A Sample Problem for
Variance Reduction in MCNP

Los Alamos
 NATIONAL LABORATORY

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness.

LA-10363-MS

UC-32
Issued: October 1985

A Sample Problem for Variance Reduction in MCNP

Thomas E. Booth

A SAMPLE PROBLEM FOR VARIANCE REDUCTION IN MCNP

by

Thomas E. Booth

Abstract

The Los Alamos computer code Monte Carlo Neutron Photon (MCNP) has many useful variance reduction techniques to aid the Monte Carlo user. This report applies many of these techniques to a conceptually simple but computationally demanding neutron transport problem.

I. INTRODUCTION

This report is based on a series of four $50-\mathrm{min}$ variance reduction talks ("MCNP Variance Reduction Techniques," video reels \#12-15) given at the Magnetic Fusion Energy Conference on MCNP,* Los Alamos National Laboratory, October 1983. It is an overview of all variance reduction techniques in MCNP and not an in-depth consideration of any. In fact, the techniques are described only in the context of a single conceptually simple, but demanding, neutron transport problem, with only enough theory presented to describe the general flavor of the techniques. Detailed descriptions are in the MCNP manual. ${ }^{1}$
This report assumes a general familiarity with Monte Carlo transport vocabulary such as weight, roulette, score, bias, etc.

II. VARIANCE REDUCTION

Variance-reducing techniques in Monte Carlo calcuations can often reduce the computer time required to obtain results of sufficient precision. Note that precision
*Videotapes of the entire conference are available from Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830. The reader wishing to run the sample problem here should refer to the appendix beginning on page 67 for input file details modified since the conference and after the writing of this report.
is only one requirement for a good Monte Carlo calculation. Even a zero variance Monte Carlo calculation cannot accurately predict natural behavior if other sources of error are not minimized. Factors affecting accuracy were outlined by Art Forster, Los Alamos (Fig. 1).**

This paper demonstrates how variance reduction techniques can increase the efficiency of a Monte Carlo calculation. Two user choices affect that efficiency, the choice of tally and of random walk sampling. The tally choice (of for example, collision vs track length estimators) amounts to trying to obtain the best results from the random walks sampled. The chosen random walk sampling amounts to preferentially sampling "important" particles at the expense of "unimportant" particles.

A. Figure of Merit

The measure of efficiency for MCNP calculations is the figure of merit (FOM) defined as
$\mathrm{FOM}=\frac{1}{\sigma_{\mathrm{mr}}^{2} \mathrm{~T}}$,

[^0]1. CODE FACTORS

PHYSICS AND MODELS
DATA UNCERTAINTIES
CROSS-SECTION REPRESENTATION
ERRORS IN THE CODING
2. PROBLEM-MODELING FACTORS

SOURCE MODEL AND DATA
GEOMETRICAL CONFIGURATION
MATERIAL COMPOSITION
3. USER FACTORS

USER-SUPPLIED SUBROUTINE ERRORS
INPUT ERRORS
VARIANCE REDUCTION ABUSE
CHECKING THE OUTPUT
UNDERSTANDING THE PHYSICAL MEASUREMENT

Fig. 1. Factors affecting accuracy.
where $\sigma_{\mathrm{mr}}=$ relative standard deviation of the mean and $\mathrm{T}=$ computer time for the calculation (in minutes). The FOM should be roughly constant for a well-sampled problem because σ_{mr}^{2} is (on average) proportional to N^{-1} ($\mathrm{N}=$ number of histories) and T is (on average) proportional to N ; therefore, the product remains approximately constant.

B. General Comments

Although all variance reduction schemes have some unique features, a few general comments are worthwhile. Consider the problem of decreasing
$\sigma_{\mathrm{mr}}=\frac{\sigma}{\sqrt{ } \mathbf{N}} / \mu$,
(where $\sigma^{2}=$ history variance, $N=$ number of particles, and $\mu=$ mean) for fixed computer time T. To decrease σ_{mr}, we can try to decrease σ or increase N -that is, decrease the time per particle history-or both. Unfortunately, these two goals usually conflict because decreasing σ normally requires more time per history because better information is required and increasing N normally increases σ because there is less time per history to obtain information. However, the situation is not hopeless. It is often possible to decrease σ substantially
without decreasing N too much or increase N substantially without increasing σ too much so that
$\sigma_{\mathrm{mr}}=\frac{\sigma}{\mu \sqrt{\mathrm{N}}}$
decreases.
Many techniques described here attempt to decrease σ_{mr} by either producing or destroying particles. Some techniques do both. In general, (1) techniques that produce tracks work by decreasing σ (we hope much faster than N decreases), and (2) techniques that destroy tracks work by increasing N (we hope much faster than σ increases).

IIII. THE PROBLEM

The problem is illustrated in Fig. 3, but before discussing its Monte Carlo aspects, I must point out that the problem is atypical and not real. I invented the sample problem so most of the MCNP variance reduction techniques could be applied. Usually, a real problem will not need so many techniques. Futhermore, without understanding and caution, "variance-reducing" techniques often increase the variance.
Figure 2 is the input file for an analog MCNP calculation and Fig. 3 is a slice through the geometry at $\mathrm{z}=0$.

Fig. 2. Input file for an analog MCNP calculation.

Fig. 3. The problem.

The primary tally is the point detector tally (F5) at the top of Fig. 3, 200 cm from the axis of the cylinder (y-axis). A point isotropic neutron source is just barely inside the first cell (cell 2) at the bottom of Fig. 3. The source energy distribution is 25% at $2 \mathrm{MeV}, 50 \%$ at 14 MeV , and 25% uniformly distributed between 2 and 14 MeV . For this problem, the detectors will respond only to neutrons above 0.01 MeV .

A"perfect shield" immediately kills any neutrons leaving the cylinder (except from cell 21 to cell 22). Thus, to tally (F5), a neutron must

1. penetrate 180 cm of concrete (cells 2-19),
2. leave the concrete (cell 19) with a direction close enough to the cylinder axis that the neutron goes from the bottom of cell 20 (the cylindrical void) to the top and crosses into cell 21,
3. collide in cell 21 (because point detector contributions are made only from collision/source points), and
4. have energy above 0.01 MeV .

These events are unlikely because

1. 180 cm of $2.03-\mathrm{g} / \mathrm{cm}^{3}$ concrete is difficult to penetrate,
2. there is only a small solid angle up the "pipe" (cell 20),
3. not many collisions will occur in 10 cm of $0.0203-$ $\mathrm{g} / \mathrm{cm}^{3}$ concrete, and
4. particles lose energy penetrating the concrete.

Before approaching these four problems, knowledge about the the point detector technique can be applied to keep from wasting time; only collisions in cell 21 can contribute to the point detector. Collisions in cells 2-19 cannot contribute through the perfect shield, that is, zero importance region. Thus, the MCNP input is set (PD0 card, Fig. 2) so that the point detector ignores collisions not in cell 21 . If the point detector did not ignore collisions in cells $2-19$, the following would happen at each collision.

