions on 

the arbitrariness of the function to be expanded by ’s. However, we simply 

approximate the Dirac delta function 

jS

( )lr rδ −G G  appearing in the explicit form of e ’s and 

’s by a function like  

ˆ

ε̂

 
3

, , , , , ,1/(2 ) ( , )( , )( , )
( ) ( )

0 otherwise
l x l x l y l y l z l z

l

r r r r r r r
r r rδ η

 ∆ ∈ − ∆ + ∆ − ∆ + ∆ − ∆ + ∆− ≈ = 


G
G G G , (23) 

where  is a number as small as machine precision. We then assume the completeness of 

’s in L

∆

jS 2 space.  Note that the above completeness assumption is valid for energy 

independent problems because ( )F r r′ →G G  is self-adjoint (Hermitian).6 
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 Now, with the expansion in (22), one can focus on how ’s are mapped by AjS 0. From 

Eqs. (1), (2) and (14), one immediately obtains  

 0 0 ( ) 0A S r =G . (24) 

This is a mathematical representation of the fact that a statistical error consisting of only 

the fundamental mode can be eliminated by source normalization. Eqs. (1) and (14) also 

yield 

 0 0
0 0

( )
( ) ( ) ( ) 1,2, .jj

j j

S r drk
A S r S r S r j

k k
= − =∫

G
G G G …  (25) 

The repeated application of Eqs. (24) and (25) yields 

 
1

0 0
0 0 0

( )
( ) ( ) ( ) , 1, 2, .

i
jj ji

j j

S r drk k
A S r S r S r i j

k k k

−   
 = − 
    

∫ =
G

G G G …  (26) 

 
Combining Eq. (26) with the normalization scheme (3), one obtains 

 
0

0
0

0

( ) ( ) when ( ) 0
( ) , 1.

( ) when ( ) 0

i
j

j j
i

j i
j

j j

k
S r S r S r dr

k
A S r j

k
S r S r dr

k

 
  − ≠    = ≥

 
= 

 

∫

∫

G G G
G

G G
 (27) 

Eqs. (20), (22), (24) and (27) imply that the autocorrelation of MC sources is largely 

influenced by the nonfundamental to fundamental mode eigenvalue ratios, especially the 

dominance ratio k1/k0. The integration of Eq. (27) over domain is combined with (3) to 

yield 

 0
0 00

1 when ( ) 0
( ) , 1, 1.

0 when ( ) 0

i
j j

ji
j

j

k k
k S r dr

k kA S r dr i j

S r dr

    
 − ≠   = ≥   
 =

∫∫
∫

G
G

G
≥  (28) 

 9



Eqs. (21), (22) and (28) combined with Eq. (24) imply that the contribution of the 

fundamental mode to the autocorrelation of keff (Ck(i), i ) is zero and when the 

dominance ratio is close to unity, the contribution of the first mode to C

1≥

k(i), i  is 

negligible. Therefore, C

1≥

k(i), i , are small and may be negligible for problems with a 

dominance ratio close to unity. On the other hand, the integration of  over a 

subdomain yields: 

1≥

0
i

jA S

 
0

0
0

0

( ) ( ) when ( ) 0
( ) , 1, 1.

( ) when ( ) 0

i
j

j j
subdomaini

j i
subdomain j

j j
subdomain

k
S r S r dr S r dr

k
A S r dr j i

k
S r dr S r dr

k

 
  − ≠    = ≥

 
= 

 

∫ ∫
∫

∫ ∫

G G G
G

G G
≥ (29) 

In general, Eq. (29) implies that the autocorrelation decay of the fission rate for 

subdomains is governed by the ratio of nonfundamental to fundamental mode 

eigenvalues, especially the dominance ratio. However, in symmetric systems, 

 may vanish if the subdomain is symmetric with respect to the line or 

plane of the anti-symmetry of the first mode eigenfunction. The autocorrelation of the 

fission rate at such a subdomain decays faster than a factor of dominance ratio. 

1( )
subdomain

S r dr∫
G

 

The derivation of an expression similar to Eq. (29) is not straightforward for flux 

tallies. However, flux tallies are expected to be largely influenced by the autocorrelation 

of sources because starters at each cycle are selected from the sources and there is no 

reason that a factor of (kj/k0−1) would appear in the autocorrelation analysis of flux 

tallies. Therefore, the summary of this section can be stated as follows: When the 

dominance ratio of a fission kernel is close to unity, the autocorrelation of Keff tallies is 
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weak and may be negligible, while the autocorrelation of local tallies such as the fission 

rate distribution is strong and decays slowly. 

