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ABSTRACT

This paper investigates intergenerational correlation in the Monte Carlo k-eigenvalue cal-

culation of a neutron effective multiplicative factor. To this end, the exponential transform

for path-stretching has been applied to large fissionable media with localized highly mul-

tiplying regions because in such media exponentially-decaying shape is rough representa-

tion of the importance of source particles. The numerical results show that the difference

between real and apparent variances virtually vanishes for an appropriate value of the

exponential transform parameter. This indicates that the intergenerational correlation

of k-eigenvalue samples could be eliminated by the adjoint biasing of particle transport.

The relation between the biasing of particle transport and the intergenerational correla-

tion is therefore investigated in the framework of collision estimators and the following

conclusion has been obtained: Within the leading order approximation with respect to

the number of histories per generation, the intergenerational correlation vanishes when

immediate importance is constant, and the immediate importance under simulation can

be made constant by the biasing of particle transport with a function adjoint to source

neutron’s distribution, i.e., the importance over all future generations.
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I. INTRODUCTION

In Monte Carlo computing, statistical error is estimated through sample variance by

many practitioners. As shown in standard introductory statistics textbooks,1 sample

variance is unbiased when there exists no correlation among samples. However, in the

Monte Carlo k−eigenvalue calculation of a neutron effective multiplicative factor, source

generations iterated in a recursive manner yield correlated samples. A straightforward

method to cope with such correlation is to compute the sample variance of the batches of

the k−eigenvalues from consecutive generations since the virtual generation-lag between

the adjacent batches increases.2 There are several relations among real and apparent

variances and lag-covariances, where “real” refers to the variance of sample mean and the

lag-covariance of samples, and “apparent” to the expected value of the sample variance and

lag-covariances. Based on these relations, an iterative method was proposed to estimate

real variance.3 Demaret et al. and Jacquet et al. proposed a fitting method of estimating

lag-covariances based on time series methodologies and showed that it stably performs.4,5

In all these methods, the algorithm of source iteration and normalization remains intact.

On the other hand, superhistory powering employs the modified procedures of source

normalization and iteration to reduce the correlation of k-eigenvalue samples.6

In this paper, the possibility of reducing the intergenerational correlation of k−eigenvalue

samples is investigated using the biasing of particle transport. To motivate the investiga-

tion, the exponential transform for path stretching7,8 has been applied to large fissionable

media with localized highly multiplying regions. From practical viewpoints, such me-
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dia capture the essence of rod drop accidents of boiling water reactors at cold or hot

standby. Qualitatively, a certain fraction of the particles in a sharp distribution peak

tend to escape from that peak and spread over the surrounding region. Since the trace

of one particle usually covers small area during one generation, the statistical fluctua-

tion of source distribution caused by those spreading particles at one generation tends to

be transfered to the next generation and the intergenerational correlation consequently

becomes positively large. The exponential transform can be utilized to suppress such a

phenomenon by virtually confining particles in highly multiplying regions. On the other

hand, exponentially-decaying shape is rough representation of the importance of source

neutrons for a large fissionable medium with a localized highly multiplying region. There-

fore, one may pose the following question: Is there mathematical relation between the

adjoint biasing of particle transport and the intergenerational correlation of sources?

This paper is organized as follows. Statistical treatments of k-eigenvalue samples and

the spatial transform of k-eigenvalue transport equation are explained in Secs. II and III,

respectively. The numerical results with exponential transform are presented in Sec. IV.

In Sec. V, the relation between the biasing of particle transport and the intergenerational

correlation of k-eigenvalue samples is analyzed. Conclusions are stated in Sec. VI.
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II. STATISTICAL TREATMENTS

A quantity of interest is the variance of the k-eigenvalue estimate:

k =
1

N

N∑
j=1

kj . (1)

where N is the number of stationary generations in a Monte Carlo k-eigenvalue compu-

tation and kj is a k-eigenvalue sample for the j-th stationary generation. A standard

estimator of the variance of k is sample variance:

σ2
S =

1

N(N − 1)

N∑
i=1

(ki − k)2. (2)

The expected value of σ2
S, which is called apparent variance and denoted by σ2

A, is com-

puted by

σ2
A ≡ E[σ2

S] ≈
1

M

M∑
i=1

1

N(N − 1)

