
Los Alamos
NATIONAL LABORATORY

LA-UR-

Approved for public release;

distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

02-3782

THE MCNP5 RANDOM NUMBER GENERATOR

Forrest B. Brown,
Yasunobu Nagaya

American Nuclear Society
2002 Winter Meeting
November 17-21, 2002
Washington, DC

The MCNP5 Random Number Generator

Forrest B. Brown & Yasunobu Nagaya
Diagnostics Applications Group (X-5) Department of Nuclear Energy System
Los Alamos National Laboratory Japan Atomic Energy Research Institute
<fbrown@lanl.gov> <nagaya@mike.tokai.jaeri.go.jp>

INTRODUCTION

MCNP [1] and other Monte Carlo particle transport codes use random number generators to produce
random variates from a uniform distribution on the interval [0,1). These random variates are then used in
subsequent sampling from probability distributions to simulate the physical behavior of particles during the
transport process. This paper describes the new random number generator developed for MCNP Version 5
[2]. The new generator will optionally preserve the exact random sequence of previous versions and is
entirely conformant to the Fortran-90 standard, hence completely portable. In addition, new skip-ahead
algorithms have been implemented to efficiently initialize the generator for new histories, a capability that
greatly simplifies parallel algorithms. Further, the precision of the generator has been increased, extending
the period by a factor of 105. Finally, the new generator has been subjected to 3 different sets of rigorous
and extensive statistical tests to verify that it produces a sufficiently random sequence.

BACKGROUND

The random number generator in MCNP and most other Monte Carlo codes for particle transport (e.g,,
RACER, MORSE, KENO, VIM, RCP, MCPP) is based on algorithms called linear congruential generators
(LCGs) [3]. The basic LCG in these codes has been in use for at least 40 years, and has several desirable
properties:

1. The sequence is deterministic, so that repeated calculations will produce identical results.
2. LCGs are very fast, involving only a small number of arithmetic operations.
3. Initialization is trivial, and the state information to specify the sequence for a history is small (1

word).
4. A simple algorithm exists for skipping ahead to any given point in the random sequence.
5. If at least 48 bits of precision are used in the LCG, the period is large (>1014) and serial correlation

is entirely negligible.
6. The algorithm is robust � it cannot fail.
7. An extensive body of literature exists for LCGs, providing a sound theoretical basis and guidance

for the proper choice of algorithm parameters.

The LCG traditionally used by MCNP and other codes has the form

 1

1 1

mod 2

/ 2

M
k k

M
k k

S g S c

r S
+

+ +

= ⋅ +

=
 (1)

where Sk, g, and c are integers expressible in M bits or fewer, and rk+1 is a floating pointing number � the
�random number� in the interval [0,1). The initial value of Sk, S0, is called the initial seed for the generator.
If c=0 and (g mod 8) = 3 or 5, then the generator has a period 2M-2. If c≠0 and (g mod 4)=1 and c is odd,
then the period is 2M. The traditional LCG for MCNP uses g=519, c=0, S0=519, and M=48. We will refer to
generators in the form LCG(g, c, S0, M), so that the traditional MCNP generator is LCG(519, 0, 519, 48).

Repeated application of Eq. (1) permits expressing the kth seed in terms of the initial seed:

 0
1 mod 2
1

k
k M

k
gS g S c
g

−= ⋅ + ⋅
−

 (2)

Eq. (2) must be computed using exact integer arithmetic. A simple algorithm for doing so has been
previously presented in [4]. Eq. (2) can be used to skip ahead in the random sequence by an arbitrary

number of steps. This is particularly useful in initializing the random seed for a history in MCNP, since the
skip-distance, or �stride� between starting random seeds for successive histories is fixed.

NEW RANDOM NUMBER GENERATOR

As part of a general upgrade to the MCNP code, a new random number package has been developed and
implemented in MCNP Version 5. Because of the long experience with LCGs and the desirable features
noted in the previous section, this new package is based on the LCG algorithm. This new package preserves
all previously existing capabilities and provides many important new features:

Coding Considerations

The coding is entirely standard Fortran-90 and is completely portable. It has been tested on SGI, Sun, IBM,
Compaq, HP, and Intel systems using a variety of Fortran-90 compilers. No special options or �#ifdefs� are
required, and identical coding executes successfully on all systems. The generator has been implemented in
a modular fashion, such that all parameters are private to the module and not subject to inadvertent side
effects from other portions of the code. The module is thread-safe for parallel calculations using OpenMP
threading. The module contains the LCG parameters, functions for generating random numbers, functions
for skip-ahead in the random sequence and initialization for histories, unit tests for verifying correctness of
the functions, and reference test results.