1. The probablity density for scattering toward the point detector would be calculated.
2. A point detector pseudoparticle would be created and pointed toward the point detector.
3. The pseudoparticle would be tracked and exponentially attenuated through the concrete.
4. The pseudoparticle would eventually enter the perfect shield (cell 1) and be killed because a straight line from any point in cells $2-19$ to the point detector would enter the perfect shield.
There is no point proceeding with these steps because the pseudoparticles from cells 2-19 are always killed; time is saved by ignoring point detector contributions from cells 2-19.

IV. ANALOG CALCULATION

Inspection of Fig. 4, which is derived from MCNP summary tables, shows that the analog calculation fails. Note that the tracks entering dwindle to zero as they try to penetrate the concrete (cells 2-19). This problem will be addressed in more detail later, but first note that the number weighted energy (NWE) is very low, especially in cells 12, 13, and 14. The NWE is simply the average energy, that is
$N W E=\frac{\int N(E) E d E}{\int N(E) d E}$,
where $E=$ energy and $N(E)=$ number density at energy E. This indicates that there are many neutrons below 0.01 MeV that the point detector will not respond to. There is no sense following particles too low in energy to contribute; therefore, MCNP kills neutrons when they fall below a user-supplied energy cutoff.

V. ENERGY AND TIME CUTOFFS

A. Energy Cutoff

The energy cutoff in MCNP is a single user-supplied problem-wide energy level. Particles are terminated when their energy falls below the energy cutoff. The energy cutoff terminates tracks and thus decreases the time per history. The energy cutoff should be used only when it is known that low-energy particles are either of zero importance or almost zero importance. A number of pitfalls exist.

1. Remember that low-energy particles can often produce high-energy particles (for example, fission or low-energy neutrons inducing high-energy photons). Thus, even if a detector is not sensitive to low-energy particles, the low-energy particles may be important to the tally.
2. The energy cutoff is the same throughout the entire problem. Often low-energy particles have zero importance in some regions and high importance in others.
3. The answer will be biased (low) if the energy cutoff is killing particles that might otherwise have contributed. Furthermore, as $\mathrm{N} \rightarrow \infty$ the apparent error will go to zero and therefore mislead the unwary. Serious consideration should be given to two techniques (discussed later), energy roulette and space-energy weight window, that are always unbiased.

CEL PROGR	PROBL	TRACKS ENTERING	POPULATION	COLLISIONS		NUMBER WEIGHTED ENERGY	$\begin{aligned} & \text { FLUX } \\ & \text { WEIGHTED } \\ & \text { ENERGY } \end{aligned}$	AVERAGE TRACK WEIGHT (RELATIVE)	$\begin{aligned} & \text { AVERAGE } \\ & \text { TRACK MFP } \\ & \text { (CM) } \end{aligned}$
2	2	4783	3931	13949	$3.5593 E+00$	2.4144E-03	4.7075E+00	$1.0000 E+00$	$5.8207 \mathrm{E}+00$
3	3	2176	931	15057	$3.8421 \mathrm{E}+00$	4.5943E-04	$1.9643 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$3.9404 \mathrm{E}+00$
4	4	1563	593	12510	3.1921E+00	2.0566E-04	1.2067E+00	1. OOOOE + 00	$3.3058 \mathrm{E}+00$
5	5	939	362	7390	$1.8857 \mathrm{E}+00$	$1.4450 \mathrm{E}-\mathrm{O4}$	8.4454E-01	$1.0000 \mathrm{E}+00$	$3.0062 \mathrm{E}+00$
6	6	511	205	4213	1.0750E+00	9.3995E-05	5.6654E-01	$1.0000 E+00$	$2.7411 \mathrm{E}+00$
7	7	287	115	2219	5.6622E-01	1.0022E-04	$5.8205 E-01$	$1.0000 E+00$	2.7733E+00
8	8	170	63	1587	4.0495E-01	6.4696E-05	4.4866E-01	1. $0000 \mathrm{E}+00$	$2.5496 E+00$
9	9	87	40	961	2.4522E-01	6.2827E-05	$4.6476 \mathrm{E}-\mathrm{Ot}$	$1.0000 \mathrm{E}+00$	$2.6046 \mathrm{E}+00$
10	10	44	16	304	7.7571E-02	1.0691E-04	5. 1448E-01	1. OOOOE + 00	$3.0390 \mathrm{E}+00$
11	11	31	10	230	5.8688E-O2	6.2272E-05	2.4500E-O1	$1.0000 \mathrm{E}+00$	$2.4143 \mathrm{E}+00$
12	12	31	7	330	8.4205E-02	2.2207E-05	1.1767E-01	1. OOOOE + 00	$2.1161 \mathrm{E}+00$
13	13	18	6	218	5.5626E-02	1.99315-O6	6.51685-04	$1.00005+00$	1. $3151 \mathrm{E}+00$
14	14	4	2	17	4.3378E-03	3.7686E-06	7.9961E-04	$1.0000 E+00$	$2.0823 E+00$
15	15	0	0	0	0.	0.	0.	0.	0.
16	16	0	0	0	0.	0.	0.	0.	0.
17	17	0	0	0	0.	0.	0.	0.	0.
18	18	0	0	0	0.	0.	0.	0.	0.
19	19	0	0	0	0.	0.	0.	0.	0.
20	20	0	0	0	0.	0.	0.	0.	0.
21	21	0	0	0	0.	0.	0.	0.	0.
22	22	0	0	0	0.	0.	0.	0.	0.
	TAL	10644	6281	58985	$1.5051 E+01$				

ANALOG CALCULATION - NO VARIANCE REDUCTION TECHNIQUES

Fig. 4. Analog calculation.

B. Time Cutoff

The time cutoff in MCNP is a single user-supplied, problem-wide time value. Particles are terminated when their time exceeds the time cutoff. The time cutoff terminates tracks and thus decreases the computer time per history. The time cutoff should only be used in timedependent problems where the last time bin will be earlier than the cutoff.
The sample problem in this report is time-independent, so the time cutoff is not demonstrated here.

C. The Sample Problem with Energy Cutoff

Figure 5 gives the results of an MCNP calculation with a $0.01-\mathrm{MeV}$ energy cutoff. Note that the number weighted energy is about 1000 times higher, so the energy cutoff has changed the energy spectrum as expected. Furthermore, note that about four times as many histories were run in the same time although the total number of collisions is approximately constant.
Despite more histories, fewer tracks enter deep into the concrete cylinder. This may seem a little counterintuitive until one remembers that the energy cutoff kills the typical particle that has had many collisions and is below the energy cutoff, that is, the typical particle deep in the concrete. This decrease in the tracks entering is not alarming because we know that only tracks with energy less than 0.01 MeV were killed and they cannot tally.

The trouble with the calculation is that the large amount of concrete is preventing neutron travel from the source to the tally region. The solution is to preferentially push particles up the cylinder. Four techniques in MCNP can be used for penetration,

1. geometry splitting/Russian roulette,
2. exponential transorm,
3. forced collisions,* and
4. weight window.

