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Introductions

This work was funded by the U.S. Federal Aviation Administration
Office of Environment and Energy, 

under the FAA/Volpe General Working Agreement 
and Contract Numbers: DTFAAC-05-D-00075, DTFAWA-05-C-00044, 

NNL05AA04Z, for ATAC, CSSI and Wyle, respectively.  
The AEDT effort is co-managed by Lourdes Maurice and Gregg Fleming.
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Introduction to AEDT
 Aviation Environmental Design Tool

 Primary objective: Develop a system for assessing aviation noise and 
emissions interdependencies

 Accomplished by building on and integrating proven tools

operations
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Overview of the NOx Demonstration Analysis

 First demonstration of AEDT
 Supported International Civil Aviation Organization (ICAO) 

Committee on Aviation Environmental Protection (CAEP)
 The 35th Session of the ICAO Assembly (A35) established 6 

Strategic Objectives to “achieve its vision of safe, secure and 
sustainable development of civil aviation through cooperation 
amongst its member States”

 Strategic Objective C, Environmental Protection 
 Minimize the adverse effect of global civil aviation on the environment, 

will be attained, in part, by developing, adopting, and promoting new or 
amended measures to:

• limit or reduce the number of people affected by significant aircraft noise
• limit or reduce the impact of aviation emissions on local air quality; and
• limit or reduce the impact of aviation greenhouse gas emissions on the global 

climate



6

Overview of the NOx Demonstration Analysis (cont.)

 Demonstrate the ability to model the effects of imposing an 
emissions stringency on aircraft
 Stringency = required % emissions reduction vs. previous standard for 

new deliveries

 Demonstrate progress toward developing a suite of tools to 
assess noise and emissions interdependencies
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Overview of the NOx Demonstration Analysis (concl.)

 Three modeling rounds:
 Round 1 – One month of data using Emissions and 

Dispersion Modeling System (EDMS) and System for 
assessing Aviation’s Global Emissions (SAGE)

 Round 2 – Full year of data using EDMS and SAGE
 Round 3 – Full year of data using emissions, fuel burn, 

performance and delay modules that are common to AEDT

 Emissions inventory for the global fleet
• NOx, CO2, H2O
• 2002, 2006, 2008, 2012, 2016, 2020
• 5 – 30% NOx stringencies implemented in 2008, 2012
• 3,000 feet and below, 10,000 feet and below, total flight
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How was it Done

 Derived schedule of operations

 Developed replacements database

 Compiled an airport database

 New software to
 Model delays

 Model aircraft performance

 Model aircraft emissions

 Generate reports
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Aircraft Operations

 Modified Model for Assessing Global Exposure to the Noise of 
Transport Aircraft (MAGENTA) forecasting module to support:
 Use of FAA’s Enhanced Traffic Management System (ETMS) and 

International Official Airline Guide (IOAG) schedule data

 Application of the ICAO/CAEP Forecasting and Economic Sub Group 
(FESG) forecast to grow the schedule

 Most current FESG forecast (2002) used
 Provided number of operations by seat class, region, and broad market 

pair

 Resulted in a schedule of operations

 Origin and Destination airport information preserved

 Takeoff weight estimated based on trip length
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Aircraft Operations (concl.)

 Commercially available registration database (Campbell-Hill) 
data used to determine distribution of airframe/engine 
combinations based on generic ETMS/IOAG types
 Example:  American Airlines B752 = 

11% B757-200 with PW2037 engines
2%   B757-200 with PW2040 engines
87% B757-200 with RB211-535E4-B engines

 Aircraft/engine combinations used for calculating emissions and 
aircraft performance

 Since ETMS data were used
 Unscheduled flights were included
 Fleet mix reflected smaller aircraft, not just the commercial jets included 

in registration databases (BACK or Campbell-Hill)

 Resulted in a comprehensive global operations database
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Replacements Database
 For future scenarios, aircraft age from Campbell-Hill was used 

to retire older aircraft and apply a replacements database
 ICAO/CAEP does not currently produce a replacements 

database for emissions, so one was developed
 Based on FESG best practice replacement database “Jet-9”, which was 

designed for modeling fleet changes due to noise standards
 Added ICAO/CAEP “Production” Technology Level (TL) information 