 Algorithm Considerations

Parameters for 13 standard LCGs are included in the new random number package. These are listed in
Table (1). The default LCG parameters are those for the traditional MCNP random number generator, set 1
in the table. Using the default parameters, the standard 48-bit LCG algorithm from previous versions of
MCNP is preserved, yielding a bit-for-bit identical stream of random numbers for verification against
previous versions of the code.

The standard 48-bit LCG algorithm in MCNP has a period of 7 x 1013. With modern parallel computers,
large calculations may simulate 109 or more particle histories (with ~105 random numbers per history),
resulting in the reuse of portions of the random number sequence. To avoid this problem, the LCG
algorithm has been extended to use up to 63-bits and incorporate an additive term, so that a period of 9.2 x
1018 is achieved. The use of a 63-bit integer LCG algorithm, rather than 64-bits, was deliberate, to avoid
coding complications arising from the 2�s complement form for integers (i.e., the leading bit is interpreted
as a sign bit for Fortran on most systems). The LCG parameter sets 2-7 in Table (1) are natural extensions
of the traditional 48-bit MCNP LCG to 63 bits. The LCG parameter sets 8-13 are recommended based on
[5], where a search for �best� parameters was performed.

A new algorithm for fast �skip-ahead� using arbitrary strides in the sequence [4] has been implemented,
greatly simplifying the LCG initialization for new histories. This feature is invaluable for reducing the
complexity of parallel calculations.

 Testing

Both the standard and extended LCG algorithms have been subjected to thorough testing, including:

1. The Unix utility �bc� was used to perform extended-precision integer arithmetic in order to
generate reference values for the random streams generated by Eq. (1) for each of the sets of LCG
parameters listed in Table (1). These reference values were compared to those generated by the
Fortran-90 random number module. In addition, the reference values were included in the module
data section for use in unit testing routines.

2. The standard statistical tests for random number generators described by Knuth [3] were applied
to the random streams generated by each of the LCGs listed in Table (1), using test parameters
from [6,7]. Coding for these tests was obtained from the SPRNG package [8]. The tests and
parameters used are given in Table (2). In a few cases, a single test was flagged as suspect.
Repeating the test with a different initial seed (which should not affect test results) resulted in

passing, indicating that some tests are sensitive to statistical fluctuations. None of the LCGs from
Table (1) consistently failed any of the tests for randomness. (Note that these statistical tests
cannot be used to prove randomness; consistent failure of several tests, however, is a good
indicator of non-randomness.)

3. Marsaglia�s DIEHARD test suite for random number generators [9] was applied to each of the
LCGs listed in Table (1). This test suite involves running over 200 variations on the statistical
tests listed in Table (3). Only one of the LCGs from Table (1) failed any of the tests, LCG set 1,
the traditional 48-bit MCNP generator. For 3 tests � the overlapping pairs sparse occupancy, the
overlapping quadruples sparse occupancy test, and the DNA test � the generator failed when the
least-significant 10-12 bits of the random numbers were used for testing. The generator passed
these tests when higher-order bits were used. These failures are not deemed serious, since it is
well-known and understood that the least-significant bits of LCGs may be non-random and
should not be used. In fact, these bits are not used directly in any portion of MCNP; only the
higher-order bits are important.

CONCLUSIONS

As a result of the above testing, we believe that any of the 13 LCGs listed in Table (1) may be reliably used
for Monte Carlo particle transport calculations. The traditional MCNP generator will remain the default, to
provide consistency with older calculations. For new work, we are currently recommending sets 5-7 and
11-13. Any of these should be satisfactory and robust. These sets include an additive constant, so that the
period of the generator will be 263, a factor of ~105 longer than the traditional MCNP generator.

The extended LCG algorithm is the foundation for future planned work in MCNP � providing independent
random number generators for different particle types (in order to allow reproducibility when particle
physics options are turned on/off). The use of different carefully selected additive constants has been
shown both in theory and practice to be a reliable method of producing different independent and
uncorrelated random streams.

The new random number generator package for MCNP is entirely self-contained and portable. It can be
used directly in other Monte Carlo codes or stand-alone packages; there is no dependence on other portions
of MCNP. It is highly recommended that other code developers make use of this thoroughly tested, well-
proven package if new random number generator capabilities are needed.

