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Abstract 

A number of published numerical solutions to analytic eigenvalue (k,ff) and eigen- 
function equations are summarized for the purpose of creating a criticality verifi- 

cation benchmark test set. The 75-problem test set allows the user to verify the 

correctness of a criticality code for infinite medium and simple geometries in one-, 

two-, three-, and six-energy groups, with one-, two-, and four-media. The problems 

include both isotropic and linearly and quadratically anisotropic neutron scattering. 

The problem specifications will produce both k,ff=l and the quoted k, to at least 

five decimal places. MCNP (Briesmeister, 1997) and DANTSYS (Alcouff, R.E, et 
al., 1995) have been verified using these problems. Additional uses of the test set 

for code verification are also discussed. Published by Elsevier Science Ltd. 
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1 Introduction 

This paper describes a set of benchmark problems with analytic eigenvalue 
(k,ff) and eigenfunction (flux) solutions to the neutron transport equation 
from peer-reviewed journal articles. The purpose of the test set is to verify 
that transport algorithms and codes can correctly calculate the analytic k,f, 
and fluxes. The authors believe the reported eigenvalues and eigenfunctions to 

be accurate to at least five decimal places even though many references often 
report higher precision values. The higher precision eigenvalues and eigen- 
functions from the references are reproduced here. These test set problems 
for infinite medium, slab, cylindrical, and spherical geometries in one- and 
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Fig. 1. A Personal View of Computer Simulation of Radiation Transport 

two-energy groups, with one-, two-; and four-media, and isotropic and both 
linearly and quadratically anisotropic scattering are completely described us- 

ing the listed references in this paper. A three-group infinite medium and 
a six-group variant k, problem (unpublished) are also included. This paper 

includes updates and minor corrections to previous Los Alamos papers and 
reports.I31~[41,[51,[61 

1.1 Veri:fcation and Validation 

Verification is defined as “the process of evaluating a system or component 

to determine whether the products of a given development phase satisfy the 
conditions imposed at the start of the phase”L71 or as a proof of correctness. 
Confirmation (proof) of correctness is defined as “a formal technique 

used to prove mathematically that a computer program satisfies its speci- 
fied requirements. “PI In contrast to verification, validation is “the process of 
evaluating a system or component during or at the end of the development 
process to determine whether it satisfies specified requirements.“[71 Thus code 
verification checks that the implemented code precisely reflects the intended 
calculations and that these calculations have been executed correctly. Code 
validation compares the accuracy of these calculated results usually with ex- 

perimental data. 

Figure 1 summarizes the process of modeling nature to developing a computer 
code simulation of radiation transport. [*I One path to simulating radiation 
transport is to develop a theoretical physics model and describe it with math- 
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ematical equations. Exact solutions to these complex theoretical equations are 
often impossible. Solutions to the mathematical equations require simplifying 

assumptions and are approximated with a carefully developed computer code. 
Code verification is the link between these mathematical and computational 
equations and the computer simulation. Verification of the code and data sim- 
ulation includes comparisons of calculated results with analytic solutions and 
simplified verification data intended to be used only to verify computer code 

numerical performance. Other forms of code verification include comparisons 

with an accepted standard set of code output for regression testing, results 
from other computer codes, and line-by-line debugging. 

A second path to characterizing radiation transport is to perform careful ex- 
periments and measure physical quantities using diagnostics. The accuracy of 
the measured diagnostics is limited by approximations and assumptions in the 
experimental methods and by the precision of the diagnostic equipment. Care- 

fully designed experiments often infer or directly measure a desired physical 
parameter from the theoretical models and equations and thus are measure- 

ments of its true value. Code validation is the link between the measured 
diagnostics and the computer code with the general purpose physical data 
required by the computer simulation. Code and data validation includes com- 

parison of the calculated code output with results from experiments and from 
other computer codes. 

Figure 1 shows the process of developing a computer code simulation requires 
code verification, validation, and physical data. Importantly, the figure shows 
there is no direct path linking nature and computer simulation. Code verifi- 
cation must be performed before code validation. The objectives of this paper 

are to define and document a set of analytic eigenvalue and eigenfunction 

benchmarks for verifying criticality codes. Benchmark is defined as “a stan- 
dard against which measurement or comparisons can be made.“171 Available 

benchmarks for code verification do not focus on criticality problems.[gl Vali- 
dation benchmarks from crit’ical experiments do exist, but are not verification 

benchmarks.[rOl 4 n initial effort to compile a benchmark test set for critical- 
ity calculation verification was begun, but not completed.[1’l~[121 The analytic 

benchmarks described here can be used to verify computed numerical solutions 

for k,ff and the associated flux with virtually no uncertainty in the numerical 
benchmark values. 

1.2 Why These Solutions Serve as a Test Set 

All critical dimensions, k,,,, and scalar neutron flux results quoted here are 
based on numerical computations using the analytic solutions to the k,,, eigen- 
value (homogeneous) transport equation for “simple” problems. The analytic 
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methods used include Case’s singular eigenfunction[13], F,v and SN methods, 
[141~[151 and Green’s functions.[‘6] 

All of these test set problem specifications and results are from peer-reviewed 
.journals, and have, in some cases, been solved numerically using more than one 

analytic solution. All calculated values for critical dimensions, k,,,, and the 

scalar neutron flux are believed to be accurate to at least five decimal places. 
Several critical dimensions and scalar neutron flux are reported to more than 

five decimal places. The higher precision eigenvalues and eigenfunctions from 

the references are simply reproduced here. 

1.3 Scope of the Criticality Verijkation Test Set 

The verification test set was chosen to represent a LLwide” range of problems 
from the relatively small number of published solutions. These problems in- 

clude simple geometries, few neutron energy groups, and simplified (isotropic 
and linearly anisotropic) scattering models. The problems use neutron cross 
sections that are reasonable representations of the materials described. These 

cross sections are not general purpose multi-group values. The cross sections 
are used because they are extracted from the literature results and are in- 

tended to be used only to verify algorithm performance and not to predict. 

criticality experiments. 

The basic geometries include an infinite medium,, slab, cylinder, and sphere 
with one- and two-energy group representations of uniform homogeneous ma- 

terials. The slab and cylinder geometries are one-dimensional, as shown in 
Figure 2; that is, each is finite in one dimension (thickness for slab and radius 
for the cylinders) and infinite elsewhere. The two-media problems surround 

each geometry with a specified thickness of reflector. Solutions for one-, two-, 
and three-group infinite medium problems are derived in appendix A. 

The emphasis of the test set is on the fundamental eigenvalue, k,,,. All 

k eff eigenvalues for finite fissile materials are unity to at least five decimal 

places. The k, values for a uniform homogeneous infinite medium are greater 
than unity. Few numerical eigenfunction solutions are published; consequently, 
mainly one-group and uniform homogeneous infinite medium fluxes are in- 
cluded in the test set results. 

The critical dimension, rcr is defined pictorially for the one-dimensional, one- 
medium problem geometries in Figure 2, as well as the two-media infinite slab 
lattice cell. Reflector dimension(s) are provided for the reflected cases. 
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Fig. 2. Critical Dimension, rc, for Bare One-Dimensional Geometries and Infinite 

Slab Lattice Cell 

To assist in verification, each problem has a unique identifier. Since the test set 

includes bare and multi-media problems, there are two forms of the identifier. 

The first form is for a bare geometry: 

Fissile Material - Energy Groups - Scattering - Geometry 

The possible entries for each category are listed in Table 1. The fissile materials 
and identifier consist of Pu-239 (PU), U-235 (U), highly enriched uranium- 
aluminum-water assembly (UAL), low enrichment uranium and D20 reactor 

system (UD20), and a highly enriched uranium research reactor (URR). The 
identifier may be followed by a letter to differentiate between different cross 

section sets from nominally the same material. The table lists identifiers for 
the reflector material (if any), number of energy groups, scattering order, and 
geometry. The geometry is identified by the first two letters in the table. The 
exception is for the infinite slab lattice cell which uses ISLC. An example of 
the one material form of the identifier is: 

u-2-o-SP 

which is the identifier for a bare U-235 reactor 
isotropically scattering, in spherical geometry. 

(no reflector), 2 energy groups, 

The second form of the identifier includes the reflecting material. The reflectors 

are usually Hz0 with an exception of a three region Fe, Pb, Fe reflector. Al- 
though many of the reflectors are identified as HZO, the reflector cross sections 
are unique to each problem. Consequently, a letter may follow H20 indicating 
the Hz0 cross section set used. The multi-media identifier form is: 

Fissile Material - Reflecting Material (thickness) - Energy Groups 
- Scattering - Geometry 

To separate multiple reflector thicknesses for the same fissile material, the 
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Table 1 
Nomenclature for Problem Identifiers 

Fissile Material Reflector Material Energy Groups Scattering Order Geometry 

PC bare 1 group 0 - PO Isotropic INfinite 

U HZ0 2 groups 1 PI Anisotropic &ab 

UD20 Fe-Na 3 groups 2 Pz Anisotropic Glindcr 

UAL 6 groups xhere 

URR infinite Slab Lattice Cell 

thickness is given in parenthesis in t’he title in units of mean free paths (mfp). 

For example, 

UD20-H20(10)-l-O-SL 

is the identifier for a uranium and D20 reactor with a H20 reflector of 10 

mean free path thickness, one-energy group, isotropically scattering, in slab 
geometry. An “IN” in parenthesis after the H20 means an infinite water re- 

flector. 

There are 43 problems in the one-energy group case; 30 problems assume 
isotropic scattering and 13 have anisotropic scattering. For the two-energy 
group problems, there are 30 problems subdivided into 26 isotropic scattering 
problems and 4 linearly anisotropic problems. Also included for an infinite 

medium are a three-group and a six-group (2 coupled sets of three groups) 
isotropic problem. The test set includes 24 infinite medium problems, 24 slabs, 

9 one-energy group cylinders, 14 spheres, and 4 infinite slab lattice cells. 