N∑
j=1

( ki
j −

1

N

N∑
m=1

ki
m )2 (3)

where E[ · ] denotes an expected value,M is the number of independently replicated Monte

Carlo runs, N is the number of stationary generations per run and ki
j is the eigenvalue

sample for the j-th stationary generation of the i-th run. In general, apparent variance is

not equal to real variance that is denoted by σ2
R and defined by

σ2
R ≡ E[k2]− E[k]2. (4)

The difference between apparent and real variances is3:

σ2
A − σ2

R = − 2

N(N − 1)

N∑
i=1

(N − i)CR[i], (5)

where CR[i] is real lag-i covariance:

CR[i] = E[(km − E[km])(km+i − E[km+i])], m = 1, . . . , N − i. (6)
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Note that the stationarity introduced above has dictated that E[k] = E[km] = E[km+i]

and CR[i] is independent of m. Real variance is computed by

σ2
R ≈

1

M − 1

M∑
i=1

(
1

N

N∑
j=1

ki
j −

1

M

M∑
i=1

1

N

N∑
j=1

ki
j )

2. (7)

III. SPATIAL TRANSFORM OF TRANSPORT EQUATION

This section describes the spatial transform of k-eigenvalue transport equation:

�Ω · �∇ψ(�r, �Ω, E) + Σt(�r, E)ψ(�r, �Ω, E) =
∫ Emax

0

∫
4π

Σs(�r, �Ω
′, E ′ → �Ω, E)ψ(�r, �Ω′, E ′)d2Ω′dE ′

+
1

k

χ(E)

4π

∫ Emax

0

∫
4π
νΣf (�r, E

′)ψ(�r, �Ω′, E ′)d2Ω′dE ′, �r ∈ D, (8)

ψ(�r, �Ω, E) = 0, �r ∈ ∂D, �n · Ω < 0, (9)

where ψ is flux density, �r position vector, �Ω the unit vector of direction of movement,

E energy, Σt total macroscopic cross section, Σs differential scattering macroscopic cross

section, Σf macroscopic fission cross section, ν the mean number of neutrons emerging

from a fission event, χ is the energy spectrum of these neutrons, (0, Emax) the energy

domain and D the spatial domain. We transform the solution of Eqs. (8)-(9) by S∗(�r):

Ψ(�r, �Ω, E) = S∗(�r)ψ(�r, �Ω, E). (10)

Eqs. (8) and (9) then become

�Ω · �∇Ψ(�r, �Ω, E) +


Σt(�r, E)−

�Ω · �∇S∗(�r)
S∗(�r)


Ψ(�r, �Ω, E)

=
∫ Emax

0

∫
4π

Σs(�r, �Ω
′ → �Ω, E ′ → E)Ψ(�r, �Ω′, E ′)d2Ω′dE ′

+
1

k

χ(E)

4π

∫ Emax

0

∫
4π
νΣf (�r, E

′)Ψ(�r, �Ω′, E ′)d2Ω′dE ′, �r ∈ D, (11)

Ψ(�r, �Ω, E) = 0, �r ∈ ∂D, �n · Ω < 0 . (12)
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In the particle transport ruled by Eq. (11), total macroscopic cross section, the mean

number of scattering events per collision, and the mean number of fission events per

collision are, respectively, modified to

Σt − �Ω · �∇S∗/S∗,

∫ Emax
0

∫
4π Σs(�r, �Ω→ �Ω′, E → E ′)d2Ω′dE ′/[Σt − �Ω · �∇S∗/S∗], and

Σf (�r, E)/[Σt − �Ω · �∇S∗/S∗].

Other transport-governing quantities remain unchanged.