VI. GEOMETRY SPLITTING AND RUSSIAN ROULETTE

Geometry splitting/Russian roulette is one of the oldest, most widely used variance reduction techniques. As with most biasing techniques, the objective is to spend more time sampling important (spatial) cells and less time sampling unimportant cells. The technique (Fig. 6) is to

1. divide the geometry into cells;
2. assign importances (I_{n}) to these cells; and
*There will not be an example using forced collisions for penetration problems because it is awkward to do in MCNP. In fact, an alteration to the weight cutoff game is often necessary.
3. when crossing from cell m to cell n , compute $v=I_{n} / I_{m}$. If
a. $v=1$, continue transport;
b. $v<1$, play Russian roulette,
c. $v>1$, split the particle into $v=I_{n} / I_{m}$ tracks.

A. Russian Roulette ($\mathbf{v}<\mathbf{1}$)

If $v<1$, the particle is entering a cell that we wish to sample less frequently, so the particle plays Russian roulette. That is,

1. with probability v, the particle survives and its weight is multiplied by v^{-1}, or
2. with probability $1-v$ the particle is killed.

In general, Russian roulette increases the history variance but decreases the time per history, allowing more histories to be run.

B. Splitting $(v>1)$

If $v>1$, the particle is entering a more important region and is split into " v " subparticles. If v is an integer, this is easy to do; otherwise v must be sampled. Consider $\mathrm{n}<\mathrm{v}<\mathrm{n}+1$, then

Probability	Split Weight	
$p(n)=n+1-v$	$w_{s}=w t / n$	sampled
$p(n+1)=v-n$	$w t_{s}=w t /(n+1)$	splitting

The sampled splitting scheme above conserves the total weight crossing the splitting surface, but the split weight varies, depending on whether n or $n+1$ particles are selected.

Actually, MCNP does not use the sampled splitting scheme. MCNP uses an expected value scheme:

Probability Split Weight

$p(n)=n+1-v$	$\mathrm{wt}_{\mathrm{s}}=w t / v$	expected value
$p(n+1)=v-n$	$w t_{s}=w t / v$	splitting

The MCNP scheme does not conserve weight crossing a splitting surface at each occurrence. That is, if n particles are sampled, the total weight entering is
$\mathrm{n} \cdot \frac{\mathrm{wt}}{\mathrm{v}}=\frac{\mathrm{n}}{\mathrm{v}} \cdot \mathrm{wt}<\mathrm{wt}$,
but if $\mathrm{n}+1$ particles are sampled, the total weight entering is
$(\mathrm{n}+1) \frac{\mathrm{wt}}{v}=\frac{\mathrm{n}+1}{v} \mathrm{wt}>\mathrm{wt}$.

However, the expected weight crossing the surface is wt:
$p(n) \cdot n \cdot \frac{w t}{v}+p(n+1) \cdot(n+1) \cdot \frac{w t}{v}=w t$.

NOTES:

1) N INCREASED FROM 3919 TO 13968
2) TRACKS STOP SOONER BECAUSE OF ENERGY CUTOFF 3) PARTICLES NOT GETTING TO TALI.Y REGIONS

Fig. 5. Energy cutoff of 0.01 MeV .

Fig. 6. Geometry splitting/Russian roulette technique.

The MCNP scheme has the advantage that all particles crossing the surface will have weight wt / v. Furthermore, if

1. geometry splitting/Russian roulette is the only nonanalog technique used and
2. all source particles start in a cell of importance I_{s} with weight w_{s}, then all particles in cell j will have weight
$\mathrm{w}_{\mathrm{s}} \cdot \frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{j}}}$
regardless of the random walk taken to cell \mathbf{j}.
MCNP's geometry splitting/Russian roulette introduces no variance in particle weight within a cell. The variation in the number of tracks scoring rather than a variation in particle weight determines the history variance. Empirically, it has been shown that large variations in particle weights affect tallies deleteriously. Booth ${ }^{2}$ has shown theoretically that expected value splitting is superior to sampled splitting in highvariance situations.

C. Comments on Geometry Splitting/Russian Roulette

One other small facet deserves mention. MCNP never splits into a void although Russian roulette may be played entering a void. Splitting into a void accomplishes nothing except extra tracking because all the split particles must be tracked across the void and they
all make it to the next surface. The split should be done according to the importance ratio of the last nonvoid cell departed and the first nonvoid cell entered (integer splitting into a void wastes time, but it does not increase the history variance). In contrast, noninteger splitting into a void may increase the history variance and waste time.

Finally, splitting generally decreases the history variance but increases the time per history.

Note three more items:

1. Geometry splitting/Russian roulette works well only in problems without extreme angular dependence. In the extreme case, splitting/Russian roulette can be useless if no particles ever enter an important cell where the particles can be split.
2. Geometry splitting/Russian roulette will preserve weight variations. The technique is "dumb" in the sense that it never looks at the particle weight before deciding appropriate action. An example is geometry splitting/Russian roulette used with source biasing.
3. Geometry splitting/Russian roulette are turned on or off together.

D. Cautions

Although splitting/Russian roulette is among the oldest, easiest to use, and most effective techniques in MCNP, it can be abused. Two common abuses are:

1. compensating for previous poor sampling by a very large importance ratio and doing the splitting "all at once."
2. using splitting/Russian roulette with other techniques (for example, exponential transform) without forethought to possible interference effects.

E. The Sample Problem with Geometry Splitting/Russian Roulette

Returning to the problem, recall

	Cell		Tracks Entering
Pource Cell	2	2	15416
	3	3	4445
	4	4	2197
	5	5	973
	6	6	467
	7	7	233
	8	8	110
	9	9	56
	10	10	40
	11	11	20
	12	12	8
	13	13	3
	14	14	0
	15	15	0
	16	16	0
	17	17	0
18	18	0	
	19	19	0
20	20	0	
	21	21	0
	22	22	0

Note that except for the source cell, the tracks entering are decreasing by about a factor of 2 in each subsequent

cell. Furthermore, because half the particles from cell 2 (the source cell) immediately exit the geometry from the isotropic source, the rough factor of 2 even holds for the source cell. Thus as a first rough guess, try importance ratios of $2: 1$ through the concrete; that is, factor of 2 splitting.
Figure 7 indicates that this splitting is much better than no splitting. Not only did particles finally penetrate the concrete (see Tally 1) but the "tracks entering" column is roughly constant within a factor of 2 . Slightly more splitting in cells 9-19 might improve the "tracks entering" just a little bit more. The splitting ratios were refined to be 2 in cells $2-8$ and 2.15 in cells $9-19$ in the next calculation.
Figure 8 summarizes the refined splitting. Immediately evident is that the FOM (Tally 1) unexpectedly decreased from 27 (Fig. 7) to 23 , so at first glance, the refined splitting appears worse. However, note that the refined splitting had the desired effect; the "tracks entering" numbers are flatter. Thus I think the refined splitting is better despite the lower FOM.

What justifies being so cavalier about FOMs? Remember that the FOM is only an estimate of the calculational efficiency. At relative-error estimates near 25%, these FOMs are not meaningful enough to take the 27-to- 23 FOM difference seriously. Furthermore, the FOM is only one of the many available pieces of summary information. At 25% error levels, it is much more important that the refined splitting appears to be sampling the geometry better.