2 Uses of the Criticality Verification Test Set 

This paper provides all necessary problem definitions and published critical 

dimensions, k,,, j and scalar neutron flux results to verify a criticality transport, 

algorithm or code and associated numerics such as random number generation 
and round-off errors. All material cross sections provided are macroscopic, so 

the atom density used b,y the code should be unity Cross section values are 
assumed accurate to the number of decimal places reported. Not all of the 
analytic solut,ions from the references are used, however, because the number 
of problems in the test set becomes too large. For other solutions not included 
in this paper, see the reference list. 

The verification test’ set problems can be used in several ways. The user can 
choose to simply calculate the problems and compare forward and ad.joint 
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k ,,,f and neutron flux results with the benchmark solutions. However, there 

are several more verification processes that could be included. For example, in 

Monte Carlo codes, examining two forms of cross sections representation we 
might include multi-group and pointwise representation of multi-group data. 

In multi-group problems, an alternative verification procedure is to change 
the energy group structure when up-scattering is allowed; that is, reverse the 
order of the fast and slow groups. 

Another part of code verification is testing different representations of the 
same geometry (e.g. reflecting boundaries and lattices). An example is an 
infinite one-dimensional slab (finite in one dimension and infinite in the other 
two dimensions) as shown in Figure 2, which could be modeled as a three- 
dimensional cube with four reflective boundaries. Other geometry options can 

be tested by constructing several smaller cubes inside of the three-dimensional 
representation of a one-dimensional critical slab. The infinite medium problem 

can be represented by using large geometric boundaries, reflecting boundaries, 
or infinite lattices of finite shapes. Infinite medium problems can be used 

to verify constant scalar and angular flux in each energy group as well as 
scalar flux ratios for more than one energy group. Three-dimensional geometric 

representations of optically small objects can also be tested for k, in infinite 
medium problems.[i71 Purely absorbing one-group infinite medium problems 
can provide faster code verification since scattering does not alter the infinite 
medium k, (see Appendix A). 

Another use of this verification test set includes testing of any flux approxima- 

tions. This can be especially important at near tangential angles where many 
codes assume a value for the incident angle. This can also affect k,,, if it is 
estimated by same section of code that calculates the flux. 

Different calculation capabilities of a code should be tested using these prob- 
lems. For Monte Carlo codes, different variance reduction methods such as 
analog or implicit capture and geometric splitting or Russian roulette can be 

verified. Cycle-to-cycle correlations in the estimated k,ff standard deviation 
must be taken into account to form valid k,,, confidence intervals. Statistically 
independent runs can be made and analyzed if necessary. The magnitude of 

any negative bias in k,,,, which is a function of the number of neutron histo- 
ries per fission generation, also needs to be considered and made smaller than 

0.00001. [r*l 

Deterministic codes can assess convergence characteristics and correctness of 
k eff and the flux as a function of space and angle representation. Various 
characteristics of discrete ordinates numerics can also be checked such as the 
effects of eigenvalue search algorithms, angular redistribution terms in curvi- 

linear geometries, ray effects, and various alternative geometric descriptions. 
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3 Neutron Transport Equation Overview 

The neutron transport equation being solved in these benchmark problems is 
briefly described for one- and two-energy groups and the isotropic and linearly 
anisotropic cases. The infinite medium solutions for k, and the flux ratios are 

described in Appendix A. 

3.1 General ,Qf Eigenvalue Equation 

The steady state neutron transport equation can be written as a k,,/ eigen- 
value problem as: [lgl 

6. V'J?(T, E, 6) + C,(F, E)‘l’(F, E, f=i) = jdE’ / df=i’C,(,7, E’ -+ E, 6’ + i=i)S(F, E', 6’) 
0 47r 

co 

+ x(E) /a’ 4rkefS 

V(T:B)C#, E’) ,- Q(r’, E’, fi’)dfj’ 

0 4s 

(1) 

where: 

xq7,E,fi)= an u ar neutron flux as a function of space ?, g 1 

energy E, and angle 6 

C,(?, E) = total neutron macroscopic cross section 

X,(7, E’ --+ E, 6’ -+ 6)dEdfi = neutron scattering macroscopic cross section 

from E’ to E+dE in direction $6’ about 6 

=C elastic + qL,,,) + 2qL,2,) + ... 

C,(T, E’) = neutron fission macroscopic cross section 

v(?, E’) = number of neutrons emitted from each fission event 

x(E) = fission neutron energy distribution 

For these test problems, there are no (n, ZX’) reactions, z > 1, included in 
C,. Therefore, C, = Ct - C, - C,, where C, is the neutron capture cross 
section (zero neutrons emitted). This paper also provides values for the scalar 

neutron flux, which is defined as 4(r, E) = Jo S(?, E, 6)dfi. The reported 
scalar neutron flux values are normalized to .the flux at the center of the fissile 

material. 
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The keff eigenvalue is only associated with the fission reaction and no other 

multiplying process such as (n, an). The fundamental eigenvalue, k,f/, is unity 

for a critical system, less than unity for a subcritical system, and greater than 
unity for a supercritical system. The steady state k,fl eigenvalue equation is 

physically correct only when k,,, is unity and there is no decay or growth in 

\IT(r, E, 6). A solution when k,ff is not unity is still a valuable indicator of 
the ability of a system to sustain a fission chain reaction. When an infinite 

medium is considered, k,ff will be referred to as k,. This paper gives results 
for the fundamental eigenvalue. For higher eigenvalue results see references 

Pal, WI, PI, P41, 1251, WI, P71. 

3.2 One-Energy Group in One-Dimensional Slab Geometry 

3.2.1 Isotropic Scattering. 

The one-energy group, homogeneous medium with isotropic scattering trans- 
port equation for a slab can be written in terms of an optical thickness 

(.z = Ctz) as: [lgl 

paw> I-1) 
dZ 

where: 

c= 
L + 2 

Et 
(3) 

The eigenvalue form of c is defined as the mean number of secondary neutrons 

produced per neutron reaction and is also known as the secondaries ratio. 
This equation still requires elaborate mathematics to solve as reported in 
the literature. Derivation of the one-energy group k, solution for the infinite 

medium case is shown in Appendix A. 

The literature uses this form of the neutron transport equation with a non- 
reentrant boundary condition to derive one-energy group, isotropic scattering 
analytic solutions for the critical (k,,,= 1) dimensional scalar neutron flux. 

It should be noted that c values for Ic,ff = 1 in equation 3 are presented in 

the literature, thereby making c = v. The typical range of c found in the 

literature for fissile materials is from 1.01 to 2.00. The one-group cross sections 
selected for the test set mimic the physical characteristics of the two-group 
problems and range from 1.02 to 1.50. A value of c of 1.5 is the upper limit 
for real fissile materials. 
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3.2.2 Linearly Anisotropic Scattering. 

The scattering term, Cs(?, E’ + E, 6’ + 6) can be a strong function of 

the cosine of the scattering angle, p. = 6’ . 6. The angular dependence can 
be analyzed by Legendre polynomial series expansion of CB(?, E’ + E, 6’ . 

f~).[~~l Using the Legendre polynomial expansion, the one-energy group, one- 
dimensional slab, neutron transport equation can be written in a similar form 

to equation 2:[2gIJ301 

This form of the neutron transport equation is often found in the literature. 
The solution of this equation includes linearly anisotropic scattering; however, 

it also includes a linearly anisotropic fission source emission. For problems 
that include the anisotropic effect on the fission term, see references [22], [29], 

[30]. Numerical solutions exist that do not force the anisotropic effect on the 
fission term. This limitation on the different anisotropic behavior of scattering 
and fission can be removed by using different transfer functions for scattering 

and fission. L3rI Solutions for the higher eigenvalues exist for this form of the 
transport equation.[20I,[21I,[22I,[24I,[25I,[26I,[271 

3.3 Two-Eneqy Groups in One-Dimensional Slab Geometry 

3.3.1 Isotropic Scattering. 

Using the same procedures as in the one-group case, the two-energy group 

form of the transport equation for a slab can be written as: Ir51 

(4) 

(5) 

where: 
Ci = total neutron macroscopic cross section of group i 

Cij = total neutron group transfer macroscopic cross section 

from group j to group i 
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In this paper, the fast energy group is group 2 to be consistent with 
most of the references. This notation is the reverse of most nuclear 

engineering textbooks. 

Assuming group 2 is the fast group and no non-fission up-scatter for the slow 
group 1, the group transfer cross sections are given by: 

Note that Ci = C;, + Cif + Ciis + C+, where the Cji, represents nonfission 
scattering to group j # i. This equation for Ci again assumes that the C(n,2n),+ 
. . . components are zero. 

The two-energy group form of the transport equation, which has solutions in 
the literature, can be written in a similar form to the one-group equations uti- 

lizing the optical thickness parameter, z = C~Z, but in matrix-vector notation 
as seen below. 

where: 

W, P) = 

(6) 

(7) 

and 
Cij = Cij/C2. (8) 

The derivations for the infinite medium k, and the group 2 to group 1 flux 

ratio are given in Appendix A. 
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3.3.2 Linearly Anisotropic Scattering. 

One of the above simplifying assumptions to the steady state neutron trans- 
port equation is that neutron scattering is isotropic (no angular dependence). 

However, the scattering term, CS(?‘, E’ + E, fi’ -+ 6) can be a strong function 

of the cosine of the scattering angle, p. = 6’. R. This angular dependence can 

be analyzed by Legendre polynomial series expansion of I&(?, E’ + E, 6’ ’ 6) 

L2W, giving 

M 21+1 
C$, E’ -+ E, 6’ . 6) = c -&(F, E’ + E)P$=i’ . 6) 

133 47r 

where A4 indicates the degree of anisotropy. For M = 0, scattering in the 
lab system is isotropic and for M = 1, scattering is linearly anisotropic. 