IV. EXPONENTIAL TRANSFORM AND TWO STANDARD DEVIATIONS

In this section, the exponential transform for path stretching7,8 is applied to energy-

independent and isotropically-scattering media. Real and apparent standard deviations

(σR and σA) are then evaluated by (3) and (7) in Sec. II. The first problem is shown in

Figure 1, for which S∗ in Sec.III is chosen as
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S∗(�r) =




e−λxΣt(x−a)−λyσt(y−b) , a < x < d, b < y < e,

e−λyΣt(y−b) , −a < x < a, b < y < e,

eλxΣt(x+a)−λyσt(y−b) , −d < x < −a, b < y < e,

eλxΣt(x+a) , −d < x < −a, −b < y < b,

eλxΣt(x+a)+λyσt(y+b) , −d < x < −a, −e < y < −b,

eλyΣt(y+b) , −a < x < a, −e < y < −b,

e−λxΣt(x−a)+λyσt(y+b) , a < x < d, −e < y < −b,

e−λxΣt(x−a) , a < x < d, −b < y < b,

1 , −a < x < a, −b < y < b.

(13)

Note that the region defined by −a < x < a and −b < y < b is a localized highly

multiplying region and exponential transform is not applied to that region. Apparent and

real standard deviations for various values of λx and λy are shown in Figure 2 wherein

implicit capture with Russian roulette was employed, ki
j were estimated by a collision

estimator through independently replicating 500 runs with 300 generations whose first

100 generations were disposed to secure stationarity, and the number of particle histories

per generation is 2000. It was observed that |σA − σR| significantly reduced together

with the decrease of σR when the transform parameter was chosen optimally. It was also

observed that both |σA − σR| and σR started to increase beyond that optimal value.

The second problem is shown in Figure 3, for which S∗ is chosen as
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S∗(�r) =




eλΣt(x+a+h) , if −b < x < −(a + h),

1 if −(a + h) < x < −a,

e−λΣt(x+a) , if −a < x < 0,

eλΣt(x−a) , if 0 < x < a,

1 if a < x < a + h,

e−λΣt(x−a−h) , if a + h < x < b.

(14)

Note that the region defined by −(a+ h) < x < −a or a < x < a+ h is a localized highly

multiplying region and exponential transform is not applied to that region. Apparent and

real standard deviations for various values of λ are shown in Figure 4 wherein the number

of particle histories per generation is 1000 and other computational conditions are the

same as those for Figure 2. Results similar to those in Figure 2 are observed in Figure 4.

Both the results indicate that the exponential transform for path stretching may reduce

the intergenerational correlation of k-eigenvalue samples for a certain class of problems.

The problems treated above capture the essential property of the rod drop accidents

of boiling water reactors at cold or hot standby in the sense that there are sharp distrib-

ution peaks of the neutrons born from fission. Exponential shape is rough representation

of the decaying of these peaks. Since fissionable isotopes are both sources and detectors,

exponential shape is also rough representation of the importance of the source particles

around these peaks. Therefore, one may pose the following question: Is there mathemat-

ical relation between the adjoint biasing of particle transport and the intergenarational

correlation of k-eigenvalue samples? This question is the subject of the next secticon.
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V. INTERGENERATIONAL CORRELATION AND PARTICLE TRANS-

PORT

This section investigates the relation between the biasing of particle transport and the

intergenerational correlation of k-eigenvalue samples. To this end, part of Brissenden and

Garlick’s work6 on the estimation bias of k−eigenvalue calculation for a discretized model

is extended to continuous models based on Sutton and Brown’s unpublished work9.

To start analysis, Eq. (8) is rewritten in terms of the spatial source distribution S0(�r):

S0(�r) =
1

k0

FT−1

(
χ(E)

4π
S0(�r)

)
=

1

k0

∫
D
H(�r ′ → �r)S0(�r

′)d3r′, (15)

where F and T are fission and transport operators:

Fφ =
∫ Emax

0

∫
4π
νΣf (�r, E

′)φ(�r, �Ω′, E ′)d2Ω′dE ′ ,

Tφ = �Ω · �∇φ(�r, �Ω, E) + Σt(�r, E)φ(�r, �Ω, E)

−
∫ Emax

0

∫
4π

Σs(�r, �Ω
′, E ′ → �Ω, E)φ(�r, �Ω′, E ′)d2Ω′dE ′ ,

and H(�r ′ → �r) is an integral kernel that can be interpreted as the expected number

of source particles per unit volume at �r directly resulting from a starter particle at �r ′.