 

III. EXCLUSION OF INITIAL NONSTATIONARY TALLIES 

It has been known for decades that MC source convergence is very slow for problems 

with a large dominance ratio if the shape of the guessed initial source departs from that of 

the stationary source, i.e., the fundamental mode. Recent work7 showed that tallies 

contaminated by initial nonstationarity may yield erroneously overestimated 

autocorrelation. It is therefore necessary to take some means to diagnose the stationarity 

of the MC source distribution. To this end, we propose the posterior graphical diagnostics 

of the Shannon and relative entropies of source. First, Shannon entropy H is defined as 

follows3: 

  (30) 
1

( ) ( ) ln( ( ))
B

B B B

i
H S S i S i

=

≡ −∑ ,

where B is the number of spatial bins, i the bin number and SB(i) a normalized binned 

source. H can be interpreted as a measure of randomness in the assumed resolution 

associated with a particular binning in the sense that H attains the maximum value ln( )B  

when  at all bins and the minimum value zero when  at one bin and 

 at all other bins. It should be noted that H assumes the same form as in the 

Boltzmann’s H theorem. In information theory, the logarithm with base 2 is used instead 

of the natural logarithm, and H(S

1/BS =

0

B 1BS =

BS =

B) is the data compression limit of the random bins 

chosen from SB.8 In other words, Shannon entropy is directly related to another 

expression of randomness, i.e., the data compression limit. Thus, by computing H at each 

cycle, one can diagnose the source distribution in terms of randomness. In practice, we 
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make a one cycle delay-embedding plot of H borrowing an idea of delay reconstruction9 

in time series analysis methods. We plot the one cycle delay vector 

 where  denotes the Shannon entropy of the binned 

source S

[ ( , ), ( , 1)B BH H S l H S l≡ +
G

] ( , )BH S l

B at the cycle l counted from the initial cycle. The trajectory of  through 

stationary cycles forms an equilibrium region from which 

H
G

H
G

’s in the initial nonstationary 

cycles may depart. The plotting of H
G

can be utilized as a posterior visual diagnostic to 

identify the first cycle at which H
G

 enters the equilibrium region. 

1
| )

B
B B

i
T

=

=∑

2) )BTλ ≤

1 2
B B B= =

( )
( )

 
 
 

(1+

( |

(1+ −1 2( (1 ) ||B BD S S Tλ λ+ −

1 ,BS 2 ,BS 1
B

2
B

2 2|B BT

 

 Second, the relative entropy (Kullback Leibler distance) of the normalized binned 

sources SB and TB with respect to SB is defined as3 

 ( ) ln
B

B
B

S iD S S i
T i

. 

D(SB||TB) is a statistical distance between SB and TB in the sense that D(SB||TB) is 

nonnegative and becomes zero only when  for all bins. In addition, 

D(S

( ) ( )B BS i T i=

B||TB) satisfies the pair convexity 

  1 1 1( || ) ) ( | ), 0 1,B B BD S T D Sλ λ λ λ− ≤ ≤

where   T  and T  are all binned source normalized to unity.8 Then, the SB 

convexity follows by setting T T T : 

  1 2 1 2( (1 ) || ) ( || ) (1 ) ( || ), 0 1B B B B B B BD S S T D S T D S Tλ λ λ λ λ+ − ≤ + − ≤ ≤ .

B

This convexity relation is desired characteristics when one analyzes the statistical 

distance to the fixed reference source TB. When  for all bins, D(SBS T≈ B||TB) is 

approximately equal to half of the χ-square distance: 
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1

32

1 1

( ) ( )( || ) ( ) ln 1
( )

1 [ ( ) ( )] ( ) ( )O ,
2 ( ) ( )

B BB
B B B

B
i

B B B BB B

B B
i i

T i S iD S T S i
S i

T i S i T i S i
S i S i

=

= =

 −= − + 
 

  − −= +   
   

∑

∑ ∑
 

where at the second equality  was used as well as the series 

expansion of 

1 1
( ) ( ) 1

B B
B B

i i
S i T i

= =

=∑ ∑ =

log(1 ).x+  Since SB(i) appears in denominators in the above expression and 

D(SB||TB) is convex when viewed as a function of SB, D(SB||TB) can be interpreted as a 

measure of the inefficiency of assuming that the true distribution in a simulation is TB 

when the observed distribution is SB. Based on this interpretation, a posterior defensive 

visual diagnostic can be proposed as follows: After all cycles are simulated, 1) compute 

TB(i) by averaging source over the second half of active cycles from which keff tallies and 

other tallies of interest were collected, 2) plot D(SB||TB) for each source SB through cycles 

starting at the initial cycle, and 3) check whether D(SB||TB) crosses the average of 

D(SB||TB) over the second half of the active cycles before the first active cycle begins. 