A complete mathematical description is in reference [19] and [28]. For lin- 
early anisotropic scattering, the scattering cross section for general anisotropic 

scattering consists of two components, C,, and C,,, where C,, is the linear 
anisotropic scattering component and affects the scattering angular distribu- 

tion for both in and out of group scattering. Anisotropic scattering can be 
forward or backward peaked and thus C,, can be positive or negative. The 

total scattering cross section is not dependent on C,,. The anisotropic cross 
section only affects the angular distribution. Infinite medium k, and neutron 
flux results are independent of the anisotropic cross section. 

Following the same procedures, the general two-speed linearly anisotropically 
scattering analogue to equation 6 which also has numerical solutions is:[32] 

where: 

*(W) = 

and 

Cijl = (21 + l&j~/&. 

(10) 

(11) 

(12) 

The C,,, term is the linearly anisotropic scattering cross section and is given 
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in the problem descriptions without the (26 + 1) term. 

4 One-Energy Group Problem Definitions and Results 

For the one-energy group cases, the critical dimension(s) for each geometry 
depends upon the c value chosen from the literature and not specific cross 
section sets. To use the literature results, the cross sections were selected to 

match published c values with k,,,= 1 at low, middle, and high c values listed. 

Values ranging from 1.02, 1.30, 1.40, and 1.50 were chosen because they are 
similar to the physical systems in the two-group cases: uranium-DzO reactor, 

U-235, and Pu-239. These problems use cross sections that are reasonable rep- 
resentations of these materials; however, these cross sections are not general 
purpose one-group values. The cross sections are used because they define the 

c values used in the literature and are intended to be used only to verify al- 
gorithm performance and not to predict any actual criticality experiments. 
Cross section values are assumed accurate to the number of decimal places 
reported. 

The isotropic neutron macroscopic cross sections provided for each case are: 
the total cross section, Et, the capture (no neutrons emitted) cross section, 

C,, the scattering cross section, C,, the fission cross section, C,, and the 
number of neutrons, v, emitted for each fission. The (n,2n), (n,3n), . . . cross 

sections are assumed to be zero (but need not be). Thus the total cross section 
equals the sum of C,, C,, and C,, thereby providing a consistency check on 
the cross section set. Many references give (IIC,) instead of v and Cf. Since 
both parameters (not the product) may be required by a code for the problem 
solution, the product (VIE,) has been split into v and C, preserving their 

product and Ct. The value of c for k,ff=l in equation 6 is also included in 
each cross section table. For the reflected spheres, different secondaries ratios, 
c, are reported with the critical dimension for k,,,=l for various combinations 
of core and reflector thicknesses. To maintain consistent cross sections with 

the U-235 set, the parameter, v, was modified to match c to the literature 
values. 

When anisotropic scattering cross sections are provided, the anisotropic com- 
ponents are designated by C,, and C,,, respectively. Similarly, the isotropic 
scattering component is designated by C,,. 

The value of k,, as defined in Appendix A, is given for each cross section set. 
For finite problems where k,ff is unity, the critical dimension, r,, is listed for 
each geometry in both mean free paths (to indicate the neutron optical thick- 
ness) and in centimeters for the one-dimensional geometries. When available 
in the literature, the scalar flux values, normalized to the flux at the center 
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of the fissile material, are also provided. The two-media problems have cl > 1 
for the core region 1 and c2 < 1 for the surrounding reflector region 2. The 

two-media problems use the cross sections for the nonmultiplying reflector. 
The critical dimensions for the multiplying medium and reflector thickness 

are given in both mean free paths and centimeters. 

A comparison of the critical dimensions for the different geometries behave 
as expected; that is, the critical dimension is smallest for the one-dimensional 

slab and increases for the cylinder and sphere. This behavior is to be expected 
due to the increased leakage with the curvi-linear geometries. For the reflect,ed 

geometries, the critical dimension decreases with increasing reflector thickness. 
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4.1 One-Ener.gy Group Isotropic Scattering 
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4.1.1 One- Group Pu-239. 

One-Energy Group Isotropic Cross Sections 

Table 2 gives the one-group, isotropic cross sections for two cases of Pu-239 

(c=1.50 and c=1.40) and a Hz0 (c=O.90) reflector. The total cross sections 
are the same for both Pu-239 cases and Hz0 as required by the reference for 

the two-media solutions. 

Table 2 
One-Group Macroscopic Cross Sections (CIKl) for Pu-239 (c=1.40,1.50) and Hz0 
(c=O.SO) 

Material v Cf cc Es & C 

Pu-239 (a) 3.24 0.081600 0.019584 0.225216 0.32640 1.50 

Pu-239 (b) 2.84 0.081600 0.019584 0.225216 0.32640 1.40 

Hz0 (refl) 0.0 0.0 0.032640 0.293760 0.32640 0.90 

Infinite Medium (PUa-l-O-IN and Pub-l-O-IN) 

Using the cross sections for Pu-239 (a) (problem 1) in Table 2, k, = 2.612903 
with a constant angular and scalar flux everywhere. Using the cross sections 
for Pu-239 (b) (problem 5) in Table 2; k, = 2.290323 with a constant angular 
and scalar flux everywhere. 

One-Medium Slab, Cylinder, and Sphere Critical Dimensions 

The Pu-239 (a) critical dimension, rc; is listed in Table 3. 

Table 3 
Critical Dimensions, rc, for One-Group Bare Pu-239 (c=1.50) 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 

2 PUa-l-0-SL Slab 0.605055 1.853722 [161 

The Pu-239 (b) critical dimensions, r,, are listed in Table 4. The normalized 
scalar flux for four spatial positions are given in Table 5 using the same ref- 
erences. The flux ratios for Pub-l-0-CY are only available to four decimal 
places. 
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Table 4 

Critical Dimensions, rc, for One-Group Bare Pu-239 (c=1.40) 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 

6 Pub-l-0-SL Slab 0.73660355 2.256751 [351 

7 Pub-I-0-CY Cylinder 1.396979 4.279960 [361,[371 

8 Pub-l-0-SP Sphere 1.9853434324 6.082547 [351 

Table 5 

Normalized Scalar Fluxes for One-Group Bare Pu-239 (c=1.40) 

Problem Identifier Geometry r r, = 0.25 I 1 

6 Pub-l-0-SL Slab 0.9701734 

7 Pub-l-0-CY Cylinder 

8 Pub-l-0-SP Sphere 0.93538006 

r/r, = 0.5 r/r, = 0.75 r/r, = 1.0 

0.8810540 0.7318131 0.4902592 

0.8093 0.2926 

0.75575352 0.49884364 0.19222603 

Two-Media Slab and Cvlinder Critical Dimensions 

The literature values in Tables 6 and 7 give the critical dimensions for Pu-239 

(a) for two Hz0 reflector thicknesses. The first two-media problem (problem 

3) in Table 6 is a special nonsymmetric two-region, Pu-239 and H20, prob- 

lem. The second two-media problem (problem 4) in Table 7 is a symmetric 

three-region problem with the reflector on both sides of the fissile medium. 

Table 6 

Critical Dimensions for One-Group Pu-239 Slab (c=1.50) with Non-Symmetric Hz0 

Reflector (c=O.90) 

Problem Identifier Geometry Pu rc Hz0 thickness Pu+HzO Radius Reference 

3 PUa-HZO(l)-1.0-SL Slab (mfp) 0.482566 1 [161,[551 

(cm) 1.478450 3.063725 4.542175 

Table 7 

Critical Dimensions for One-Group Pu-239 Slab (c=1.50) with Hz0 Reflector 

(c=O.90) 

Problem Identifier Geometry Pu rc Hz0 thickness Pu+HzO radius Reference 

4 PUa-H20(0.5)-I-0-Z Slab (mfp) 0.43015 0.5 [161,[551 

(cm) 1.317862 1.531863 2.849725 

The literature values in Table 8 give the critical dimensions for Pu-239 (b) 

with two Hz0 reflector thicknesses. 
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Table 8 
Critical Dimensions for One-Group Pu-239 Cylinder (c=1.40) with Hz0 Reflector 

(c=O.90) 

Problem Identifier Geometry Pu rc Hz0 thickness Pu+HzO Radius Reference 

9 Pub-HSO(l)-l-0-CY Cylinder (mfp) 1.10898 1 [381 

(cm) 3.397610 3.063725 6.461335 

10 PUb-H20(10)-l-0.CY Cylinder (mfp) 1.00452 10 [381 

(cm) 3.077574 30.637255 33.714829 

4.1.2 One-Group U-235. 

One-Group Isotropic Cross Sections 

Table 9 gives the one-group, isotropic cross sections for two cases of U-235 
and a H20 reflector. Notice that one-group CL for Pu-239 and U-235 are the 

same as given in reference [41], but the secondaries ratio, c; differs. 

Table 9 
One-Group Macroscopic Cross Sections (cm-l) for U-235 (c=1.30) 

u 

2.70 

2.797101 

2.707308 

2.679198 

0.0 

=f 

0.065280 

0.065280 

0.065280 

0.065280 

0.0 

0.013056 0.248064 0.32640 1.30 

0.013056 0.248064 0.32640 1.3194202 

0.013056 0.248064 0.32640 1.3014616 

0.013056 0.248064 0.32640 1.2958396 

0.032640 0.293760 0.32640 0.90 

Infinite Medium (Ua-l-O-IN, Ub-l-O-IN, UC-~-O-IN, and Ud-l-O-IN ) 

Using the cross sections for U-235 (a) in Table 9; k, = 2.250000 (problem 11) 

with a constant angular and scalar flux everywhere. Using the cross sections for 

U-235 (b), U-235 (c), and U-235 (d) in Table 9, k, = 2.330917 (problem 15), 
2.256083 (problem 17), and 2.232667 (problem 19) with a constant angular 
and scalar flux everywhere, respectively. 