Note that this interpretation of H(�r ′ → �r) excludes the starter particles produced by the

daughter particles. The subscript “zero” in S0 and k0 is employed to indicate unbiased

quantities because their Monte Carlo estimation is biased.6,9,10 In passing, S0 = Fψ0 where

ψ0 is the solution of Eqs. (8) and (9) with k = k0.
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A realization of the unnormalized distribution of source particles after simulating the

m-th stationary generation may be written as

Ŝ(m)(�r) ≡ S(m)(�r) + ŝ(m)(�r), (16)

where S(m)(�r) is the expected value (ensemble average) of Ŝ(m)(�r) and ŝ(m) is the statis-

tically fluctuating component. Throughout this section, the hat (̂·) denotes a realization

of stochastic quantities. An explicit form of Ŝ(m)(�r) is written as

Ŝ(m)(�r) =
I(m)∑
i=1

wiδ(�r − �ri),

where I(m) is the number of the fission or collision sites during the m-th stationary

generation and wi is statistical weight. However, any explicit form will not be used in the

following analysis. Instead, several general properties associated with the formulation in

(16) will be used. The total number of histories per generation, which is denoted by L

and defined to take into account the weights of the history starter paticles, is assumed to

be constant over all generations. S(m) is then proportional to L. When L is sufficiently

large, S(m) and ŝ(m) are related by

∫
D ŝ

(m)d3r∫
D S

(m)d3r
= O(1/

√
L) ,

where O is the order notation defined by limx→0O(x)/x = const w.r.t. x. Therefore, the

following scalings are employed to make both S(m) and ŝ(m) O(1)-quantities:

S(m) ← LS(m), ŝ(m) ←
√
Lŝ(m).

Since the stationarity dictates that S(m) is independent of m:

S(m)(�r)← S(�r).
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the formulation in (16) is rewritten as

Ŝ(m)(�r) ≡ LS(�r) +
√
Lŝ(m)(�r). (17)

The fluctuating component satisfies

E[ŝ(m)] = 0, (18)

where in this section E with an argument (E[·]) denotes an expected value and E with

no argument denotes energy. K−eigenvalue samples are denoted by k̂(m) and expressed

as

k̂(m) =

∫
D Ŝ

(m)(�r)d3r

L
.

This is equivalent to assuming collision estimators; and k̂(m) corresponds to km in Sec.II.

The integration of S(�r) over the whole spatial domain D is the expected value of k̂(m):

k ≡
∫

D
S(�r)d3r = E[k̂(m)] = E

[∫
D Ŝ

(m)(�r)d3r

L

]
, (19)

where the first equality results from stationarity .

Now, the conditionally expected value of the normalized distribution of the starter

particles selected from a realization of Ŝ(m)(�r) is

LŜ(m)(�r)∫
D Ŝ

(m)(�r ′)d3r′
.

This implies that Ŝ(m+1)(�r) and Ŝ(m)(�r) are related as

Ŝ(m+1)(�r) =
∫

D
H(�r ′ → �r)

[
LŜ(m)(�r ′)∫

D Ŝ
(m)(�r′′)d3r′′

]
d3r′ +

√
Lε̂(m)(�r), (20)

where ε̂(m)(�r) is the fluctuating component conditional on Ŝ(m)(�r), is scaled similary to

ŝ(m), and satisfies

E[ε̂(m)|Ŝ(m)] = E[ε̂(m)|ŝ(m)] = 0. (21)
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Note that Eq. (21) implies E[ε̂(m)] = 0. Eqs. (20) and (21) accommodate a broad class of

the source normalization procedures with the fixed total weight of history starter particles.

The substitution of Eq. (17) into Eq. (20) yields:

S(�r) +
1√
L
ŝ(m+1)(�r) =

1

k

∫
D
H(�r ′ → �r)S(�r ′)d3r′ +

1√
L

[∫
D
A(�r ′ → �r)ŝ(m)(�r ′)d3r′ + ε̂(m)(�r)

]

− 1

Lk

∫
D

∫
D
A(�r ′ → �r)ŝ(m)(�r ′)ŝ(m)(�r ′′)d3r′d3r′′ +O(L−3/2), (22)

where Eq. (19) has been used and A(�r ′ → �r) is defined to be

A(�r ′ → �r) = 1

k

[
H(�r ′ → �r)− 1

k

∫
D
H(�q → �r)S(�q)d3q

]
.

