Basin scale map of HMT-West program area. Area of HMT-West 2005-2006

Winter Storms on West Coast Provide a Flood of Data for NOAA Scientists

NOAA researchers are taking advantage of the soggy start of 2006 on the U.S. West Coast to better understand, predict and prepare for a series of intense precipitation events. A field study that began in December and will continue until March is designed to provide some long-term, as well as short-term, results to improve the predictability of floods to better protect the public from losses of life and property while minimizing economic risks associated with water management.

"Our need to improve the predictability of floods dictates that we have a responsive and adaptable research program," said Richard W. Spinrad, NOAA assistant administrator for oceanic and atmospheric research. "NOAA and university scientists demonstrated how to obtain critical data under some of the most extreme environmental conditions."

"Our need to improve the predictability of floods dictates that we have a responsive and adaptable research program. NOAA and university scientists demonstrated how to obtain critical data under some of the most extreme environmental conditions."

- Richard W. Spinrad, NOAA Assistant Administrator for Oceanic and Atmospheric Research

The study, Hydrometeorological Testbed-West (HMT-West), targets California's flood-vulnerable American River Basin, or ARB, near Sacramento, which is considered a high risk for a flood catastrophe. NOAA has been engaged in research aimed at better forecasts of land-falling winter storms on the West Coast for a number of years, and improving the nation's coastal observing system. Recently, these efforts have focused on water management issues on the American River and other coastal watersheds. A pilot program was conducted two years ago on the nearby Russian River.

"Severe flooding on the West Coast requires the right sequence of storms," said William Neff, director of the NOAA Earth System Research Laboratory's Physical Sciences Division in Boulder, Colo. "Typically, early storms saturate the soil. Later storms fill the reservoirs. If the storms continue, then the stage is set for potential flooding and decisions must be made about draining the reservoirs."

Neff noted that better forecasts of rainfall and runoff will help decision makers balance the need to protect life and property against the requirement to retain water for the dry summer months.

This winter, precipitation totals in the ARB from November 28, 2005, through January 8, 2006, have already exceeded 42 inches of liquid. Most of this precipitation fell in December 2005, which was more than three times wetter than the climatological average for December.

The early-season storms that produced this precipitation have caused flooding on nearby watersheds, such as the Russian River, Napa River and Sacramento River in California, and the Truckee River in Nevada. Also, a debris flow occurred on the edge of the ARB that closed Interstate 80 between Reno and Sacramento. Serious flooding caused by runoff from the ARB was avoided because reservoir operators were very proactive, based on forecasts issued by the NOAA National Weather Service. They began releasing water prior to the strong late December storms and continued to do so for more than a week. In addition, all of the Sacramento area flood control bypass weirs were opened to handle the immense runoff, thus creating temporary lakes over much of the agricultural land around Sacramento.

"There are two parts of this study," said Neff. "We want help NOAA's Office of Hydrologic Development test and improve their streamflow models as well as make better predictions of where, when and how much rain will fall."

The Hydrometeorological Testbest (HMT) is designed to accelerate the testing and infusion of new technologies, models and scientific results from the research community into daily forecasting operations of the NOAA National Weather Service, including the NOAA National Centers for Environmental Prediction, weather forecasting offices and river forecasting offices.

"A half an inch or an inch of rain really doesn't mean anything to the average person," explained Pedro Restrepo, senior scientist with the NOAA Office of Hydrologic Development at the NOAA National Weather Service. "But I can put that half inch or inch into a computer and it can tell me if an area is going to flood or not, depending on a number of factors, such as how that rain is distributed over space and time, the characteristics of the area and previous precipitation."

One NOAA meteorologist, who knew that some wet weather was on the way, was able to use data from the project for his forecasts.

"The NOAA National Centers for Environmental Prediction guidance was forecasting 10 to 20 inches of rain over Northern California in a five-day period," said David Reynolds, the meteorologist in charge of the NOAA National Weather Service Monterey Weather forecast office. "In addition, daily conference calls for the HMT-West experiment in the American River Basin allowed several of the impacted NWS forecast offices to discuss this situation daily."

An array of technology is employed, including wind profilers, transportable and mobile scanning precipitation radars, precipitation profiling radars, Global Positioning System sensors to measure precipitable water vapor, precipitation gauges, raindrop disdrometers to measure number and size of raindrops, surface meteorological stations, soil moisture/temperature probes, radiosonde balloon releases and stream level loggers that automatically measure the depth of streamflow at key points. Most of the HMT-West instruments operate unattended around the clock.

The data and other information can be found at the project Web site.

"The data we collect with these instruments are very important because much of the precipitation forms below the coverage of the NEXRAD radars, and the existing NEXRAD radar techniques are not able to accurately estimate rainfall," said Marty Ralph, program manager for the NOAA Weather and Water/Science, Technology and Infusion Program. Through HMT, NOAA is exploring how best to fill gaps in our ability to monitor and predict precipitation. New radar techniques, known as "polarimetric" hold great promise, and are being tested through deployment of a prototype polarimetric scanning radar by the ESRL-PSD. Another key technology being tested, known as wind profilers, focuses on measuring winds, precipitation and the snow level aloft-variables that are otherwise difficult to measure continuously.