One-Medium Slab, Cylinder, and Sphere Critical Dimensions 

The critical dimension, rcr and spatial flux ratios are given in Table 10 and 11 
for U-235 (a). The references are the same for both tables. 
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Table 10 

Critical Dimensions, rc, for One-Group Bare U-235 (c=1.30) 

Problem Identifier ) Geometry ) r, (mfp) ) I’, (cm) 1 Reference 

12 Ua-l-0-SL Slab 0.93772556 2.872934 1351 

13 Ua-l-0-CY Cylinder 1.72500292 5.284935 [36], [37] 

14 Ua-l-0-SP Sphere 2.4248249802 7.428998 [351 

Table 11 

Normalized Scalar Fluxes for One-Group Bare U-235 (c=1.30) 

Problem Identifier Geometry 1 r/r, = 0.25 1 r/r, = 0.5 1 r/r, = 0.75 ( r/rc = 1.0 

1 :; 1 ;~;;a-;;; 1 ,%b, ( 0.9669506 / 0.8686259 j 0.7055218 / 0.4461912 

0.93244907 0.74553332 0.48095413 0.17177706 
_ 

Two-Media Sphere Critical Dimensions 

The literature values in Table 12, give the critical dimensions for U-235 (b), 

U-235 (c), and U-235 (d) for three spherical H20 reflector thicknesses. 

Table 12 

Critical Dimensions for One-Group U-235 Sphere with Hz0 Reflector (c=O.90) 

Problem Identifier Geometry U rc Hz0 thickness U+HzO Radius Reference 

16 Ub-HZO(l)-l-O-SP Sphere (mfp) 2 1 [241,[271 

(cm) 6.12745 3.063725 9.191176 

18 UC-H20(2)-1.O-SP Sphere (mfp) 2 2 [241,[271 

(cm) 6.12745 6.12745 12.2549 

20 Ud-H20(3)-1.C-SP Sphere (mfp) 2 3 [241>[271 

(cm) 6.12745 9.191176 15.318626 

4.1.3 One-Group U-D20 Reactor. 

One-Group Isotropic Cross Sections 

Table 13 gives the one-group, isotropic cross sections for the uranium-D20 

reactor and Hz0 reflector. Note that the uranium-D20 reactor and Hz0 re- 

flector have the same total cross section as required by the references for the 

reflected cylindrical solutions. 
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Table 13 

One-Group Macroscopic Cross Sections (cm-l) for U-D20 Reactor (c=1.02) and 

Hz0 (c=O.90) 

Material v Cf c, c, Et C 

U-D20 1.70 0.054628 0.027314 0.464338 0.54628 1.02 

Hz0 (refl) 0.0 0.0 0.054628 0.491652 0.54628 0.90 

Infinite Medium (UD20-l-O-IN) 

Using the cross sections for U-D20 in Table 13, k, = 1.133333 (problem 21) 

with a constant angular and scalar flux everywhere. 

One-Medium Slab, Cylinder, and Sphere Critical Dimensions 

The critical dimension, r,, and spatial flux ratios are listed in Table 14 and 

15. 

Table 14 
. . 

CrItIcal Dimensions, rcr for One-Group Bare U-D20 Reactor (c=1.02) 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 

22 UD20-l-0-SL Slab 5.6655054562 10.371065 [351 

23 UD20-l-0-CY Cylinder 9.043255 16.554249 [361,[371 

24 UD20-l-0-SP Sphere 12.0275320980 22.017156 1351 

Table 15 

Normalized Scalar Fluxes for One-Group Bare U-D20 Reactor (c=1.02) 

Problem Identifier Geometry r/r, = 0.25 r/r, = 0.5 r/rc = 0.75 r/r, = 1.0 

22 UD20-l-0-SL Slab 0.93945236 0.76504084 0.49690627 0.13893858 

24 UD20-l-0-SP Sphere 0.91063756 0.67099621 0.35561622 0.04678614 

Two-Media Slabs and Cylinders Critical Dimensions 

Table 16 gives the U-D20 critical dimension, r,; for two Hz0 reflector t’hick- 

nesses. 
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Table 16 
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Critical Dimensions for One-Group U-D20 (c=1.02) Slab and Cylinder with Hz0 

(c=O.90) Reflector 

Problem 

25 

Identifier 

I;D20-H20(1)-1.O-SL 

26 UD20-H20(10)-1.0.SL 

27 

28 

UD20-H20(1)-1.0.CY 

UD20-H20(10)-l-O-CY 

Geometry UDzO rc 

Slab (mfp) 5.0335 

(cm) 9.214139 

Slab (mfp) 4.6041 

(cm) 8.428096 

Cylinder (mfp) 8.411027 

(cm) 15.396916 

Cylinder (mfp) 7.979325 

(cm) 14.606658 

4.1.4 One-Group U-235 Reactor. 

One-Groun Isotronic Cross Sections 

I 
Hz0 thickness UDzO + Hz0 radius 

1 

1.830563 11.044702 

10 

18.30563 26.733726 

1 

1.830563 17.227479 

10 

18.30563 32.912288 

Table 17 gives the one-group, isotropic cross sections for the U-235 reactor 
with a Fe reflector and Na moderator. 

Table 17 

One-Group Macroscopic Cross Sections (cm-l) for U-235 Reactor, Fe reflector, and 

Na Moderator 

Material v Cf cc Es & C 

U-235 (e) 2.50 0.06922744 0.01013756 0.328042 0.407407 1.230 

Fe (refl) 0.0 0.0 0.00046512 0.23209488 0.23256 0.9980 

Na (mod) 0.0 0.0 0.0 0.086368032 0.086368032 1.00 

Infinite Medium (Ue-l-O-IN) 

Using the cross sections for the U-235 reactor in Table 17, k, = 2.1806667 
(problem 29) with a constant angular and scalar flux everywhere. 

One-Medium Slab Critical Dimensions 

Reference 

[421, [431 

[4%[431 

[381 

[381 

Note that this problem is a nonsymmetric four-region problem. The U-235 is 
surrounded by a Fe cladding on two sides but moderated by Na on one side. 
The critical dimension, rcr is listed in Tables 18 and 19. 
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Table 18 

Critical Dimensions, rc, for One-Group U-235 Reactor 

Problem Identifier Geometry Fe thickness U-235 thickness Fe thickness Na thickness Reference 

30 Ue-Fe-Na-l-0-SL Slab (mfp) 0.0738 2.0858098 0.0738 0.173 [551 

(cm) 0.317337461 5.119720083 0.317337461 2.002771002 

Table 19 

Critical Dimensions, rc, for One-Group U-235 Reactor 

Problem Identifier Geometry Fe thickness Fe+U Fe+U+Fe Fe+U+Fe+Na 

30 Ue-Fe-Na-1-0-SL Slab (cm) 0.317337461 5.437057544 5.754395005 7.757166007 

The U-235 (e) critical dimensions, rc, are listed in Tables 18 and 19. The 
normalized scalar flux for four spatial positions are given in Table 20 using 
the same references. These positions correspond to the material boundaries 

and are normalized by the scalar neutron flux at the left boundary. 

Table 20 

Normalized Scalar Fluxes for One-Group U-235 Reactor 

Problem Identifier Geometry Fe-U U-Fe Fe-Na Na 

30 Ue-Fe-Na-l-0-SL Slab 1.229538 1.49712 1.324899 0.912273 

4.2 One- Group Anisotropic Scattering 

4.2.1 One-Group Pu-239. 

One-Energy Group Anisotropic Cross Sections 

Table 21 gives the one-group, anisotropic cross sections for two cases of anisotropic 

scattering. The first cross section set, Pu-239 (a), includes P1 and Pz scatter- 
ing cross sections, where 1 /-I I< l/3. Th e second cross section set, Pu-239 (b), 
includes the Pl and P2 scattering cross sections where ( ,LL I> l/3. Care must 
be used to correctly solve this benchmark problem because of the 
negative scattering for /_A near -1. 
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Table 21 
One-Group Macroscopic Anisotropic Cross Sections (cm-‘) for Pu-239 (c=1.40) 

Material v CJ & %, =s, c s2 Et c 

Pu-239 (a) 2.5 0.266667 0.0 0.733333 0.20 0.075 1.0 1.40 

Pu-239 (b) 2.5 0.266667 0.0 0.733333 0.333333 0.125 1.0 1.40 

Infinite Medium (PU-l-l-IN) 

Using the cross sections for Pu-239 (a) and Pu-239 (b) in Table 21, k, = 

2.500000 (problem 31) with a constant angular and scalar flux everywhere. 
The anisotropic scattering cross sections do not change k,. 

One-Medium Slab Critical Dimensions 

The Pu-239 critical dimensions, r,, for both Pi and P2 problems are listed in 

Table 22. 

Table 22 
Critical Dimensions, rc, for One-Group Bare Pu-239 (c=1.40) 

Problem Identifier Geometry rc (mfp) r, (cm) Reference 

32 PUa-l-l-SL Slab 0.77032 0.77032 P91 
33 PUa-l-2-SL Slab 0.76378 0.76378 WI 
34 Pub-l-l-SL Slab 0.79606 0.79606 WI 
35 Pub-I-2-SL Slab 0.78396 0.78396 [391 

4.2.2 One-Group U-235 

One-Energy Group Anisotropic Cross Sections 

Table 23 gives the two sets of one-group, anisotropic cross sections for U-235. 
Notice that the cross sections are the same as in Table 9 with the addition 
of P1 scattering cross sections. The first cross section set, U-235 (a), includes 
Pi scattering cross sections, where / p I< l/3. The second cross section set, 
U-235 (b); includes the PI scattering cross sections where 1 p I> l/3. Care 

must be used to correctly solve this benchmark problem because of 

the negative scattering for 1-1 near -1. 
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Table 23 
One-Group Macroscopic Anisotropic Cross Sections (cm-i) for U-235 (c=1.30) 

Material v CJ cc c 
SO cs, Et c 

U-235 (a) 2.70 0.065280 0.013056 0.248064 0.042432 0.32640 1.30 

U-235 (b) 2.70 0.065280 0.013056 0.248064 0.212160 0.32640 1.30 

Infinite Medium (U-l-l-IN) 

Using the cross sections for U-235 (a) and U-235 (b) in Table 23, k, = 
2.250000 (problem 11) with a constant angular and scalar flux everywhere. 
The anisotropic scattering cross sections do not change k,. 