F. Discussion of Results

The effect of refined splitting in this sample problem illustrates an important point about most variance reduction techniques; most of the improvement can usually be gained on the first try. Either one of these splitting/Russian roulette runs is several orders of magnitude better than the run without splitting. In fact, this
 NEXT RUN : INCREASE SPLITTING AT CELL 8 TO 2.15 UNTIL CELL 19

Fig. 7. Factor of 2 splitting from cells 2 to 19.

FACTOR OF 2 SPLITTING CELLS 2 - 8 FACTOR OF 2.15 SPLITTING 9 -19

TALLY FLUCTUATION CHARTS

Fig. 8. Refined splitting.
problem is so bad without splitting that it is hard to guess how much splitting/Russian roulette has improved the efficiency. Contrast this improvement to the (questionable) FOM difference of 27 (Fig. 7) to 23 (Fig. 8) between the factor of 2 splitting and the refined splitting. Usually one can do better with a variance reduction technique on the second try than on the first, but usually by not more than a factor of 2 .

Quickly reaching diminishing returns is characteristic of a competent user and a good variance reduction technique. Competent users can quickly learn good importances because there is a very broad near-optimal range. Because the optimum is broad, the statistics often mask which importance set is best when they are all in the vicinity of the optimum.
Now that a reasonably flat track distribution has been obtained, perhaps it is time to explain why one expects this to be near optimal. There are some plausible arguments, but the real reason is empirical; it has been observed in many similar problems (that is, essentially one-dimensional bulk penetration problems) that a flat track distribution is near optimal. The radius of the concrete cylinder is large enough (100 cm) that the cylinder appears much like a slab; very few particles cross its cylindrical surface at a given depth (y coordinate) compared to the particle population at that depth. Indeed, if the radius were infinite, the cylinder would be a slab and no particles would cross its cylindrical surface.
A plausible argument for flat track distribution can be made by considering an extremely thick slab and possible track distributions for two cases. For too little splitting, the track population will decrease roughly exponentially with increasing depth and no particles will ever penetrate the slab. For too much splitting, the importance ratios are too large; the track population will increase roughly exponentially and a particle history will never terminate. In both cases, albeit for different reasons, there are never any tallies. If neither an exponentially decreasing population nor an exponentially increasing population is advisable, the only choice is a flat distribution.

Of course, there are really many more choices than exponentially decreasing, flat, or exponentially increasing populations, but track populations usually behave in one of these ways because the importance ratios from one cell to the next are normally chosen (at least for a first guess) equal. The reason is that one cell in the interior is essentially equivalent to the next cell, so there is little basis to choose a different importance ratio from one cell to the next. However, the cells are not quite equivalent because they are different depths from the source, so the average energy (and mean free path) decreases with increasing depth. This is probably why it was necessary to increase the importance ratio from 2 to
2.15 in the deep parts of the sample problem. Note, however, that this is a small correction.

Returning to Fig. 8, note that the energy and mean free path decrease with increasing depth, as expected. Not also that the higher splitting has decreased the particles per minute.

VII. ENERGY SPLITTING/ROULETTE

Energy splitting/Russian roulette is very similar to geometry splitting/Russian roulette except energy splitting/roulette is done in the energy domain rather than in the spatial domain. Note two differences.

1. Unlike geometry splitting/roulette, the energy splitting/roulette uses actual splitting ratios as supplied in the input file rather than obtaining the ratios from importances.
2. It is possible to play energy splitting/roulette only on energy decreases if desired.
There are two cautions.
3. The weight cutoff game takes no account of what has occurred with energy splitting/roulette.
4. Energy splitting/roulette is played throughout the entire problem. Consider using a space-energy weight window if there is a substantial space variation in what energies are important.
One can expect an improvement in speed using energy roulette by recalling that the problem ran a factor of 4 faster with an energy cutoff of 0.01 MeV than without an energy cutoff. Low-energy particles get progressively less important as their energy drops, so it might help to play Russian roulette at several different energies as the energy drops. In the following run, a 50% survival game was played at $5 \mathrm{MeV}, 1 \mathrm{MeV}, 0.3 \mathrm{MeV}$, 0.1 MeV , and 0.03 MeV . The energies and the 50% survival probability were only guesses.
The energy roulette (splitting does not happen here because there is no upscatter) results are shown in Fig. 9. Note that there were substantially ($\sim 50 \%$) more tracks entering, approximately the same number of collisions, and three times as many particles run. The FOM looks better, but the mean (Tally 1) has increased from 5.0E-7 (Fig. 8) to 8.4E-7. This deserves note and caution, but not panic, because the error is 18%, so poor estimates in both tally and error can be expected. Despite the previous statement, the energy roulette looks successful in improving tallies 1 and 4.

VIII. IMPLICIT CAPTURE AND WEIGHT CUTOFF

A. Implicit Capture

Implicit capture, survival biasing, and absorption by weight reduction are synonymous. Implicit capture is a

Fig. 9. Using energy roulette
(50% survival at 510.30 .10 .03 MeV)
variance reduction technique applied in MCNP after the collision nuclide has been selected. Let
$\sigma_{\mathrm{ti}}=$ total microscopic cross section for nuclide i and
$\sigma_{\mathrm{ai}}=$ microscopic absorption cross section for nuclide i.

When implicit capture is used rather than sampling for absorption with probability $\sigma_{\mathrm{a} i} / \sigma_{\mathrm{t}}$, the particle always survives the collision and is followed with new weight
$\mathrm{wt} \cdot\left(1-\frac{\sigma_{\mathrm{ai}}}{\sigma_{\mathrm{ti}}}\right)$.
Two advantages of implicit capture are

1. a particle that has finally, against considerable odds, reached the tally region is not absorbed just before a tally is made, and
2. the history variance, in general, decreases when the surviving weight (that is, 0 or wt) is not sampled, but an expected surviving weight is used instead (but see weight cutoff discussion, Sec. VIII.B).

Two disadvantages are

1. implicit capture introduces fluctuation in particle weight and
2. increases the time per history (but see weight cutoff discussion, Sec. VIII.B).
Note that
3. Implicit capture is the default in MCNP (except for note 4).
4. Implicit capture is always turned on for neutrons unless the weight cutoff game is turned off.
5. Explicit (analog) capture is not allowed for the photon simple physics treatment (high energy).
6. Analog capture is allowed only in detailed photon physics.

B. Weight Cutoff

In weight cutoff, Russian roulette is played if a particle's weight drops below a user-specified weight cutoff. The particle is either killed or its weight is increased to a user-specified level. The weight cutoff was originally envisioned for use with geometry splitting/Russian roulette and implicit capture. Because of this,

1. the weight cutoffs in cell j depend not only on WC1 and WC2 (see Fig. 2) on the CUTN and CUTP cards, but also on the cell importances. This dependence is intended to adjust the weight cutoff values to make sense with geometry splitting/Russian roulette.
2. Implicit capture is always turned on (except in detailed photon physics) whenever a nonzero WC 1 is specified.
The weight cutoffs WC1 and WC2 are illustrated in Fig. 10. If a particle's weight falls below $R_{j} \cdot W C 2$, a
weight cutoff game is played; with probability $\mathrm{wt} /\left(\mathrm{WCl} \cdot \mathrm{R}_{\mathrm{j}}\right)$ the particle survives with new weight $\mathrm{WCl} \cdot \mathrm{R}_{\mathrm{j}}$; otherwise the particle is killed.