 

IV. NUMERICAL RESULTS 

We numerically demonstrate what is implied in the analytical results in Section II. The 

first problem chosen to this end is an energy-independent infinite-slab version of loosely 

coupled two fissile component systems. The problem description is as follows: 

Problem 1 

• 5 region slab, with void boundary conditions on both sides and one-group isotropic 

cross sections, 

• the regions are (left to right) 1.0, 1.0, 5.0, 1.0, and 1.01 cm thickness, 
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• the materials are (left to right) 2 (fuel), 1 (scatterer), 3 (absorber), 1, and 2, 

• material 1 (scatterer) 
1 11.0 , 0.8 , 0.2total scattering capturecm cm cm− −Σ = Σ = Σ = 1−

1

1−

, 

• material 2 (fuel) 
1 1 11.0 , 0.8 , 0.1 , 0.1 , 3.0total scattering capture fissioncm cm cm cm ν− − − −Σ = Σ = Σ = Σ = = , 

• material 3 (absorber) 
1 11.0 , 0.1 , 0.9total scattering capturecm cm cm− −Σ = Σ = Σ = . 

The first six eigenvalues are computed to be 0.427425, 0.424221, 0.130633, 0.129265, 

0.071924 and 0.071173 by Green’s function method10; the dominance ratio is 0.993. The 

same dominance ratio value is also obtained by analyzing the spectral radius of the outer 

iterations in a discontinuous finite element discrete ordinate computation11. Figure 1 

shows the autocorrelation coefficient (ACC) of keff and the source at the right fissile slab 

where simulation parameters are 50000 histories per cycle and 2000 active and 500 

inactive cycles, the initial source is flat, and the standard deviations  of ACC is computed 

by Bartlett’s approximate formula assuming a normal (Gaussian) process12.  It can be 

observed that the ACC of keff is nearly zero while the ACC of the source at the right 

fissile slab decays by about a factor of the dominance ratio. This confirms the analysis in 

Section II, especially what is implied in Eqs. (28) and (29). To check that the beginning 

of active cycles had been in stationarity, the methods in Section III were applied with one 

space bin assigned to each fissile slab. Figure 2 shows the one cycle delay embedding 

plot of the Shannon entropy of the source distribution. The delay vector is observed to 

have entered an equilibrium region before the active cycle begins at cycle 501. Figure 3 

shows the relative entropy of the source distribution assuming that the true source is the 

mean source over the second half of active cycles. It is again observed that stationarity 
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was achieved before the beginning of active cycles. Therefore, one can conclude that the 

results in Figure 1 are not contaminated by initial nonstationarity. 

 

To investigate the effect of symmetry on the autocorrelation of the fission rate at 

space bins, a homogeneous infinite square column system was chosen as the second 

problem. Figure 4 shows the problem description with space binning. The dominance 

ratio is computed to be 0.987 by the discontinuous finite element discrete ordinate 

method. The ACC of Keff, the source at the bin (12,12), and the combined bin 

(12,12)+(12,13)+(13,12)+(13,13) are shown in Figure 5 where simulation parameters are 

100000 histories per cycle, 5000 active and 200 inactive cycles, flat initial source, and the 

standard deviation of ACC is again computed by Bartlett’s formula. The above bin 

choices are based on the shape of the first to tenth mode eigenfunctions obtained by 

fission matrix analysis13. In Figure 4, one of the thick center lines is the line of anti-

symmetry of the first and second mode eigenfunctions (Figures 6 and 7) in the sense that 

they assume values of the same magnitude with opposite signs at points symmetric to that 

line. Also, both of the thick center lines in Figure 4 are the line of anti-symmetry of the 

third mode eigenfunction (Figure 8) in the same sense. Therefore, the first to third mode 

eigenfunctions are anti-symmetric in the combined bin, but they are not inside the bin 

(12,12) alone. More precisely, the following relations hold: 

 

1
(12,12) (12,13) (13,12) (13,13)

2
(12,12) (12,13) (13,12) (13,13)

3
(12,12) (12,13) (13,12) (13,13)

0 (

( )

( ) ,

S r dr

S r dr

S r dr

+ + +

+ + +

+ + +

=

=

=

∫

∫

∫

)G

G

G
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 1
(12,12)

( ) 0S r dr ≠∫
G , 

 2
(12,12)

( ) 0S r dr ≠∫
G , 

 3
(12,12)

( ) 0S r dr ≠∫
G . 