One-Medium Slab Critical Dimensions 

The U-235 critical dimensions, r,, for both Pi problems are listed in Table 24. 

Table 24 
. . 

Critical Dimensions, rc, for One-Group Bare U-235 (c=1.30) 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 

36 Ua-l-l-CY Cylinder 1.799866479 5.514296811 [401 

37 Ub-l-l-CY Cylinder 2.265283130 6.940205668 PO1 

4.2.3 One-Group U-D2 0 

One-Energy Group Anisotropic Cross Sections 

Table 25 gives the two sets of one-group, anisotropic cross sections for U- 
D20 reactor. Notice that the cross sections are the same as in Table 13 with 

the addition of Pr scattering cross sections. The cross sections set for two 

U-D20 cases include Pi scattering cross sections, where 1 p I< l/3, and a Pi 
case where p < 0 and the scattering cross section is negative. Care must 

be used to correctly solve this benchmark problem because of the 
negative scattering for p near -1. 

Infinite Medium UD20a-l-l-IN, UD20b-l-l-IN, and UD20c-l-l-IN 

Using the cross sections for U-D20 (a), U-D20 (b), and U-D20 (c) in Table 25, 
k, = 1.205587 (problem 38); 1.227391 (problem 40), and 1.130933 (problem 
42); respectively, with a constant angular and scalar flux everywhere. The 
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Table 25 

One-Group Macroscopic Anisotropic Cross Sections (cm-‘) for U-D20 Reactor 

Material v c/ c, c so x5x Et c 

U-D20 (a) 1.808381 0.054628 0.027314 0.464338 0.056312624 0.54628 1.0308381 

U-D20 (b) 1.841086 0.054628 0.027314 0.464338 0.112982569 0.54628 1.0341086 

U-D20 (c) 1.6964 0.054628 0.027314 0.464338 -0.27850447 0.54628 1.01964 

anisotropic scattering cross sections do not change k,. 

One-Medium Slab Critical Dimensions 

The U-D20 critical dimensions, rc, for the Pi problems are listed in Table 26. 

Table 26 

Critical Dimensions, rc, for One-Group Bare U-D20 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 

39 UD20a-l-I-SP Sphere 10 18.30563081 PI 

41 UD20b-l-l-SP Sphere 10 18.30563081 1221 

43 UD20c-l-l-SP Sphere 10 18.30563081 [231 
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5 Two-Energy Group Problem Definitions and Results 

The isotropic two-energy group cross sections for five bare and two water re- 

flected cases are listed in this section. There are also two linearly anisotropic 
scattering cross sections sets provided for bare and infinite medium reactors. 
Unlike the one-group case, there is no flexibility in choosing these values since 

they are used throughout the literature. The cross sections listed here are 
similar to Pu-239, L411 U-235,r41] a realistic enriched uranium-aluminum-water 

assembly [r51, a 93% enriched U-235 model of a university research reactor, 
[151~[441~[451 and a typical large size D20 reactor with low enrichment of U- 
235.[‘51,[441,[451 Al so included are critical dimensions for a similar uranium re- 

search reactor with a water reflector in an infinite lattice.[43] Again, these 
problems use cross sections that are reasonable representations of the materi- 
als described. These cross sections are not general purpose two-group values. 

The cross sections are used because they are defined in the literature and are 
intended to be used only to verify algorithm performance and not to predict 

any actual criticality experiments. 

The isotropic neutron cross macroscopic sections (cm-‘) provided for these 

problems are the total cross section of group i, Xi, the capture (no neutrons 
emitted) cross section, CCi, the within group scattering cross section: &is: 
the group-to-group scattering cross sections, Cij, and Cjis7 the fission cross 

section, I+, the number of neutrons, vi, emitted from each fission in a group, 
and the fission distribution, xi. 

In this paper, the fast energy group is group 2 to be consistent with 
most of the references. This notation is the reverse of most nuclear 
engineering textbooks. 

The literature solutions are often based on the group transfer cross sections, 
Xii, given in the references; therefore, the individual cross sections may not be 

unique. Most references give (YC,)~ instead of vi and Cfi. Since both param- 
eters (not the product) may be required by a code for the problem solution, 

the product (vC,)~ has been split into Vi and C/i preserving their product 
and Ct. The infinite slab lattice problems use a slightly unphysical set of cross 

sections to possibly stress code verification. 

The two sets of linearly anisotropic cross sections provided are extensions of 

the university research reactor and DzO cases. [32) The anisotropic scattering 

component is designated for the in-group and group-to-group scattering cross 
section by Ciisl and Cjis,, respectively. Similarly, the isotropic scattering com- 
ponent is designated by Ciiso and CjisO. 

The value for k, is given for each cross section set. For finite problems, the crit- 
ical dimension, rC, is listed in both fast group mean free paths (to indicate the 
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neutron optical thickness) and in centimeters. For two-media problems, critical 
dimensions for the inner multiplying medium and outer reflector thickness are 

given in both fast mean free paths and centimeters. The critical dimensions, 
r,, and reflector half thicknesses are also given for a water reflected infinite 

slab lattice cell. Flux values are given for the university research reactor (a) 
(problems 54 and 71) at four spatial points. Angular fluxes can be found in 
the dissertation references. 

To distinguish between the different URR fissile material cross section sets; 
each is labeled with a letter “a,” “b,” “c,” or “d”, respectively. The infinite slab 
lattice cell cross sections are similar to the other three cross section sets for 
the university research reactor and are labeled with URRd identifiers. The 

literature also uses three different Hz0 reflectors. Their cross sections are also 
labeled with a letter “a, ” 3,” or “2’ in the identifier. URR cross section sets 

“b” and “c” have thermal upscattering. All other two-group cross sections have 
no thermal upscattering. 

A comparison of the critical dimensions for the different geometries behave 
as expected; that is, the critical dimension is smallest for the one-dimensional 
slab and increases for the cylinder and sphere. This behavior is to be expected 
due to the increased leakage with the curvi-linear geometries. The effect of 

increased leakage on the critical dimension can be also be seen for the forward 
peaked linear anisotropically scattering cases. For the reflected geometries, 

the critical dimension decreases with increasing reflector thickness. However, 
the critical dimension for the infinite lattice cell increases with the increasing 

moderator thickness. Even though this may seem counter-intuitive, it should 
be expected because the amount of interaction between the fissile medium and 
adjacent cells decreases with increasing moderator half thickness.[43] 
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5.1 Isotropic Scattering 

5.1.1 Two- Group Pu-239. 

Two-Group Isotropic Cross Sections 

Tables 27 and 28 give the two-group, isotropic cross sections for Pu-239. 

Table 27 
Fast Energy Group Macroscopic Cross Sections (cm-l) for Pu-239 

Material ~2 =2f c2c c22s c12s x2 x2 

Pu-239 3.10 0.0936 0.00480 0.0792 0.0432 0.2208 0.575 

Table 28 
Slow Energy Group Macroscopic Cross Sections (cm-‘) for Pu-239 

Material ~1 Clf Cl, GlS c21s Cl Xl 

Pu-239 2.93 0.08544 0.0144 0.23616 0.0 0.3360 0.425 

Infinite Medium (PU-2-O-IN) 

Using the two-group isotropic Pu-239 cross section set from Tables 27 and 28, k, 
= 2.683767 (problem 44) with a constant group angular and scalar flux and a group 
2 to group 1 flux ratio = 0.675229. 

One-Medium Slab and Sphere Critical Dimensions 

. . . 
The critical dmlenslons, rc, are listed in Table 29. 

Table 29 
. 

Crrtrcal Dimensions, rc, for Two-Group Bare Pu-239 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 

45 PU-2-o-SL Slab 0.396469 1.795602 [15], [44], [45] 

46 PU-2-o-SP Sphere 1.15513 5.231567 [15], [44], [45] 
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5.1.2 Two- Group U-235. 

TWO-G~OUD Cross Sections 

A. Sood et al. 

Tables 30 and 31 give the two-group, isotropic cross sections for U-235. 

Table 30 
Fast Energy Group Macroscopic Cross Sections (cm-“) for U-235 

Material ~2 =2f c2c c22s &2s x2 x2 

U-235 2.70 0.06192 0.00384 0.078240 0.0720 0.2160 0.575 

Table 31 
Slow Energy Group Macroscopic Cross Sections (cm-‘) for U-235 

Material ~1 Elf Cl, &lS c21s CL Xl 

U-235 2.50 0.06912 0.01344 0.26304 0.0 0.3456 0.425 

Infinite Medium (U-2-O-IN) 

Using the two-group U-235 cross section set from Tables 30 and 31, k, = 2.216349 
(problem 47) with a constant group angular and scalar flux and the group 2 to 
group 1 flux ratio = 0.474967. 

One-Medium Slab and Sphere Critical Dimensions 

. . . 
The crrtrcal dimensions, rc, are listed in Table 32. 

Table 32 
Critical Dimension, r,, for Two-Group Bare U-235 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 

48 u-2-o-SL Slab 0.649377 3.006375 [15], [44], [45] 

49 u-2-o-SP Sphere 1.70844 7.909444 [I51 
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5.1.3 Two-Group Uranium-Aluminum-Water Assembly. 