Taking the expected value of Eq. (22) and using Eqs. (18) and (21), one obtains:

S(�r) =
1

k

∫
D
H(�r ′ → �r)S(�r ′)d3r′

− 1

Lk

∫
D

∫
D
A(�r ′ → �r)E

[
ŝ(m)(�r ′)ŝ(m)(�r ′′)

]
d3r′d3r′′ +O(L−3/2) . (23)

The subtraction of Eq. (23) from (22) yields

ŝ(m+1)(�r) =

∫
D
A(�r ′ → �r)ŝ(m)(�r ′)d3r′ + ε̂(m)(�r) +O

(
1√
L

)
. (24)

Also, Eq. (21) yields:

E[ε̂(n)|ŝ(m′)] = E[ε̂(n)|ŝ(m′), ŝ(m
′−1), . . .] = E[E[ε̂(n)|ŝ(n), ŝ(n−1), . . .]|ŝ(m′), ŝ(m

′−1), . . .]

= E[E[ε̂(n)|ŝ(n)]|ŝ(m′), ŝ(m
′−1), . . .] = 0, n ≥ m′, (25)

where the first and third equalities are due to the Markov property in a sense that con-

ditioning depends on only the most recent previous generation, the fourth equality due
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to Eq. (21), and standard probability textbooks can be consulted for the second equality

(Theorem 34.4 in Ref. 11). The expected value of ŝ(m
′)ε̂(n) then vanishes for n ≥ m′:

E[ŝ(m
′)ε̂(n)] = E[E[ŝ(m

′)ε̂(n)|ŝ(m′)]] = E[ŝ(m
′)E[ε̂(n)|ŝ(m′)]] = 0, n ≥ m′ . (26)

Setting m = n − 1 in Eq. (24), multiplying the resulting expression by ŝ(m), taking the

expectation, and using Eq. (26) with n and m′ replaced by n− 1 and m, respectively, one

obtains:

E
[
ŝ(n)(�r)ŝ(m)(�q)

]
=

∫
D
A(�r ′ → �r)E

[
ŝ(n−1)(�r ′)ŝ(m)(�q)

]
d3r′ +O

(
1√
L

)
, n > m. (27)

The repeated use of Eq. (27) yields

E
[
ŝ(n)(�r)ŝ(m)(�q)

]
=
∫

D

∫
D
· · ·

∫
D
A(�r1 → �r)A(�r2 → �r1) · · ·A(�rn−m → �rn−m−1)

E
[
ŝ(m)(�rn−m)ŝ

(m)(�q)
]
d3rn−m · · · d3r2d

3r1

+O

(
1√
L

)
, n > m. (28)

Combining (28) with (6), (17) and (19), one can express the lag-n covariance as

CR(n) = E
[
(k̂(m+n) −E[k̂(m+n)])(k̂(m) − E[k̂(m)])

]

=
1

L

∫
D

∫
D
E
[
ŝ(m+n)(�r)ŝ(m)(�q)

]
d3rd3q

=
1

L

∫
D

∫
D
{
∫

D

∫
D
· · ·

∫
D
A(�r1 → �r)A(�r2 → �r1) · · ·A(�rn → �rn−1)

E
[
ŝ(m)(�rn)ŝ

(m)(�q)
]
d3rn · · ·d3r2d

3r1 } d3rd3q

+O
(
L−3/2

)
, m > 0 , n > 0. (29)

Now, one can introduce immediate importance, i.e., the expected number of source par-
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ticles directly resulting from a history starter particle at �r:

H(�r) =
∫

D
H(�r → �r ′)d3r′.

