

Health and Welfare Impacts of Aviation Emissions

- Evaluating Choices -

Professor Ian A. Waitz (iaw@mit.edu) Massachusetts Institute of Technology

ICAO Colloquium on Aviation Emissions with Exhibition

The work we present here is preliminary and should not be used for guiding policy. We expect the results will change as we continue to develop and improve our methods.

ICAO Colloquium on Aviation Emissions with Exhibition

Choices exist

- Every airplane design represents a different balance of noise, performance, emissions
- Every operational procedure represents a different balance of noise, performance, emissions
- > Capital costs are high (e.g. \$10B for a new airplane program)
- Time-scales are long (20-30 years)

ICAO Colloquium on Aviation Emissions with Exhibition

Source: FESG CAEP/6-IP/13; estimates shown assume high level of manufacturers' NRC and lost fleet value, discount rate 3%

ICAO Colloquium on Aviation Emissions with Exhibition

An incomplete balance sheet

- > CAEP/6 NOx stringency example
 - Of several options for NOx reduction, the least expensive is \$30,000/tonne-NOx; does this produce a net benefit to society?
 - What is the impact of the additional fuel burn and noise estimated to be associated with the NOx reduction?
- > Must fill in the balance sheet to assess trade-offs
 - Local air quality, noise, climate change, consumer and industry costs
- > The stakes are high (serious impacts, billions of \$)
 - We, as a community, need to improve our methods and tools and do this better than we do it today

New FAA tools to guide decision-making

Global, Regional, Airport-local

ICAO Colloquium on Aviation Emissions with Exhibition

Notional example application Described in CAEP/7-SG/20063-WP/30

ICAO Colloquium on Aviation Emissions with Exhibition

Notional example application

Even simple changes may lead to complex trade-offs, for example...

•One aspect of airplane operations changed

- •Throttle setting reduced during take-off
- •Emissions and noise change
 - •CO₂ increases
 - •NO_x decreases
 - •SO_x increases
 - •PM decreases
 - Noise decreases
- Affects aviation economics

Noise impact (number of people impacted)

ICAO Colloquium on Aviation Emissions with Exhibition

Noise impact

Noise Depreciation Index (NDI) used to correlate noise levels with housing capital depreciation

Adding additional noise metrics:

- sleep awakenings
- % highly annoyed
- location of schools

ICAO Colloquium on Aviation Emissions with Exhibition

Health impacts assessment

Consistent with US EPA and EU practice, considering effects of ozone and particulate matter (PM)

ICAO Colloquium on Aviation Emissions with Exhibition

Local air quality and climate response cannot be determined directly from observing changes in inventories

ICAO Colloquium on Aviation Emissions with Exhibition

- APMT analysis for U.S. aviation health impacts, AEDT 2005 inventory estimate, FOA3 PM method, Greco et al. [2007] Mobile Source Intake Fraction method
- This graphical equation is a simplification of the more complicated analysis that we perform

Preliminary Results Only--Do not cite

ICAO Colloquium on Aviation Emissions with Exhibition

Health and welfare impacts of US Aviation PM

PM-related Endpoints (mean estimates shown, 95% confidence intervals typically ± 50% of mean)	Cases per year
Premature mortality:	
Long-term exposure (adults age 30+)	319
Long-term exposure (infants age <1yr)	2
Chronic bronchitis	129
Hospital admissions-respiratory	93
Hospital admission-cardiovascular	93
Emergency room visits for asthma	219
Minor restricted activity days	124505

Preliminary Results Only--Do not cite

ICAO Colloquium on Aviation Emissions with Exhibition

US Aviation PM premature mortality in context

Preliminary Results Only--Do not cite

Highway vehicles PM = 26,500/year

Aviation PM = 320/year

US Total= 100,000-300,000/year?* 22/year Average U.S. Airline passenger fatalities 2002-2006 (Part 121)

http://www.ntsb.gov/aviation/Table5.htm

*We do not have a good estimate for the total premature deaths per year in the United States due to local air quality. Scaling the per capita numbers derived from EU analyses would suggest something on the order of 240,000 premature deaths/year; using the mobile source intake fraction methods that we have applied for aviation and highway vehicles would suggest something on the order of 350,000 premature deaths per year.

ICAO Colloquium on Aviation Emissions with Exhibition

EU 25 Air Quality, All sources, Yearly Premature Deaths*

From ozone - 5.8%

From PM (infants) - 0.2%

Total = 370,000 premature deaths per year – From PM (adults) - 94%

EU25 Population ~ 460,000,000

*Data from EU CAFE Program: http://ec.europa.eu/environment/air/cafe/general/keydocs.htm

ICAO Colloquium on Aviation Emissions with Exhibition

Climate impacts equally complex

Average global surface ΔT for one year of aviation emissions

ICAO Colloquium on Aviation Emissions with Exhibition

Climate cost sensitivity

100 year aviation scenarios (impacts to 800 years)

Climate cost sensitivity

100 year aviation scenarios (impacts to 800 years)

Interdependencies

(for one particular set of scenarios and assumptions)

Summary

FAA has made a commitment to use these tools

- to inform their decision-making for the ICAO/CAEP meeting in 2010
- to help establish trades among noise, local air quality and climate impacts to better quantify and manage the impacts associated with US NextGen

> We are still developing and improving these methods

- they are not accepted for CAEP decision-making

Our purpose

- is not to provide "one answer" or a single "best estimate"
- but to provide a framework that may be used to communicate potential outcomes and uncertainties using a variety of metrics, under a variety of assumptions and scenarios

These tools will not make decision-making easier (they may well make it harder)

However, our goal is to make decisionmaking better informed (not to make it easier)