Two-Group Isotropic Cross Sections 

Tables 33 and 34 gives the two-group, isotropic cross sections for the uranium, 
aluminum, and water assembly. 

Table 33 
Fast Energy Group Macroscopic Cross Sections(cm - i )  for U-A1 

Material u2 E2f E2c E22s E12s E2 X2 

U-AI 0.0 0.0 0.000217 0.247516 0.020432 0.268165 1.0 [ 

Table 34 
Slow Energy Group Macroscopic Cross Sections (cm -1) for U-A1 

Material ~i Ei/  Elc Ells E21s E1 

U-A1 2.830023 0.060706 0.003143 1.213127 0.0 1.276976 

X1 

0.0 

Infinite Medium (UAL-2-0-IN) 

With the two-group cross section set from Tables 33 and 34, koo -- 2.662437 (problem 
50) and the group 2 to group 1 flux ratio = 3.124951. 

One-Medium Slab and Sphere Critical Dimensions 

Using the cross sections given in Tables 33 and 34, the critical dimensions, rc, are 
given in Table 35. 

Table 35 
Critical Dimensions, rc, for Two-Group Uranium-Aluminum-Water Assembly 

Problem Identifier Geometry rc (mfp) rc (cm) Reference 

51 UAL-2-0-SL Slab 2.09994 7.830776 [15], [44], [45] 

52 UAL-2-0-SP Sphere 4.73786 17.66770 [15] 
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5.1.4 Two-Group Uranium Research Reactor. 

Two-Group Isotropic Cross Sections 

The cross sections for the one-medium (a), two-media (b and c), and infinite slab 

lattice (d) cases are different and are therefore listed separately. Tables 36 and 

37 gives the two-group, one-medium, isotropic cross sections for the 93% enriched 
uranium bare university research reactor. 

Table 36 

Fast Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor (a) 

Material u2 C2f c2c c22s G2s x2 x2 

Research Reactor (a) 2.50 0.0010484 0.0010046 0.62568 0.029227 0.65696 1.0 

Table 37 
Slow Energy Group Macroscopic Cross Sections (cm-l) for Research Reactor (a) 

Material “1 % Cl, &lS c21s Cl Xl 

Research Reactor (a) 2.50 0.050632 0.025788 2.44383 0.0 2.52025 0.0 

Infinite Medium (URRa-2-O-IN) 

The test set uses the two-group enriched U-235 cross section set for the research 
reactor in Tables 36 and 37 with k, = 1.631452 (problem 53) and the group 2 to 

group 1 flux ratio = 2.614706. 

One-Medium Slab and Sphere Critical Dimensions 

. . 
The critical dimensions, r,, are listed in Table 38. 

Table 38 

Critical Dimensions, r,, for Two-Group Bare Research Reactor (a) 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 

54 URRa-2-0-SL Slab 4.97112 7.566853 [15],[44], [45] 

55 URRa-2-0-SP Sphere 10.5441 16.049836 P51 

One-Medium Slab Scalar Neutron Fluxes 

Table 39 gives the normalized scalar neutron flux for the two-group bare research 
reactor (a) at four spatial points [45]. All values are normalized with the fast group 

flux at the center. 
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Table 39 
Normalized Scalar Fluxes for Two-Group Bare Research Reactor (a) 

Problem Identifier Geometry Energy Group r/r= = 0.241394 r/r= = 0.502905 r/rc = 0.744300 r/r= = 1.0 

54 URRa-2-0-SL Slab Fast 0.943363 0.761973 0.504012 0.147598 

SlOW 0.340124 0.273056 0.173845 0.0212324 

Two-Media Cross Sections for Slab Geometry 

The cross sections for the two-media problems for the uranium research reactor are 
given for two different multiplying media with one nonmultiplying reflector. The two 
multiplying materials are labeled (b) and (c), respectively. The multiplying region 

consists of an Hz0 + U-235 mixture surrounded by an Hz0 reflector. The results in 
the literature for case (c) only include the infinite water reflector. The cross sections 
are given in Tables 40 and 41. Notice that this problem allows thermal upscattering 
in both multiplying and nonmultiplying regions. 

Table 40 
Fast Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor (b), 
(c) and Hz0 Reflector (a) 

Material v2 =2f CPC 

Research Reactor (b) 2.50 0.000836 0.001104 

Research Reactor (c) 2.50 0.001648 0.001472 

Hz0 (a) (refl) 0.0 0.0 0.00074 

c22s c12s x2 x2 

0.83892 0.04635 0.88721 1.0 

0.83807 0.04536 0.88655 1.0 

0.83975 0.04749 0.88798 0.0 

Table 41 
Slow Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor (b), 
(c) and Hz0 Reflector (a) 

Material *1 c1J Cl, CllS 

Research Reactor (b) 2.50 0.029564 0.024069 2.9183 

Research Reactor (c) 2.50 0.057296 0.029244 2.8751 

H20 (a) (refl) 0.0 0.0 0.018564 2.9676 

Infinite Medium (URRb-2-O-IN and URRc-2-O-IN ) 

c21s Cl Xl 

0.000767 2.9727 0.0 ml 0.00116 2.9628 0.0 

0.000336 2.9865 0.0 

Using the two-group cross section set for the research reactor (0) from Tables 40 
and 41, k, = 1.365821 (problem 56) with a constant group angular and scalar flux 
and the group 2 to group 1 flux ratio = 1.173679. Using the two-group cross section 
set for research reactor (c) from Tables 40 and 41, k, = 1.633380 (problem 57) 
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with a constant group angular and scalar flux and the group 2 to group 1 flux ratio 

= 1.933422. 

Two-Media Slab Critical Dimensions 

Using the cross sections in Tables 40 and 41 for the Hz0 + U-235 research reactor 

and the Hz0 reflector, the critical dimensions are given in Table 42. The mfp results 

use the group 2 total macroscopic cross section of region i to obtain the dimensions 

in cm. 

Table 42 

Critical Dimensions for Two-Group Research Reactor (b),(c) with Hz0 Reflector 

(a) 

Problem Identifier Geometry u-235, rc Hz0 Width U-235 + Hz0 Width Ref. 

58 URRb-H20a(l)-2.0-SL Slab (mfp) 5.94147 1 [461 

(cm) 6.696802 1.126152 7.822954 

59 URRb-H20a(5)-2-0.SL Slab (mfp) 4.31485 5 [461 

(cm) 4.863392 5.630757 10.494149 

60 URRb-H20a(IK)-2.0-SL Slab (mfp) 4.15767 co DC) 1461 

(cm) 4.686230 cc 00 

61 URRc-H20a(IA-)-2-0-SL Slab (mfp) 2.1826 00 cc [461 

(cm) 2.461903 cx Do 
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Two-Media Cross Sections for Infinite Slab Lattice Cell 

The two-media cross sections are given in Tables 43 and 44 for a similar uranium 

enriched university research reactor. The ~2 is slightly unphysical to stress criticality 

codes. Two different reflector materials are also given in Tables 43 and 44. The 

problems that use these cross sections are for an infinite slab lattice cell. 

Table 43 
Fast Group Macroscopic Cross Sections (cm-‘) for Research Reactor(d) and Hz0 

Reflector (b), (c) 

Material 0 CZf czc &zs Cl23 x2 x2 

Research Reactor (d) 1.004 0.61475 0.0019662 0.0 0.0342008 0.650917 1.0 

Hz0 (b) (refl) 0.0 0.0 8.480293x10-6 0.1096742149 0.001000595707 0.1106832906 0.0 

Hz0 (c) (red) 0.0 0.0 4.97229x10-4 1.226381244 0.1046395340 1.331518007 0.0 

Table 44 

Slow Group Macroscopic Cross Sections (cm-‘) for Research Reactor(d) and Hz0 

Reflector (b), (c) 

Material Ul =Lf Cl, c 11s c21s Cl Xl 

Research Reactor (d) 2.50 0.045704 0.023496 2.06880 0.0 2;13800 0.0 

Hz0 (b) (refl) 0.0 0.0 0.00016 0.36339 0.0 0.36355 0.0 

Hz0 (c) (refl) 0.0 0.0 0.0188 4.35470 0.0 4.37350 0.0 

Infinite Medium (URRd-2-O-IN) 

The test set uses the two-group cross section set for the research reactor in Tables 

43 and 44 with k, = 1.034970 (problem 62) and the group 2 to group 1 flux ratio 

= 2.023344. 

Two-Media Infinite Slab Lattice Cell Critical Dimensions 

Using the cross sections in Tables 43 and 44 for the enriched uranium research 

reactor with a Hz0 reflector, the critical dimensions for an infinite slab lattice cell 

as shown in Figure 2 are given in Table 45. Because this is an infinite slab lattice cell 

with reflecting outer boundaries, notice that the moderator half thickness is given. 
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Table 45 
Critical Dimensions for Two-Group Infinite Slab Lattice Cell and Hz0 Reflector 

(b), (c) 

1 Problem 1 Identifier / Geometry 

63 

64 

URRd-HZOb(l)-2-0-ISLC Inf. Slab (mfp) 

Lat. Cell (cm) 

URRd-HZOb(lO)-P-0-ISLC Inf. Slab (mfp) 

Lat. Cell (cm) 

U-235, rc H20 Width U-235+HzO Width Ref. 

0.02142 1 [431 

0.0329074 9.034787 9.067695 

0.29951 10 [431 

0.460135 90.347875 90.808010 

0.22197 1 [431 

0.341011 0.751023 1.092034 

1.7699 10 1431 

2.719087 7.510225 10.229312 

5.1.5 Two-Group U-D20 Reactor. 

Two-Group Isotropic Cross Sections 

Tables 46 and 47 give the two-group, isotropic cross sections for the uranium-D20 

system. 