CR(n) is then expressed as

CR(n) =

1

L

∫
D
{
∫

D

∫
D
· · ·

∫
D

[
H(�r1)

k
− 1

k2

∫
D
H(�q)S(�q)d3q

]
A(�r2 → �r1) · · ·A(�rn → �rn−1)

E
[
ŝ(m)(�rn)ŝ

(m)(�q)
]
d3rn · · ·d3r2d

3r1 } d3q

+O
(
L−3/2

)
, m > 0 , n > 0. (30)

Since Eq. (23) implies

S(�r)− 1

k

∫
H(�q,→ �r)S(�q)d3q = O

(
1

L

)
, (31)

Eq. (30) combined with Eq. (19) and the integration of Eq. (31) over D yields

CR(n) =
1

L

∫
D
{
∫

D

∫
D
· · ·

∫
D

[
H(�r1)

k
− 1

]
A(�r2 → �r1) · · ·A(�rn → �rn−1)

E
[
ŝ(m)(�rn)ŝ

(m)(�q)
]
d3rn · · ·d3r2d

3r1 } d3q

+O
(
L−3/2

)
, m > 0 , n > 0. (32)

The biases of the k-eigenvalue estimate and its eigenfunction were proved to be the order

of O(1/L) for a discretized model.6 The same is also the case for continuous models as

implied in Eq. (23).9 Moreover, the bias of the k-eigenvalue estimate was proved to be

bounded by a O(1/
√
L) quantity.10 Therefore, CR(n) can be rewritten as

CR(n) =
1

L

∫
D
{
∫

D

∫
D
· · ·

∫
D

[
H(�r1)

k0
− 1

]
A(�r2 → �r1) · · ·A(�rn → �rn−1)

E
[
ŝ(m)(�rn)ŝ

(m)(�q)
]
d3rn · · ·d3r2d

3r1 } d3q

+O
(
L−3/2

)
, m > 0 , n > 0. (33)
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It is worth pointing out that when H(�r) = k0, the intergenerational correlation of k-

eigenvalue samples does not exist within the leading order approximation with respect to

L. Since k0 is the mean of H(�r) as implied in Eq. (15):

k0 =

∫
D S0(�r

′)H(�r ′)d3r′∫
D S0(�r)d3r

,

the intergenerational correlation is small when the spatial variation of H(�r) is small. For

example, (σ2
R − σ2

A)/σ
2
A would be small for an infinite homogeneous slab reactor because

according to Eq. (5), (σ2
R − σ2

A)/σ
2
A can be considered a measure of the correlation effect

on variance estimation. Table 1 shows (σ2
R−σ2

A)/σ
2
A for problems in Figures 3 and 5. The

results therein indicate that the flatter the immediate importance of fissionable domain

is, the smaller (σ2
R − σ2

A)/σ
2
A is.

It is important to explore whether or not immediate importance can be made con-

stantly equal to k0 by the biasing of particle transport. Since the operator F and the

multiplication by a spatial function are commutative, the spatial transform of S0 is con-

sidered instead of the spatial transform of the angular flux ψ in Eqs. (8)-(9):

S̃0(�r) = S
∗
0(�r)S0(�r).

Introducing the modified integral kernel defined as12

H̃(�q → �r) = H(�q → �r)S∗
0(�r)

S∗
0(�q)

,

Eq. (15) is transformed into

S̃0(�r) =
1

k0

∫
D
H̃(�q → �r)S̃0(�q)d

3q. (34)
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Suppose that immediate importance is constantly equal to k0 for the particle transport

under H̃ . One then obtains

∫
D
H̃(�q → �r)d3r = k0 ⇐⇒ S∗

0(�q) =
1

k0

∫
D
H(�q → �r)S∗

0(�r)d
3r. (35)

This is an adjoint equation to Eq. (15). Its solution can be interpreted as the importance

over all future generations for a particle born with the energy spectrum χ. Therefore, one

arrives at the following conclusion: The biasing of particle transport by the importance

over all future generations eliminates the intergenerational correlation of k-eigenvalue

samples within the leading order apporoximation with respect to the number of histories

per generation.

Practical significance of the above conclusion becomes clear when one reviews the

expressions for real and apparent variances. First, apparent variance in the definition in

(3) is expressed as3

σ2
A =

1

N
E[(k̂(j) − E[k̂(j)])(k̂(j) −E[k̂(j)])]

− 2

N2(N − 1)

N−1∑
m=1

N∑
n=m+1

E[(k̂(m) − E[k̂(m)])(k̂(n) −E[k̂(n)])]

=
1

LN

∫
D

∫
D
E
[
ŝ(j)(�r)ŝ(j)(�q)

]
d3rd3q

− 2

LN2(N − 1)