As mentioned earlier, the weight cutoff game was originally envisioned for use with geometry splitting and implicit capture. Consider what can happen without a weight cutoff. Suppose a particle is in the interior of a very large medium and there are no time nor energy cutoffs. The particle will go from collision to collision, losing a fraction of its weight at each collision. Without a weight cutoff, the particle's weight would eventually be too small to be representable in the computer, at which time an error would occur. If there are other loss mechanisms (for example, escape, time cutoff, or energy cutoff), the particle's weight will not decrease indefinitely, but the particle may take an unduly long time to terminate.

Weight cutoff's dependence on the importance ratio can be easily understood if one remembers that the weight cutoff game was originally designed to solve the low-weight problem sometimes produced by implicit capture. In a high-importance region, the weights are low by design, so it makes no sense to play the same weight cutoff game in high- and low-importance regions. In fact, as mentioned in a previous section, if splitting is the only nonanalog technique used, all particles in a given cell have the same weight, so no weight cutoff game would make sense. That is, if the particle weight is too small in a cell, the cell importance simply needs to be decreased. The weight cutoff is meant to indicate when a particle's weight is too low to be worth transporting.

In addition to the weight cutoff's dependence on cell importance, the weight cutoffs are automatically made relative to the minimum source weight if the source is a standard MCNP source and the weight cutoffs (WCl , WC 2) are prefixed by a negative sign.

1. Cautions

a. Many techniques in MCNP cause weight change; the weight cutoff was really designed with geometry splitting and implicit capture in mind. Care should be taken in the use of other techniques.
b. In most cases, if you specify a weight cutoff, you automatically get implicit capture.

2. Notes

a. Weight cutoff games are unlike time and energy cutoffs. In time and energy cutoffs, the random walk is always terminated when the threshold is crossed. Potential bias may result if the particle's importance was not zero. A weight cutoff (weight roulette would be a better name) does not bias the game because the weight is increased for those particles that survive.

Fig. 10. Weight cutoff mechanics.
b. By default, the weight cutoff game is turned off in a weight window cell.

C. Weight Cutoff and Implicit Capture Applied to the Sample Problem

Figure 11 shows the result of adding weight cutoff and implicit capture techniques in addition to the

1. energy cutoff,
2. refined geometry splitting/Russian roulette, and
3. energy roulette techniques.

Comparing Fig. 11 to Fig. 9, one can see that implicit capture and weight cutoff did apparently reduce the tally 1 error for the same number of particles. However, the number of particles run was down by a factor of 2 , resulting in a net decrease in the FOM. In general, if a nonanalog technique does not show a clear improvement, do not use it; thus for the next run, the implicit capture and weight cutoff will be turned off.

Tally 1 seems reasonably well optimized by

1. geometry splitting and roulette,
2. energy cutoff,
3. energy roulette (and splitting), and
4. analog capture.

Tally 4 is bad because very few tracks exit the concrete cylinder (cell 19) in the small solid angle subtended by cell 21 . Tally 5 is even worse, in fact nonexistent, because of the few particles that do reach cell 21 , none collide, so there are no point detector contributions.

Consider improving the worst tally (tally 5) first. Note from the summary charts that the free path in cell 21 is $\sim 1000 \mathrm{~cm}$ and the cell is 10 cm thick. Only a tiny fraction of the particles entering cell 21 will collide in an analog fashion. The forced collision technique in MCNP solves this problem by requiring each track entering a cell to collide.

IX. FORCED COLLISIONS

Forced collision is normally used to sample collisions in optically thin (fractional mean free path) cells where not enough collisions are being sampled. A track entering a forced collision cell is split into two tracks: uncollided and collided. That is, MCNP calculates the expected weight traversing the cell and assigns that weight to the uncollided track, and MCNP calculates the expected weight colliding in the cell and assigns that weight to the collided track (Fig. 12). The uncollided track is put on the cell boundary (the point intersected by the cell boundary and the track direction), and the collided track's collision site is sampled in the usual way except that the collision site must now be sampled from. a conditional probability, the condition being that a collision occurs at a distance $0<\mathrm{x}<\ell$.

A. Comments

1. Although the forced collision technique is normally used to obtain collisions in optically thin cells, it can also be used in optically thick cells to get the uncollided transmission.
2. The weight cutoff game is normally turned off in a forced collision cell (see MCNP Manual for exceptional cases ${ }^{1}$).
3. The forced collision technique decreases the history variance, but the time per history increases.
4. More than one collision can be forced in a cell.
5. ℓ of Fig. 12 is always the distance from the point at which the track is split into its collided and uncollided parts to the boundary. In Fig. 12, the split is done upon entrance to the cell, but the split can occur at an interior point as well (splits at interior

Fig. 12. Forced collision procedure.
points normally occur when more than one collision per entering track is forced).

B. Caution

Because weight cutoffs are turned off in forced collision cells, the number of tracks can get exceedingly large if there are several adjacent forced collision cells.

C. Forced Collisions Applied to the Sample Problem

Recall that the point detector tally (tally 5) was nonexistent because there were no collisions in cell 21 . Figure 13 shows the effects of forcing one collision in cell 21 in addition to energy cutoff, refined geometry splitting/Russian roulette, and energy roulette. Note that 44 tracks entered cell 21 and there were 44 collisions in cell 21. Also note that the point detector tally is now obtaining contributions. Thus, the forced collision has really helped the point detector tally. The trouble now is not the lack of collisions from tracks that enter cell 21, but rather the small number of particles that enter cell 21. Angle biasing in some form is required to preferentially scatter particles into cell 21.

X. DXTRAN

The DXTRAN technique and source angle biasing are currently the only angle-biasing techniques in MCNP. Unlike source angle biasing, DXTRAN biases the scattering directions as well as the source direction.

Before explaining the DXTRAN theory, I will first loosely describe what occurs. A typical problem in which DXTRAN might be employed is much like the sample problem; a small region (for example, cell 21) is being inadequately sampled because particles almost never scatter toward the small region. To ameliorate this situation, the user can specify a DXTRAN sphere (in the input file) that encloses the small region. Upon particle collision (or exiting the source) outside the sphere, the DXTRAN technique creates a special "DXTRAN particle" and deterministically scatters it toward the DXTRAN sphere and deterministically transports it, without collision, to the surface of the DXTRAN sphere (Fig. 14). The collision itself is otherwise treated normally, producing a non-DXTRAN particle that is sampled in the normal way, with no reduction in weight. However, the non-DXTRAN particle is killed if it tries to enter the DXTRAN sphere.

The subtlety about DXTRAN is how the extra weight created for the DXTRAN particles is balanced by the

1. A point on the DXTRAN sphere is sampled.
2. A particle is scattered towards the selected point.
3. The particle's weight is exponentially decreased by the optical path and adjusted for bias in the scattering angle.
4. The original particle is sampled in the normal way (with no reduction in weight).
5. If the original particle tries to enter the DXTRAN sphere, it is terminated.