Table 46 
Fast Energy Group Macroscopic Cross Sections (cm-l) for U-D20 

Material u2 =2f c2c c22s &2S x2 x2 

U-D20 2.50 0.002817 0.0087078 0.31980 0.0045552 0.33588 1.0 

Table 47 
Slow Energy Group Macroscopic Cross Sections (cm-‘) for U-D20 

Material zq =lf Cl, Ells c21s Cl Xl 

U-D20 2.50 0.097 0.02518 0.42410 0.0 0.54628 0.0 

Infinite Medium (UD20-2-O-IN j 

The test set uses the two-group U-D20 cross section set from Tables 46 and 47 with 
k, = 1.000221 (problem 67) and the group 2 to group 1 flux ratio = 26.822093. 

One-Medium Slab and Sphere Critical Dimensions 

. . . 
The critical dimensions, rc, are listed in Table 48. 
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Table 48 
Critical Dimension, rc, for Two-Group DzO System 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 

68 UD20-2-O-SL Slab 284.367 846.632726 [15], [44], [45] 

69 UD20-2-O-SP Sphere 569.430 1695.337621 [151 

5.2 Linearly Anisotropic Scattering 

The anisotropic scattering cross sections for the enriched U-235 research reactor 
and U-D20 reactor cases are the same as the isotropic set with the addition of the 
anisotropic cross sections, C~2~r, CILIA, and Ciisl. 

5.2.1 Two- Group Uranium Research Reactor. 

Two-Group Anisotropic Macroscopic Cross Sections 

Tables 49 and 50 gives the two-group, linearly anisotropic cross sections for the re- 
search reactor. Care must be used to correctly solve this benchmark prob- 
lem because of the negative scattering for p near -1. 

Table 49 
Fast Group Cross Sections for Linearly Anisotropic Scattering (cm-i) Research 
Reactor (a) 

Material m CZf czc czzso czzs, ~12S0 Gzs, x2 x2 

Research Reactor (a) 2.50 0.0010484 0.0010046 0.62568 0.27459 0.029227 0.0075737 0.65696 1.0 

Table 50 
Slow Group Cross Sections for Linearly Anisotropic Scattering (cm-‘) Research 
Reactor (a) 

Material VI Clf Cl, Glso Cll*, CZls Cl Xl 

Research Reactor (a) 2.50 0.050632 0.025788 2.44383 0.83318 0.0 2.52025 0.0 

Infinite Medium (URRa-2-l-IN ) 

The test set uses the two-group enriched U-235 cross section set from Tables 49 
and 50 with k, = 1.631452 (problem 70) and the group 2 to group 1 flux ratio = 
2.614706. 

One-Medium Slab Critical Dimension 

The critical dimensions are listed in Table 51. 
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Table 51 
Critical Dimension, r,, for Two-Group Linearly Anisotropic Scattering Research 

Reactor (a) 

Problem Identifier Geometry r, (mfp) r, (cm) Reference 

71 URRa-2-l-SL Slab 6.2384 9.4959 [341 

One-Medium Slab Scalar Neutron Fluxes 

Table 52 gives the normalized scalar neutron flux for the two-group bare research 

reactor (a) with linearly anisotropic scattering at four spatial points.[32] All values 

are normalized with the fast group flux at the center. 

Table 52 

Normalized Scalar Fluxes for Two-Group Bare Research Reactor (a) 

Problem Identifier Geometry Energy Group r/rc = 0.20 r/r= = 0.50 rfrc = 0.80 r/rc = 1.0 

71 URRa-2.1.SL Slab Fast 0.963873 0.781389 0.472787 0.189578 

SIOW 0.349006 0.280870 0.157376 0.0277639 

5.2.2 Two-Group U-D2 0 Reactor. 

Two-Group Anisotropic Macroscopic Cross Sections 

Tables 53 and 54 gives the two-group, linearly anisotropic cross sections for the 

U-D20 system. 

Table 53 
Fast Energy Group Cross Sections for Linearly Anisotropic Scattering (cm-‘) for 

U-D20 

Material “2 CZf czc c22so czzs, C12su Qzs, x2 x2 

DzO 1 2.50 0.0028172 1 0.0087078 1 0.31980 1 0.06694 1 0.004555 1 -0.0003972 1 0.33588 1 1.0 

Table 54 

Slow Energy Group Cross Sections for Linearly Anisotropic Scattering (cm-l) for 

U-D20 

Material VI Clf Cl, Cll,, Gls, z!ls Cl X1 

DzO 2.50 0.097 0.02518 0.42410 0.05439 0.0 0.54628 0.0 

Infinite Medium fUD20-2-l-IN 1 

The test set uses the two-group linearly anisotropic D20 cross section set from 
Tables 53 and 54 with k, = 1.000227 (problem 72) and the group 2 to group 1 flux 
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One-Medium Slab Critical Dimension 

. . . 
The critical dimension, rc, is listed in Table 55. 

Table 55 
Critical Dimension, rc, for Two-Group Linearly Anisotropic Scattering for U-D20 
Reactor 

Problem Identifier Geometry r, (mfp) rc (cm) Reference 

73 UD20-2-l-SL Slab 312.18 929.45 1341 

6 Three-Energy Group Problem Definitions and Results 

A three-energy group isotropic infinite medium problem is defined in this section. 
The derivation appears in Appendix A.[471J531 This problem assumes no thermal 
upscattering and no fission neutrons born in the slowest energy group. 

The fast energy group is group 3 to be consistent with most of the 
references. Again, this notation is the reverse of most nuclear engineering 
textbooks. 

The cross sections listed here are similar to the uranium university research reactors. 
Again, this problem uses cross sections that are reasonable representations of the 
materials described and are not general purpose values. The cross sections are 
intended to be used to verify algorithm performance and not to predict criticality 
experiments. The cross sections are from [47] and are derived in Appendix A. 

Infinite Medium (URR-3-O-IN ) 

Using the three-group cross section set from Tables 56, 57, and 58, k, = 1.600000 
(problem 74) with a constant group angular and scalar flux and the group 2 to 
group 3 flux ratio = 0.480, the group 1 to group 2 flux ratio = 0.3125, and the 
group 1 to group 3 flux ratio = 0.150. 
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Table 56 

Fast Energy Group Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material v3 C3f c3c c33s c23s c13s x3 x3 

Research Reactor 3.0 0.006 0.006 0.024 0.171 0.033 0.240 0.96 

Table 57 

Middle Energy Group Macroscopic Cross Sections (cm-l) for Research Reactor 

Material v2 C2f c2c c22s c32s Q2s x2 x2 

Research Reactor 2.50 0.060 0.040 0.60 0.0 0.275 0.975 0.04 

Table 58 

Slow Energy Group Macroscopic Cross Sections (CIII-l) for Research Reactor 

Material Ul Qf Cl, &ls c21s c31s Cl Xl 

Research Reactor 2.0 0.90 0.20 2.0 0.0 0.0 3.10 0.0 

7 Six-Energy Group Problem Definitions and Results 

A six-energy group isotropic infinite medium problem comprised of two coupled 

three-energy group cross sections used in URR-3-O-IN is defined in this section. 
This test problem defines a six group cross section set [48] such that energy groups 

6 and 1, 5 and 2, and 4 and 3 are equivalent. The top three groups are decoupled 

from the lower three groups except for the fission distribution, xi, which affects 

energy groups 6, 5, 2, and 1. Energy group 6 (group 1) scatters to groups 5 and 4 

(groups 2 and 3). E nergy group 5 (group 2) scatters to group 4 (group 3). Energy 

group 4 (group 3) self-scatters only. Since groups 1,2, and 3 are upscatter equivalents 

of groups 6, 5, and 4, respectively, this problem should only be used with codes that 

allow for thermal upscattering. 

Infinite Medium (URR-6-O-IN j 

Since this problem is comprised of problem URR-3-O-IN cross sections with modified 

xi values, the final k, value and flux ratios will not change. Using the six-group 

cross section set from Tables 59, 60, 61 62, 63, and 64, k, = 1.600000 (problem 75) 

with a constant angular and scalar flux in each group. The group 5 to group 6 and 

group 2 to group 1 flux ratio = 0.480, the group 4 to group 5 and group 3 to group 
2 flux ratio = 0.3125, and a group 4 to group 6 and group 3 to group 1 Aux ratio = 
0.150. These ratios are the same as in the three-group problem. 
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Table 59 
Fast Energy Group 6 Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material V6 % &C C66s x568 X4& x6 X6 

Research Reactor 3.0 0.006 0.006 0.024 0.171 0.033 0.240 0.48 

Table 60 
Energy Group 5 Macroscopic Cross Sections (CXK~) for Research Reactor 

Material u3 =3/ c5c .Gss c65s G5s x5 X5 

Research Reactor 2.50 0.060 0.040 0.60 0.0 0.275 0.975 0.02 

Table 61 
Energy Group 4 Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material v4 C4f & c44s X348 &4s x4 x4 

Research Reactor 2.0 0.90 0.20 2.0 0.0 0.0 3.10 0.0 

Table 62 
Energy Group 3 Macroscopic Cross Sections (cm-‘) for Research Reactor 

Material u3 C3f c3c c33s c23s G3s x3 x3 

Research Reactor 2.0 0.90 0.20 2.0 0.0 0.0 3.10 0.0 

Table 63 
Energy Group 2 Macroscopic Cross Sections (cnl-‘) for Research Reactor 

Material v? =zf &c c22s ClZs c32s Et X2 

Research Reactor 2.50 0.060 0.040 0.60 0.0 0.275 0.975 0.02 

Table 64 
Slow Energy Group 1 Macroscopic Cross Sections (cn-‘) for Research Reactor 

Material Vl =lf Cl, Cll, CZl. C31r Cl Xl 

Research Reactor 3.0 0.006 0.006 0.024 0.171 0.033 0.240 0.48 
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8 Summary 

In this paper, we have documented 75 problem descriptions with precise results 

for the critical dimensions, k,J/ eigenvalue, and some eigenfunction (scalar neutron 

flux) results for infinite, slab, cylindrical, and spherical geometries for one- and two- 

energy group, multiple-media, and both isotropic and linearly anisotropic scattering 

using the listed references. We have not given a complete listing of every referenced 

result that has been published. Instead, we have included the references that pro- 

vide both true transport solutions and enough information to reproduce the results. 