N−1∑
m=1

N−m∑
n=1

∫
D
{
∫

D

∫
D
· · ·

∫
D

[
H(�r1)

k0

− 1

]
A(�r2 → �r1) · · ·A(�rn → �rn−1)

E
[
ŝ(m)(�rn)ŝ

(m)(�q)
]
d3rn · · · d3r2d

3r1 } d3q

+O
(
L−3/2

)
,

where Eqs. (6) and (33) were used at the second equality. Second, the difference between

17



real and apparent variances is expressed by Eqs. (5) and (33) as

σ2
R − σ2

A =

2

LN(N − 1)

N∑
n=1

(N − n)
∫
{
∫ ∫
· · ·

∫ [
H(�r1)

k0
− 1

]
A(�r2 → �r1) · · ·A(�rn → �rn−1)

E
[
ŝ(j)(�rn)ŝ

(j)(�q)
]
d3rn · · · d3r2d

3r1 } d3q

+O(L−3/2).

Therefore, taking into account that (σ2
R − σ2

A)/σ
2
A = [(σR − σA)/σA][(σR + σA)/σA], the

error estimation bias (σR − σA)/σA is generally an O(1) quantity with respect to L:

σR − σA

σA
∼ O(1) w.r.t. L.

However, when H(�r) = k0, the error estimation bias becomes an O(1/
√
L) quantity:

σR − σA

σA
∼ O(L−1/2) w.r.t. L when H(�r) = k0.

In other words, when immediate importance is made constant, error estimation bias is

eliminated for large values of the number of histories per generation.

VI. CONCLUSION

This paper has shown that the intergenerational correlation of Monte Carlo k-eigenvalue

samples vanishes within the leading order approximation with respect to the number of

histories per generation when immediate importance is constant. It has been derived that

the immediate importance under simulation is made constant when the biasing with the

importance over all future generations is applied to particle transport. The practical con-

sequence is that the error estimation bias in Monte Carlo k-eigenvalue calculation, which

18



can not generally be eliminated by making the number of histories per generation (L)

tend to infinity, becomes a O(L−1/2) quantity.
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Table 1: (σ2
R − σ2

A)/σ
2
A for problems in Figures 3 and 5 (No exponential transform, 1000

histories per generation, 300 generations per replica, of which the first 100 generations
were discarded)

Figure 3 Figure 5 with
no reflector

Figure 5 with
reflector

(σ2
R − σ2

A)/σ
2
A 2.5 0.4 0.2

spatial shape of
immediate importance sharp ←→ flat
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infinite square prism in
vacuum with sides of 24 cm 

Σt=1.0 cm-1, Σa=0.3 cm-1,
νΣf=0.39 cm-1 for the central
region with sides of 3.0 cm

Σt=1.0 cm-1, Σa=0.3 cm-1,
νΣf=0.24 cm-1 for the
surrounding regions

x
y

Figure 1: Two dimensional heterogeneous problem

a-a
-b
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d-d

e

-e

a=b=1.5 cm, d=e=12 cm
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Figure 2: Real and apparent standard deviations for the two 
dimensional heterogeneous problem in Figure 1
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Infinite slab in vacuum

Σt=1.0 cm-1, Σa=0.3 cm-1, νΣf=0.39 cm-1 for the thin
regions of thickness 1.2 cm (a=14.4 cm, h=1.2cm)

Σt=1.0 cm-1, Σa=0.3 cm-1, νΣf=0.24 cm-1 for other
regions

0 x

Σt=1.0 cm-1, Σa=0.3 cm-1, νΣf=0.39 cm-1 for gray regions of thickness h
Σt=1.0 cm-1, Σa=0.3 cm-1, νΣf=0.24 cm-1 for other regions 

ba a+h-a-a-h-b

Figure 3: Plane-parallel heterogeneous problem

a=14.4 cm, b=30 cm, h=1.2 cm
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Figure 4: Real and apparent standard deviations for 
the plane-parallel heterogeneous problem in Figure 3
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k∞=1.0
(scattering ratio = 0.8)

60 m.f.p.

reflector of 
6 m.f.p. thickness  

(scattering ratio = 0.99
and k∞=0.0)

Figure 5: Energy-independent infinite slab reactor 
(k∞= νΣf/Σa=mean number of fission neutrons per absorption event)
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