Fig. 14. DXTRAN concept.
weight killed as non-DXTRAN particles cross the DXTRAN sphere. The non-DXTRAN particle is followed without any weight correction, so if the DXTRAN technique is to be unbiased, the extra weight put on the DXTRAN sphere by DXTRAN particles must somehow (on average) balance the weight of nonDXTRAN particles killed on the sphere.

A. DXTRAN Viewpoint \#1

One can view DXTRAN as a splitting process (much like the forced collision technique) wherein each particle is split upon departing a collision (or source point) into two distinct pieces:

1. the weight that does not enter the DXTRAN sphere on the next flight either because the particle is not pointed toward the DXTRAN sphere or because the particle collides before reaching the DXTRAN sphere, and
2. the weight that enters the DXTRAN sphere on the next flight.
Let w_{0} be the weight of the particle before exiting the collision, let p_{l} be the analog probability that the particle does not enter the DXTRAN sphere on its next flight, and let p_{2} be the analog probability that the particle does enter the DXTRAN sphere on its next flight. The particle must undergo one of these mutually exclusive events, thus $p_{1}+p_{2}=1$. The expected weight not entering the DXTRAN sphere is $w_{1}=w_{o} p_{1}$, and the expected weight entering the DXTRAN sphere is $w_{2}=$ $\mathrm{w}_{\mathrm{o}} \mathrm{p}_{2}$. Think of DXTRAN as deterministically splitting the original particle with weight w_{0} into two particles, a non-DXTRAN (particle 1) particle of weight w_{1} and a DXTRAN (particle 2) particle of weight w_{2}. Unfortunately, things are not quite that simple.

Recall that the non-DXTRAN particle is follwed with unreduced weight w_{0} rather than weight $w_{1}=w_{0} p_{1}$. The reason for this apparent discrepancy is that the nonDXTRAN particle (\#1) plays a Russian roulette game. Particle 1's weight is increased from w_{1} to w_{0} by playing a Russian roulette game with survival probability $\mathrm{p}_{1}=$ w_{1} / w_{0}. The reason for playing this Russian roulette game is simply that p_{1} is not known, so assigning weight $w_{1}=p_{1} w_{0}$ to particle 1 is impossible. However, it is possible to play the Russian roulette game without explicitly knowing p_{1}. It is not magic, just slightly subtle.

The Russian roulette game is played by sampling particle 1 normally and keeping it only if it does not enter (on its next flight) the DXTRAN sphere; that is, particle 1 survives (by definition of p_{1}) with probability p_{1}. Similarly, the Russian roulette game is lost if particle 1 enters (on its next flight) the DXTRAN sphere; that is, particle 1 loses the roulette with probability p_{2}. Now I restate this idea. With probability p_{1}, particle 1 has
weight w_{0} and does not enter the DXTRAN sphere and with probability p_{2}, the particle enters the DXTRAN sphere and is killed. Thus, the expected weight not entering the DXTRAN sphere is $w_{0} p_{1}+0 \cdot p_{2}=w_{1}$, as desired.

So far, this discussion has concentrated on the nonDXTRAN particle and ignored exactly what happens to the DXTRAN particle. The sampling of the DXTRAN particle will be discussed after a second viewpoint on the non-DXTRAN particle.

B. DXTRAN Viewpoint \#2

If you have understood the first viewpoint, you need not read this viewpoint. On the other hand, if the first viewpoint was not clear, perhaps this second one will be.

This second way of viewing DXTRAN does not see it as a splitting process but as an accounting process where weight is both created and destroyed on the surface of the DXTRAN sphere. In this view, DXTRAN estimates the weight that should go to the DXTRAN sphere upon collision and creates this weight on the sphere as DXTRAN particles. If the non-DXTRAN particle does not enter the sphere, its next flight will proceed exactly as it would have without DXTRAN, producing the same tally contributions and so forth. However, if the non-DXTRAN particle's next flight attempts to enter the sphere, the particle must be killed or there would be (on average) twice as much weight crossing the DXTRAN sphere as there should be, the weight crossing the sphere having already been accounted for by the DXTRAN particle.

C. The DXTRAN Particle

Although the DXTRAN particle does not confuse people nearly as much as the non-DXTRAN particle, the DXTRAN particle is nonetheless subtle.

The problem is how to sample the DXTRAN particle's location on the DXTRAN sphere. One cannot afford to calculate a cumulative distribition function to select the scattering direction θ indicated in Fig. 14. [The azimuthal angle is sampled uniformly in $(0,2 \pi)]$. This would essentially involve integrating the scattering probability density at each collision. Instead of sampling the true probability density, one samples an arbitrary density and adjusts the weight appropriately.

As indicated above, a point on the DXTRAN sphere can be selected from any density function because the weight of the DXTRAN particle is modified by
true density to select point p_{s}

[^1]

Fig. 15. Sampling the DXTRAN particle.

This is easy to do because the true scattering density function is immediately available even if its integral is not. MCNP arbitrarily uses the two-step density described below. In fact, the inner DXTRAN sphere has only to do with this arbitrary density and is not essential to the DXTRAN concept.

MCNP samples the inner cone uniformly in ($\eta_{I}, 1$), and the outer cone uniformly in ($\eta_{0}, \eta_{\mathrm{I}}$) (Fig. 15). However, the inner cone is sampled with five times the probability density that the outer is sampled. That is to say the inner cone is taken to be five times as important as the outer cone. Further mathematical details are given in the MCNP manual ${ }^{1}$ and will not be discussed here.

After the scattering angle has been chosen, the DXTRAN particle is deterministically transported to the DXTRAN sphere without collision and with weight attenuated by the exponential of the optical path.

D. Inside the DXTRAN Sphere

So far, only collisions outside the DXTRAN sphere have been discussed. At collisions inside the DXTRAN sphere, the DXTRAN game is not played* because first, the particle is already in the desired region and second, it is impossible to define the angular cone of Fig. 14.

E. Terminology - Real Particle, Pseudoparticle

In X-6 documentation, at least through the April 1981 MCNP Manual, ${ }^{1}$ the DXTRAN particle is called a

[^2]pseudoparticle and the non-DXTRAN particle is called the original or real particle. The terms "real particle" and "pseudoparticle" are potentially misleading. Both particles are equally real; both execute random walks, both carry nonzero weight, and both contribute to tallies. The only stage at which the DXTRAN particle should be considered "psuedo" or "not real" is during creation. A DXTRAN particle is created on the DXTRAN sphere, but creation involves determining what weight the DXTRAN particle should have upon creation. Part of this weight determination requires calculating the optical path between the collision site and the DXTRAN sphere. MCNP determines the optical path by tracking a pseudoparticle from the collision site to the DXTRAN sphere. This pseudoparticle is deterministically tracked to the DXTRAN sphere simply to determine the optical path; no distance to collision is sampled, no tallies are made, and no records of the pseudoparticle's passage are kept (for example, tracks entering). In contrast, once the DXTRAN particle is created at the sphere's surface, the particle is no longer a pseudoparticle; the particle has real weight, executes random walks, and contributes to tallies.