These profilers, along with the NOAA National Severe Storms Laboratory's scanning Doppler radar and other PSD radars, are useful because they can fill critical information gaps where coastal mountains block NEXRAD coverage. These instruments from the research community also monitor the atmosphere with greater temporal and/or spatial resolution than is generally available from existing NOAA operational platforms. Also, in mountainous terrain, the snow level is a critical variable to measure because a higher snow level can lead to increased runoff whereas a lower snow level results in greater storage of water for the following summer.

The data collection also is aimed at improving the understanding of the physical processes that cause the precipitation, and then to evaluate numerical weather prediction models in terms of their ability to represent these processes. A key phenomenon being explored is the landfall of narrow regions of very strong low-altitude winds and large water vapor contents, known as "atmospheric rivers." As pointed out by Ralph, "Although these regions are just a couple of hundred kilometers wide, they can have winds of hurricane force and are responsible for most of the water vapor transport that ultimately strikes the coast and Sierras. Better understanding of these features is critical to improving prediction of precipitation in storms like those that have struck California and Nevada last month. "

Although [atmospheric rivers] are just a couple of hundred kilometers wide, they can have winds of hurricane force and are responsible for most of the water vapor transport that ultimately strikes the coast and Sierras.

-Marty Ralph, program manager for the NOAA Weather and Water/Science, Technology and Infusion Program

Several high-resolution weather prediction models are being run by ESRL's Global Systems Division to supplement the operational model guidance already available to the NOAA National Weather Service.

"When the storms occur plays a major role, as well," Neff said. "If they come one right after another and the soil is already saturated and the streams and reservoirs are filled to capacity, then additional precipitation makes conditions right for flooding."

NOAA scientists also are using the winter storms to test wind profiling technology to improve coastal wind observations. Funding from the Integrated Ocean Observing System is allowing NOAA researchers to test two types of state-of-the art wind profiling technology to determine which technology is better suited to coastal meteorology problems. This evaluation began last September and will run through September 2006.

IOOS is a critical component of the Ocean Action Plan, designed to improve the observation and understanding of the world's oceans. Information from this system will serve national needs for detecting and forecasting oceanic components of climate variability, facilitating safe and efficient marine operations, ensuring national security, managing resources for sustainable use, preserving and restoring healthy marine ecosystems, mitigating natural hazards and ensuring public health.

"We chose Bodega Bay because it is well situated to look at coastal phenomena. We have several years of experience with the site and its owner, the University of California's Bodega Bay Marine Laboratory, and we have a good working relationship with the local weather forecast office in San Francisco/Monterey, from where we collect feedback on the usage of profiler data in daily forecast operations, said Allen White, research associate at the NOAA Cooperative Institute for Research in Environmental Sciences, or CIRES, in Boulder, Colo. "The evaluation data we receive from the forecast offices is automatically logged on the Web."

Those instruments also played a recent role in operations.

"As the storms evolved, other new instruments were very useful in monitoring where the core of the high moisture axis was and where the heaviest rain might fall. This includes the wind profilers operated at Bodega Bay by the ESRL-PSD and the output from GPS moisture sensors that can be viewed on the HMT Web site," said Reynolds.

The two types of profilers being tested are:

  • Portable 915-MHz wind profilers that have been used in coastal research for more than a decade. These profilers are the least expensive to produce and provide the highest resolution wind and temperature profile measurements in the atmospheric boundary layer. Their vertical coverage above the boundary layer is limited.
  • The 1/4-scale 449-MHz profiler that was recently developed by the NOAA Environmental Technology Laboratory (now part of the Earth System Research Laboratory) for the U.S. Air Force. The 1/4-scale refers to the size of the antenna as compared to the antenna used in the 404-MHz profilers deployed mainly in the central U.S. as part of the NOAA Profiler Network, or NPN. The 1/4-scale systems provide deeper coverage than the 915-MHz profilers.

"One of the questions to answer in the evaluation is how much deeper coverage is obtainable with the newer 1/4-scale 449-MHz technology," said White. "Another important question to answer is how low and with what vertical resolution the 1/4-scale systems can observe the lower altitudes, since most of the important processes in the marine atmosphere often occur in the lowest few hundred meters."

The Bodega Bay site is ideally suited for the evaluation because it experiences a wide range of weather conditions characteristic of the coastal zone, varying from shallow fog layers to intense land-falling winter storms, and because a uniquely detailed understanding of the local meteorological conditions has emerged from several years of NOAA research focused on coastal meteorology in the area.

HMT-West 2006 and IOOS activities are being coordinated with several NOAA National Weather Service partners such as NOAA's Hydrometeorological Prediction Center, the Office of Hydrology, the California/Nevada River Forecast Center, Western Region Headquarters and several weather forecast offices in the region (Sacramento, Reno, Monterey, Oxnard). A daily conference call involving the NWS partners, as well as ESRL and National Severe Storms Laboratory staff, is conducted to discuss status and forecast issues associated with the projects.

NOAA, an agency of the U.S. Department of Commerce, is dedicated to enhancing economic security and national safety through the prediction and research of weather and climate-related events and providing environmental stewardship of the nation's coastal and marine resources.

Through the emerging Global Earth Observation System of Systems (GEOSS), NOAA is working with its federal partners and nearly 60 countries to develop a global monitoring network that is as integrated as the planet it observes.

More Information

Media Contact

Jana Goldman, NOAA Research, (301) 713-2483 ext. 181