REFERENCES

[1] J.F. Briesmeister, Ed., �MCNP � A General Monte Carlo N-Particle Transport Code � Version 4C,�

LA-13709-M, Los Alamos National Laboratory (March, 2000)
[2] F.B. Brown, et al., �MCNP Version 5,� (this meeting), (Nov., 2002)
[3] D.E. Knuth, The Art of Computer Programming � Volume 2, Seminumerical Algorithms, 3rd Edition,

pp. 1-170, Addison-Wesley (1991).
[4] F.B. Brown, �Random Number Generation with Arbitrary Strides,� Trans. Am. Nucl. Soc. (Nov., 1994)
[5] P. L�Ecuyer, �Tables of Linear Congruential Generators of Different Sizes and Good Lattice Structure,�

Math. of Comp., 68, 225, pp 249-260 (1999)
[6] P. L'Ecuyer, �Efficient and Portable Combined Random Number Generators,� Comm. ACM 31(6): 742-

749, 774 (1988)
[7] I. Vattulainen, et al., �A comparative study of some pseudorandom number generators,� Comput. Phys.

Comm. 86, 209 (1995)
[8] M. Mascagni, et al., �The Scalable Parallel Random Number Generators Library (SPRNG) for ASCI

Monte Carlo Computations,� http://sprng.cs.fsu.edu
[9] G.S. Marsaglia, �The DIEHARD Battery of Tests of Randomness,� http://stat.fsu.edu/pub/diehard

Index g c M S0 stride Comments
1 519 0 48 519 152,917 Traditional MCNP generator
2 519 0 63 519 152,917
3 523 0 63 519 152,917
4 525 0 63 519 152,917
5 519 1 63 519 152,917
6 523 1 63 519 152,917
7 525 1 63 519 152,917
8 3512401965023503517 0 63 1 152,917 From Ref. [5]
9 2444805353187672469 0 63 1 152,917 From Ref. [5]

10 1987591058829310733 0 63 1 152,917 From Ref. [5]
11 9219741426499971445 1 63 1 152,917 From Ref. [5]
12 2806196910506780709 1 63 1 152,917 From Ref. [5]
13 3249286849523012805 1 63 1 152,917 From Ref. [5]

 Table 1. Standard LCG parameters for new MCNP5 random number generator

Knuth Statistical Tests L�Ecuyer�s test parameters Vattulainen�s test parameters
N=104, n=103, d=64 N=104, n=104, d=128 Equidistribution test
N=104, n=104, d=256 N=104, n=105, d=256

Serial test N=103, n=105, d=64 N=103, n=105, d=100
N=103, n=104, a=0, b=.05, t=15 N=103, n=2.5x104, a=0, b=.05, t=30
N=103, n=104, a=.95, b=1.0, t=15 N=103, n=2.5x104, a=.45, b=.55, t=30

Gap test

N=103, n=104, a=1/3, b=2/3, t=10 N=103, n=2.5x104, a=.95, b=1.0, t=30
N=103, n=104, k=4, d=4
N=103, n=104, k=6, d=8

Poker test

N=103, n=104, k=8, d=16
Coupon test N=103, n=104, d=5, t=25

N=103, n=104, t=3 Permutation test
N=103, n=104, t=5

Runs-up test N=103, n=105, t=6 N=103, n=105, t=6
N=103, n=104, t=8 N=103, n=2x103, t=5 Maximum of t
 N=103, n=2x103, t=3
N=102, n=2x103, logmd=6, logd=3 N=103, n=214, logmd=2, logd=10
N=102, n=2x104, logmd=10, logd=2 N=103, n=214, logmd=4, logd=5

Collision test

N=102, n=2x104, logmd=20, logd=1 N=103, n=214, logmd=10, logd=2

 Table 2. Knuth�s statistical tests for random number generators [3, 6, 7]

DIEHARD Statistical Tests
Birthday spacings test
Overlapping 5-permutation test
Binary rank test for 31x31 matrices
Binary rank test for 32x32 matrices
Binary rank test for 6x8 matrices
Bitstream test
Overlapping pairs sparse occupancy
Overlapping quadruples sparse occupancy
DNA test
Count the 1�s in a stream of bytes
Count the 1�s for specific bytes
Parking lot test
Minimum distance test
3D spheres test
Squeeze test
Overlapping sums test
Runs test
Craps test

 Table 3. DIEHARD Test Suite for Random Number Generators [9]