F. Comments

1. DXTRAN spheres have their own weight cutoffs.
2. The DD card (by default) stops extremely lowweighted tracks by roulette. See the manual ${ }^{1}$ for how this is accomplished.
3. Strongly consider producing DXTRAN particles only on some fraction of the number of collisions, as allowed by the DXCPN card.

G. CAVEATS

1. DXTRAN should be used carefully in optically thick problems. Do not rely on DXTRAN to do penetration.
2. If the source is user-supplied, some provision (SRCDX, page 263 of the MCNP manual ${ }^{1}$) must be made for obtaining the source contribution to particles on the DXTRAN sphere.
3. Extreme care must be taken when more than one DXTRAN sphere is in a problem. Cross-talk between spheres can result in extremely low weights and an explosion in particle tracks.
4. A different set of weight cutoffs is used inside the DXTRAN sphere.

H. DXTRAN Applied to the Sample Problem

Recall that there was a problem getting enough particles to scatter in the direction of cell 21 . To solve this
problem, a DXTRAN sphere was specified just large enough to surround cell 21 (Fig. 16). If a larger DXTRAN sphere were used, some DXTRAN particles would miss cell 21 and this would be less efficient. If a smaller DXTRAN sphere were used, it would be possible for a non-DXTRAN particle to enter cell 21 , resulting in an undesirable large weight fluctuation in cell 21 . Note also that the inner and outer DXTRAN spheres are coincident. This choice was made because specifying different spheres would introduce a five-toone weight variation even though all particles entering cell 21 are about equally important.

I. Discussion

Note from Fig. 17 that DXTRAN did have the desired effect; the tracks entering cell 21 have increased dramatically and the FOMs for tallies 4 and 5 have increased by a factor of 7. However, note that the particles-per-minute number has decreased by a factor of 4 ; this is reflected in a factor of 4 decrease in tally 1 's FOM. It would be wonderful if DXTRAN did not slow the problem down so much. Fortunately in some cases,' a little thinking and judicious use (described below) of the DXCPN card can alleviate this speed problem.

Recall the caveat about using DXTRAN carefully in optically thick problems, in particular, not to rely on DXTRAN to do the penetration. Geometry splitting has done well at penetration, so DXTRAN is needed mostly for the angle bias, as is desirable. However, at every collision, regardless of how many mean free paths the

Fig. 16. DXTRAN sphere. The inner and outer spheres are identical because specifying different spheres would just create weight fluctuation.
collision is from cell 21, a DXTRAN particle is produced. DXTRAN particles that are many free paths from the DXTRAN sphere will have their weights exponentially decreased by the optical path so that their weights are negligible by the time they are put on the DXTRAN sphere. MCNP automatically (unless turned off on the DD card) plays Russian roulette on the DXTRAN particles as their weight falls exponentially, because of transport, below some fraction of the average weight (on the DXTRAN sphere). This provides the user some protection against spending a lot of time following DXTRAN particles of inconsequential weight. However, there is a better solution for the sample problem.

Although the DD card will play roulette on DXTRAN particles as they are transported through media to the DXTRAN sphere, it still takes time to produce and follow the DXTRAN particles until they can be rouletted. It is much better not to produce so many DXTRAN particles in the first place. MCNP allows the user (on the DXCPN card) to specify, by cell, what fraction of the collisions will result in DXTRAN particles. Everything is treated the same except that if p is the probability of creating a DXTRAN particle, then when a DXTRAN particle is created, its weight is multiplied by p^{-1}, thus making the game unbiased. The destruction game is unaffected; regardless of whether the sampling produced a DXTRAN particle, the nonDXTRAN particle is killed if it tries to enter the DXTRAN sphere.

As usual, this new capability requires even more input parameters; that is, the entries on the DXCPN card. Before despairing unduly, note that the entries on the DXCPN card are not highly critical, and the user has already gained a lot of useful information in the geometry-splitting optimization.

Table I shows the DXCPN probabilities that I chose for the sample problem. Note three things from this table.

1. Near the top of the concrete cylinder (cells 18 and 19) every collision creates a DXTRAN particle ($\mathrm{p}=1$).
2. As the cells get progressively farther (cells 12-17) from the DXTRAN sphere, p gets progressively smaller by roughly a factor of 2 , chosen because the importance from cell to cell decreases by factors of about 2.
3. Not much thought was spent selecting p's for cells 2-11 because these cells contribute almost no weight to the DXTRAN sphere. Thus within reason, almost any values can be selected if they are small enough that not much time is spent following DXTRAN particles in cells 2-11. Note that even $p=0.001$ will not totally preclude creating DXTRAN particles because there are

2000-3000 collisions in each of cells $2-5$, where $p=$ 0.001 .

Before examining what happened when the DXCPN card was used, I would like to digress and use item 3 above as a specific example of a general principle. When biasing against random walks of presumed. low importance, always make sure that at least a few of these random walks are followed so that if the presumption is wrong, the statistics will so indicate by bouncing around. As an example, I fully believe that $\mathrm{p}=10^{-6}$ would be appropriate in cell 2 , but I chose $p=10^{-3}$. Had I chosen $\mathrm{p}=10^{-6}$, probably no DXTRAN particles would be produced from collisions in cell 2. Thus if these DXTRAN particles turn out to be a lot more important than anticipated, the tally may be missing a substantial contribution with no statistical indication that something is amiss. By choosing $\mathrm{p}=0.001$ in cells 2-5, I cause the MCNP to produce approximately ten DXTRAN particles by the 10,000 or so collisions in cells 2-5 (see Fig. 17). Following 10 DXTRAN particles is a very small time price to pay to be sure that they are not important. If the problem were to be run long enough that there would be 10^{7} collisions in cell 2 , then I would not hesitate to use $\mathrm{p}=10^{-6}$ because some DXTRAN particles would be produced.

J. Results of Using DXTRAN with the DXCPN card

The result of adding the DXCPN card is shown in Fig. 18. Note that all FOMs improved by better than a factor of 2 . The histories per minute increased from 1560 to 4395 when the DXCPN card was added, but 4395 is still slower than the 6858 without DXTRAN. The FOM for tally 1 , although almost three times as good as that without the DXCPN card, is nonetheless still less than the no DXTRAN FOM of 45 . This is an example of the general rule:

Increasing sampling in one region in general is at the expense of another region.
In the sample problem, we have decided to increase the sampling of cell 21 at the expense of cells 2-19. Overall, however, DXTRAN has clearly improved the calculation.

XI. TALLY CHOICE, POINT DETECTOR VERSUS RING DETECTOR

Recall from the introductory section on variance reduction that the FOM is affected by the tally choice as well as by the random walk sampling. So far, I have tinkered only with the random walk sampling; now, suppose I tinker with the tally.

Consider tally 5 , the point detector tally. Note that the sample problem is symmetric about the y-axis, so a ring

CONCLUSION: DXTRAN TECHNIQUE SUCCESSFUL FOR TALLY 4 AND TALLY 5 BUT TOO SLOW.

Fig. 17. DXTRAN sphere at about cell 21.