It can be observed in Figure 5 that the ACC of Keff is negligible, the ACC of the source 

at the combined bin decays much faster than a factor of the dominance ratio and the ACC 

of the source at bin (12,12) decays by a factor of the dominance ratio for lags larger than 

ten. Actually, the ACC of source at bin (12,12) for 10 and 50 lags are  and 

 yielding their ratio of 0.54 , while the fortieth power of dominance 

ratio is (0.987)

0.202 0.034±

0.40 ±

0.108 0.030± 0.17±

0.124 ±

40=0.593. On the other hand, the ACC of the source at the combined bin 

for 10 and 20 lags are 0.313  and  yielding their ratio of , 

while the tenth power of dominance ratio is (0.987)

0.033± 0.041 0.14

10=0.877. Here, we picked 10 and 20 

lags because zero is contained in the 3σ confidence interval of the ACC at the combined 

bin for lags larger than 20. In addition, as discussed in the Appendix, both the ACCs pose 

a serious challenge in confidence interval estimation. The rough evaluation using 

inequality (A.6) shows that variance estimation bias is at least four times as large as 

sample variance for the source at these bins. Figure 9 shows the one cycle delay 

embedding plot of the Shannon entropy of the source. The delay vector is observed to 

have entered an equilibrium region before the active cycle begins at cycle 201. Figure 10 

shows the relative entropy of the source assuming that the true source is the mean source 

over the second half of active cycles with the condition of 2000 active 200 inactive 

cycles. It is again observed that stationarity was achieved before the beginning of active 

cycles. In the actual computation, we continue another 3000 cycles to get more accuracy 
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in ACC estimation. The effect of dominance ratio on the ACC of the source at the lower 

left 2 cm × 2 cm bin adjacent to the center is shown in Figure 11 where the square size in 

Figure 4 is changed to 12 cm × 12 cm and 64 cm × 64 cm to yield a dominance ratio of 

0.868 and 0.992, respectively. Here, these dominance ratio values were computed by the 

discontinuous finite element discrete ordinate method. It is observed that for the problem 

with a dominance ratio of 0.868, the ACC decays moderately, its value at lag 11 contains 

zero within a 3σ confidence interval, and its value at lags larger than 11 is fluctuating 

near zero, while for the problem with a dominance ratio of 0.992, the ACC decays by a 

factor slightly smaller than 0.992 and is at least 4σ away from zero. Before plotting 

Figure 11, the methods in Section III were used, as before, to confirm that stationarity 

was achieved before the first active cycle. We omit the results because they are similar to 

Figures 2, 3, 9 and 10. 

 

 The ACC of keff may become significant when the dominance ratio is 0.80  

because as indicated in Eq. (28), a factor of  dominates the whole 

domain integral of the i-times operation of the error propagation operator on the j-th 

eigenfunction. Recent work has shown that the sharp spatial variation of the immediate 

importance of source particles may introduce large bias in the sample variance estimator.

0.90∼

0.39f
−Σ =

( ) (0 0/ /
i

j jk k k k −

10.24v cm−Σ =

)1

m

2 

Therefore, we compare the homogeneous 24 cm × 24 cm problem with the cross sections 

in Figure 4 and a heterogeneous 24 cm × 24 cm problem with the same cross sections 

except the central 3 cm × 3 cm square;  is replaced by v c  in 

the central region. The dominance ratio is computed to be 0.954 for the homogeneous 

f
1
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problem and 0.846 for the heterogeneous problem by the discontinuous finite element 

discrete ordinate method. As shown in Figure 12, the ACC is observed to be negligible 

for the homogeneous problem, while it is significant for the heterogeneous problem.  

Using inequality (A.6) and the ACC at one to ten lags, the lower bound of variance 

estimation bias is computed to be  times the expected value of sample variance 

for the heterogeneous problem, where correlation among ACCs at different lags is 

neglected in computing the standard deviation. Again, we omit the results of the 

stationarity check because they are similar to Figure 2, 3, 9 and 10.     

2.6 0.2±

  

V. CONCLUSION 

We investigated the iteration cycle-to-cycle error propagation operator of MC stationary 

sources and derived mathematical expressions connecting the dominance ratio and 

eigenvalue ratios of a fission kernel to the autocorrelation of keff and fission source. What 

is implied in these expressions can be summarized as follows: When the dominance ratio 

of a fission kernel is close to unity, the autocorrelation of the tallies of keff is not strong 

and may be negligible, while the autocorrelation of the MC stationary sources is strong 

and decays slowly. This claim was numerically confirmed. Therefore, for criticality 

safety analysts, systems with large dominance ratio are only an issue of slow source 

convergence. However, for reactor analysts interested in the distribution of fission rate 

(power), systems with the dominance ratio close to unity may yield large bias in the 

sample variance estimator with no batch grouping and therefore pose a significant 

challenge in confidence interval estimation. The Shannon and relative entropies of the 
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source distribution were shown to be very useful in the posterior stationarity diagnostics 

of source. 