Several other references are included for reference completeness. All test set prob- 

lems specifications and results are from peer reviewed journals, and have, in many 

cases, been solved numerically by more than one analytic method. These calculated 

values for k,ff and the scalar neutron flux are believed to be accurate to at least 

five decimal places. Criticality codes can be verified using these analytic benchmark 

test problems. 
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APPENDIX A 
Derivation of One-, Two-, and Three-Group k, 

To follow the benchmark referenced literature for the multi-group prob- 
lems, the lowest energy group is group 1. This notation is the reverse 
from most nuclear engineering textbooks. 

I One-Energy Group Infinite Medium km 

For an infinite, isotropic, homogeneous medium, the neutron leakage term, Sl. V’IJ 
= 0, and the angular and scalar neutron flux is constant everywhere. Integrating 
the one-energy group infinite medium form of the transport equation over angle 
produces: 

where 4 is the scalar neutron flux. The equation can be directly solved for k,. 

“Cf km=----- 
ct. - cs 

or, in terms of mean number of secondaries, c: 

kcxJ = c [ 

uqzt 
(Et - C,)(C, + UCf) I 

C.1) 

(4 

C.3) 

II Two-Energy Group Infinite Medium k, 

The two-group infinite medium form of the neutron transport equation reduces to: 

wJ2 = x2242 + ~2lsdJl + p [VZC2f42 + VlCl/~1] (4 
co 

Cl41 = .Gls$l + ~12s~2 + p [hClfqh + VZCZf42] C.5) 
00 

Rearranging the equations in terms of 41 and 42: 
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i 
& - x223 - p,czf 1 [ $2 - c21s + +%f 1 41 = 0 

00 cc 
[ Cl - Clls - &@If 1 [ $1 - G2s + FU2C2f 42 = 0 co 1 

(4 

C.7) 

This equation can be written in matrix form as: I511 

- c21s + &l&f 
( ) ( 

c2 - c22s - EV2C2f) 41 0 

( 
Cl - Clls - &l&f) - (G2s + 7$y2c2,) Ii1 !I ZZ (4 

42 0 

To simplify the matrix elements, it is useful to define a total removal cross section, 

C,, for each energy group 9 as the difference between the total cross section and 

in-group scattering or:F4’l 

,ym = c2 - s& (J-J) 
,y = Cl - Ells (JO) 

Setting the determinant of this matrix equal to zero will give an equation that can 

be solved for k,. One solution is k, = 0. The other solution is: 

k 
cm 

= Xl(V2C2fC21S + CTwAf) + X2h~lf~12s + qemv2C2f) 
Tern 

=1 qenL - G2J21s 
C.11) 

If there is no thermal upscattering, the equation reduces to: 

k = XIUIClf 
O” CT”” +x2 qemyn + -gG ( nClfCl2s V2C2f 

> 
( w 

To obtain the flux ratio, equations 23 and 24 are added to eliminate x1 and x2 to 

give: 

[ 
p-em 

1 -C 
4&f 

21s - ___ 
kc 1 [ 41 + EyqL - c12s - y$f] qb2 = 0 C.13) 

where x1 + x2 = 1. 

Solving for &2/&l: 
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If there is no thermal upscattering, the equation reduces to: 

101 

C.14) 

C-15) 

III Three-Energy Group In.finite Medium t& (a) 

To make the three-energy group problem simpler, the following assumptions are 
made: 14’1 

a No thermal upscattering from group j to group i, j < i, Cij, = 0 

l No fission neutrons are born in the lowest energy group, i.e. x1=0 

The neutron transport equation can be written as: 

x343 = X33&3 + p [V3CSf43 + @z/q52 + V&&1] 
w 

x242 = x22&2 + x23&3 + F [v3x3f43 + V2C2f42 + V&f&] 

‘1h = ~llsh + ~12542 + x:3&2 

Rearranging the equations in terms of ~$1, 42 and 43: 

x3 - c33s - eu3C3f] $3 ~ [El12c2f] $2 - [+lf] $1 = 0 

x2 
- c23s + --v3c3f $‘3 + x2 ~ c22s - 

km 1 1 Eli2C2f] $2 - [+hf] @l = 0 

-cl3843 - ~lZs$Z + [Cl - Cll,] 41 = 0 

This equation can be written in matrix form as: L4’l 

I ‘““( c33s - $53&f) - (gy2Czr) - (emf) @l 

X236 + $$V3C3f) (c2 - x22. - +2c24 - (~VIClf) I[ 1 $J2 = 

-cl38 -c12c (Cl - Cll,) 43 

(3) 

(.I71 

C.18) 

C.19) 

C.20) 

C.21) 

'0 

.I 

0 (W 
0 
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Using the total removal cross sections defined in equations 26 and 27, the determi- 
nant of the matrix then becomes: 

-jyem _ 

3 m fQ3C3J 
) 

- c23s + j53c3J 
( ) 

-c13s 

( 
=jyem _ x2_ c 

2 km”2 2J 
) ( 

- e&J ) 

I 

C.23) 

-%2s 
y-em 

1 

If we multiply the second line by x3, multiply the first line by ~2, and subtract the 

results, and multiply the first line by k,, the determinant becomes: 

(C;emkm - x3v3c3J) - (X3VZx2J) - (X34lJ) 

- (x3x23$ + X2x;em) (X3xsem) 0 

-x133 -&2s 
jy-em 

1 

C.24) 

Two of the k, solutions are zero. The other solution is: 

IV Three-Ener.gy Group Injinite Medium km (b) 

An alternative method for solving the three-group k, problem [471 is to rearrange 

the three-group transport equations in equations 33, 34, 35: 

(‘3 - ’33s) 43 = e [v3c3J$3 + V2C2J42 + &$J&l] C.26) 

(‘2 - c22S) 42 = x23&3 + e [v3x3J43 + V2C2J42 + vl& J&] C.27) 

(Cl - Gls) 41 = C12s&2 + &3s$3 (.W 

Divide each equation by 43 and define: 

42 
$23 = - 

43 

41 
413 = - 

43 

(.W 

t.301 
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C.31) 

The result gives: 

If we divide equations 59 and 51 by v3C3J and define: 

f23 = 
v2Caf 
-423 
U3C3f 

f13 = 
VlClf 
-413 
V3C3f 

Then we get: 

yem 
3 

____ = & [1 + f23 + f13] 
X3V3C3f Co 

---& [x$em423 - c23s] = ; [1 + f23 + f131 
00 

413x;em = &3s + x12&23 

t.32) 

C.33) 

C.34) 

C.35) 

C.36) 

C.37) 

C.38) 

C.39) 

If we substitute equation 56 into 57 and rearranging, 

gf)23 zz z + 2 C.46) 
3 3 

g413 = 2 + $&423 C.41) 
3 3 3 

k 00 = w [I f f23 + f13] C.42) 
3 

Equations 57, 58, and 59 give the flux ratios and k,. Tables 43, 44, and 45 give the 
cross sections used for the three-group problem.[47] 

There are numerous cross sections involved in these equations, implying that there 
are numerous arbitrary choices we can make that will yield solutions to these equa- 
tions. We show one set of cross sections that will satisfy a set of chosen conditions.[47] 

If we make our basic choices as: 
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k, = 1.600 

x3=0.96, x2=0.04, x1=0.0 

5% of fission production occurs in group 3 

20% of fission production occurs in group 2 

75% of fission production occurs in group 1 

With these choices and the definitions of f23 and frs, we get: 

f23=----- = 
u2c2j 42 4 

v3c3 j 43 

f13=---- = VlClf 41 15 

v3c3 j 43 

Using this gives: 

Tern 
x3 

- = e [I + f23 + f13] 
v3c3j 

,zern 
- = 12.0 
U3C3j 

We can now make more arbitrary choices. If we choose: 

l ~3~3.0, C3j=O.OO6 

l ~2r2.5, C2j=O.O6O 

l u1=2.0, c~j=o.900 

Then we get: 

423 = 0.480 

$13 = 0.150 

making E$‘,= 0.216 from equation 63. If we make more choices: 

C33S = 0.024 

CsC = 0.006 

c13s = 0.033 

C.43) 

C.44) 

C.45) 

C.46) 

C.47) 

C-48) 

C.49) 
C.50) 

C.51) 
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making I&=0.240 and &3,=0.171. Using equation 57, C!jem=0.375. This result now 

gives: 

C22s = 0.600 

czc = 0.040 

making X2=0.975 

trary choice is: 

c IlS = 2.00 

C.52) 

C.53) 

and X12,=0.275. Using equation 58, C;em=l.lO. One last arbi- 

C.54) 

making X1=3.10 and Cr,=O.20. 

V General Multigroup hfinite Medium km 

More than three-group k, derivations have been done (see reference [53]). A general 

multigroup k, derivation is included in this section for completeness.[54] 

Given 

where: 

5 = GzG matrix 

c, = GzG matrix 

x = Gzl vector 

vCf = 1zG vector 

3 = Gzl vector 

IC = scalar 

C.55) 

C.56) 

C.57) 

C.58) 
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Since uCf 4 is a scalar, it can be cancelled out and we get the followng explicit 

result: 

C.59) 

The right hand side of this equation is a scalar, equal to k. Only one matrix inversion 

is necessary. 