N

CELL		TRACKS ENTERING	POPULATION		COLLISIONS		NUMBER WEIGHTED ENERGY	FLUX WE IGHTED ENERGY	average TRACK WEIGHT （RELATIVE）	AVERAGE TRACK MFP （CM）	
2	2	11938	11744		13796	1．9875E＋00	1．9553E＋00	$5.8909 \mathrm{E}+00$	$1.3213 E+00$	6.8	E＋00
3	3	5292	4918		11952	$1.0727 \mathrm{E}+00$ 1．	1．1897E＋00	$4.0414 \mathrm{E}+00$	$1.6629 \mathrm{E}+00$	5.9	E +00
4	4	5010	4651		11384	5．7591E－01 8．	．6965E－01	$3.3229 E+00$	$1.9476 \mathrm{E}+00$	5.6	E＋ 00
5	5	4827	4469		10847	2．7700E－01 7.	7．9325E－01	$3.0387 \mathrm{E}+00$	$2.0971 \mathrm{E}+00$	5.5	E＋00
6	6	4414	4073		9805	1．2674E－01 7.	$7.8981 E-01$	$2.9908 \mathrm{E}+00$	2．1426E +00	5.6	E＋00
7	7	4177	3816		9507	6．2377E－02 7.	7．9364E－01	$2.8062 \mathrm{E}+00$	$2.2181 \mathrm{E}+00$	5.5	E＋00
8	8	4114	3780		9500	3．2883E－02 7.	7．5226E－01	$2.5813 \mathrm{E}+00$	$2.3164 \mathrm{E}+00$	5.4	E＋ 00
9	9	4114	3803		9158	1．5241E－02 7.	．2149E－01	$2.5273 \mathrm{E}+00$	$2.3520 E+00$	5.4	E＋ 00
10	10	4105	3833		9297	7．4165E－03 7.	．0749E－01	$2.4918 \mathrm{E}+00$	$2.3750 \mathrm{E}+00$	5.4	E +00
11	11	4112	3803		9202	3．2429E－03 7.	7．5649E－01	$2.4433 \mathrm{E}+00$	$2.3664 E+00$	5.4	E +00
12	12	4293	3948		9827	$1.7202 \mathrm{E}-036$.	．9620E－01	$2.3424 \mathrm{E}+00$	$2.4325 E+00$	5.3	E +00
13	13	4384	4040		9759	8．0545E－04 6．	． $5721 \mathrm{E}-01$	$2.2911 E+00$	$2.4785 \mathrm{E}+00$	5.3	E +00
14	14	4337	4017		9621	3．6893E－04 6.	．6088E－01	$2.2587 \mathrm{E}+00$	$2.4924 \mathrm{E}+00$	5.3	E＋OO
15	15	4312	3977		9935	1．7810E－04 6.	．6189E－01	2．1957E＋00	$2.5004 \mathrm{E}+00$	5.3	E＋00
16	16	4365	4059		10039	$7.9894 \mathrm{E}-057$.	．0947E－01	$2.1324 E+00$	$2.5102 \mathrm{E}+00$	5.3	E +00
17	17	4274	3982		9862	3．6959E－05 6.	．3603E－01	$2.0865 \mathrm{E}+00$	$2.5629 E+00$	5.2	E＋00
18	18	4248	3935		9946	$1.6748 \mathrm{E}-056$.	．6484E－01	$2.0783 \mathrm{E}+00$	$2.5527 \mathrm{E}+00$	5.3	E +00
19	19	3867	3749		8538	6．2137E－06 7.	．0403E－01	$2.2236 \mathrm{E}+00$	$2.4620 E+00$	5.4	E＋00
20	20	4927	18224		0	0.1	． $2396 \mathrm{E}+00$	$3.2943 \mathrm{E}+00$	$7.9810 \mathrm{E}-01$	1.0	＋123
21	21	15223	30451		15598	6．5663E－11 1.7	1．7785E＋00	$4.1554 \mathrm{E}+00$	9．1074E－04	7.	E＋O2
22	22	1283	1283		0	0． 7 ．	．0419E－01	$2.7866 \mathrm{E}+00$	3．6840E－05	1.	$+123$
TOTAL		107616	130555		197573	4．1643E＋00		SUBSTANTIALLY IMPROVED			
			TALLY 1			TALLY 4		F	TALLY 5		$\stackrel{7}{7}$
			MEAN		R FOM	MEAN	ERROR	FOM	MEAN	ERROR	FOM
		1000	9．91356E－07 ．	$.3667$	727	1．50695E－13	$3 . .3251$	34	1．06148E－16．	$.3673$	27
		2000	6．41539E－07 ．	． 2949	926	$1.06818 \mathrm{E}-13$	3.2461	38	6．85473E－17 ．	． 2928	27
		3000	5．70257E－07 ．	． 2393	327	1．02834E－13	3.1982	40	6．49562E－17 ．	． 2387	27
		4000	$6.76150 \mathrm{E}-\mathrm{O7}$ ．	． 1863	$3 \quad 32$	1．11525E－13	3.1622	43	6．79132E－17．	． 1910	31
		5000	6．76891E－07 ．	． 1679	932	1．13338E－13	3.1465	42	6．89970E－17．	． 1686	31
		6000	6．73265E－07 ．	． 1516	632	1． $14934 \mathrm{E}-13$	3．1312	43	6．74936E－17 ．	． 1510	33
		7000	6．89040E－07 ．	． 1378	834	1．14298E－13	3.1198	45	6．74760E－17．	． 1359	34
		8000	6．86656E－07 ．	． 1262	235	1．17711E－13	3.1095	46	$6.87251 \mathrm{E}-17$ ．	． 1245	36
		9000	7．04305E－07 ．	． 1167	736	1．18117E－13	3 ． 1023	47	6．97952E－17 ．	． 1161	36
		10000	7．25099E－07 ．	． 1093	36	1．22116E－13	3.0990	44	$7.09365 \mathrm{E}-17$ ．	． 1114	35
		11000	$7.00085 \mathrm{E}-07$ ．	． 1046	636	1．18453E－13	3.0948	45	6．88873E－17 ．	． 1060	36
		11427	7．32339E－07 ．	． 1049	934	1．22412E－13	3.0946	42	7．21438E－17 ．	． 1049	34
				亦木末示	**********			$15 \text { LAST TIM }$			
DUMP NO． 2 ON FILE RUNTPH					NPS	$=11427$	CTM $=$	2.60 PART／MIN＝ 4395			
								NO DXTRAN $=6858$			
IMRPROVED OVER DXTRAN W／O DXCPN＝ 12								DXTRAN			
LESS THAN NO DXTRAN $=45$											
＂INCREASING SAMPLING IN ONE REGION GENERALLY											
IS AT THE EXPENSE OF ANOTHER REGION ${ }^{\text {＂}}$											

Fig．18．DXTRAN with DXCPN card．

[^0]: **Video reel \#11, "Relative Errors, Figure of Merit" from MCNP Workshop, Los Alamos National Laboratory, October 4-7, 1983. Available from Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

[^1]: density sampled to select p_{s}

[^2]: *If there are several DXTRAN spheres and the collision occurs in sphere i, then DXTRAN will be played for all spheres except sphere i.