 

APPENDIX: SIMPLE EVALUATION OF VARIANCE ESTIMATION BIAS 

This appendix discusses variance estimation bias in terms of the sample variance with no 

batch grouping. To begin with, three notations are introduced: 

σA
2=”Expected value of the sample variance with no batch grouping for the average 

          of stationary cycle tallies,” 

σR
2=”Variance of the average of stationary cycle tallies,” 

C(i)=”Lag i autocovariance of cycle tallies.”  

σA
2 and C(i) satisfy14 

 
1

2
2

1

(0) 2 ( ) (
( 1)

M

A
i

C ),M i C i
M M M

σ
−

=

= − −
− ∑  (A.1) 

where M is the number of stationary cycles simulated. Eq. (A.1) immediately yields 

 2 (0)0 when ( ) 0, 0, , 1.A
C C i i M
M

σ≤ ≤ ≥ = −…  (A.2) 

Also, σA
2, σR

2 and C(i) satisfy14 

 
1

2 2

1

2 ( ) (
( 1)

M

A R
i

) ,M i C i
M M

σ σ
−

=

− = − −
− ∑  (A.3) 

which immediately yields 

 2 22 (1)0 if ( ) 0, 0,R A
C C i i M
M

σ σ≤ ≤ − ≥ = −…, 1.  (A.4) 

Inequalities (A.2) and (A.4) combined imply 

  (A.5) 2 2 20 when (1) / (0) 0.5 and ( ) 0, 0, , 1.A R A C C C i i Mσ σ σ≤ ≤ − ≥ ≥ = −…
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Therefore, problems with a lag 1 autocorrelation coefficient of moderate magnitude have 

large variance estimation bias. Furthermore, (A.2) and (A.3) combined yield 

 

1
2 2 2

1

(1) ( ) ( ) ( )2
(0) ( 1) (0) 1 (0)

if ( ) 0, 0, , 1.

M

R A A
j i

C M i C i M j C
C M C M C

C k k M

σ σ σ
−

= +

 − −− ≥ + + + − − 
≥ = −

∑"

…

j
 (A.6) 

This inequality implies that if autocorrelation coefficients have a moderate value for lags 

smaller than or equal to i  and decay slowly for lags larger than i , the variance 

estimation bias can become extremely large, which poses significant challenge on 

confidence interval estimation. 

( )M�
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Figure 1: Autocorrelation versus cycle lag for problem 1 ( 2000 active and 500 
inacive cycles with 50000 histories per cycle)
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Figure 2: One cycle delay embedding plot of Shannon entropy of 
source (problem 1)
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Figure 3: Posterior computation of relative entropy assuming 
the true source is the mean source over 1501-2500 cycles (problem 1)
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Figure 4: Uniform space binning for problem 2, 48 cm × 48 cm 
homogeneous infinite square column with vacuum boundary 
condition
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Figure 5: Autocorrelation versus cycle lag  for problem 2, 
homogeneous 48 cm  x 48 cm square (100000 histories per 

cycle, 5000 active and 200 inactive cycles) 
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Figure 6: First mode eigenfunction for problem 2; first to fundamental mode 
eigenvalue ratio (dominance ratio) =0.987 (TWODANT-based fission matrix 
analysis) 
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Figure 7: Second mode eigenfunction for problem 2; second to fundamental 
mode eigenvalue ratio =0.987 (TWODANT-based fission matrix analysis) 
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Figure 8: Third mode eigenfunction for problem 2; third to fundamental mode 
eigenvalue ratio =0.973 (TWODANT-based fission matrix analysis) 
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Figure 9: One cycle delay embedding plot of Shannon entropy 
of source (problem 2)
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Figure 10: Posterior computation of relative entropy assuming the true 
source is the mean source over 1201-2200 cycles (problem 2)
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Figure 11: Effect of dominance ratio on autocorrelation of source at 
lower left bin adjacent to center for 2D homogeneous problem 
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Figure 12: Autocorrelation of keff for 24 cm x 24 cm homogeneous and heterogeneous problems 
computed from 2200 active and 200 inactive cycles with 50000 histories per cycle

dominance ratio
homogeneous (x markers)                        0.954
heterogeneous (square markers)             0.846
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