(for emissions)
• 1 – A minor change which does not require a complete engine 

recertification
• 2 – A major change with a scaled proven technology
• 3 – Substitution with other available certified current technology 

engine
• 4 – Development of a new current technology engine
• 5A – New technology using current industry best practice
• 5B – New technology (beyond current best)

 TL3 and TL4 not included in study due to a lack of economic incentive 
for the engine manufacturer
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Aircraft Performance
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Emissions Calculations

 Aircraft performance module output thrust level and fuel 
consumption for each flight segment
 This enabled modeling CO2 and H2O which are directly proportional to 

fuel consumption

 Boeing Fuel Flow Method 2 was used to obtain thrust-specific 
emission indices

 TL5B fuel burn penalty modeled
 Since fuel flow was computed, it was possible to model a 2% fuel burn 

penalty for TL5B engines
• Introduced to account for uncertainty associated with new technologies

 All emissions were applied to origin airport (and its ICAO 
Region) per United Nations Framework Convention on Climate 
Change (UNFCCC)
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Other Enhancements

 WWLMINET was expanded upon to estimate airport level 
queuing
 Used when airport capacity information was available
 26-minute ICAO default idle time used elsewhere

 A comprehensive airport database was developed with 32,000+ 
airports worldwide
 Supports performance and queuing modules
 Emissions at 6,400 airports calculated

 A reporting module was developed to automate the report 
generation process
 Accepts emissions results from SAGE and aggregates them with results 

from EDMS
 Output is HTML that can be copied into Excel for plotting results
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Important Notes

 The next slides show sample results from AEDT

 This activity was a demonstration of the capabilities of AEDT 
and not a comprehensive policy analysis
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Sample Results:
Number of LTOs by Seat Class

42,890,718 38,630,984 34,492,280 30,397,705 28,347,056 26,316,473 Total

6,082,047 4,605,716 3,613,505 2,871,883 2,540,231 2,173,776 211 – 650

19,325,300 18,241,168 16,636,700 14,741,056 13,734,367 12,753,038 100 – 210

17,483,371 15,784,100 14,242,075 12,784,766 12,072,458 11,389,659 20 – 99

202020162012200820062002Seat Class

Note: These results reflect assumptions that are specific to this analysis.  Changes to these assumptions will affect the results.

14%12%10%9%9%8%211 – 650

45%47%48%48%48%48%100 – 210

41%41%41%42%43%43%20 – 99

202020162012200820062002Seat Class

Note small percentage of large aircraft
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Sample Results:
Baseline NOx emissions by altitude and entire flight

3,649,7133,208,9782,741,3572,294,2012,082,2581,885,221Total

2,176,6681,875,9451,571,2321,288,8861,156,2721,029,453211 – 650

1,272,0871,167,6271,035,410899,067833,527775,516100 – 210

200,957165,407134,715106,24892,45980,25220 – 99

Entire Flight

575,687488,148409,243338,783305,879273,528Total

234,966184,845148,478120,573108,09495,275211 – 650

256,061235,619207,721178,691164,814151,244100 – 210

84,65967,68353,04439,51932,97127,00920 – 99

Terminal Area: Below 10,000 feet (3048m) AFE

328,933279,364234,695194,839176,201157,750Total

135,730107,07486,26270,31163,16855,810211 – 650

147,128135,531119,683103,16995,25487,415100 – 210

46,07536,76028,75021,35917,77914,52620 – 99

LTO Cycle: Below 3,000 feet (914.4m) AFE

Metric TonsMetric TonsMetric TonsMetric TonsMetric TonsMetric Tons

202020162012200820062002
Seat Class

Note: These results reflect assumptions that are specific to this analysis.  Changes to these assumptions will affect the results.

Presented to show the order of magnitude of the global emissions
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100%100%100%100%100%100%Total

60%58%57%56%56%55%211 – 650

35%36%38%39%40%41%100 – 210

6%5%5%5%4%4%20 – 99

Entire Flight

16%15%15%15%15%15%Total

6%6%5%5%5%5%211 – 650

7%7%8%8%8%8%100 – 210

2%2%2%2%2%1%20 – 99

Terminal Area: Below 10,000 feet (3048m) AFE

9%9%9%8%8%8%Total

4%3%3%3%3%3%211 – 650

4%4%4%4%5%5%100 – 210

1%1%1%1%1%1%20 – 99

LTO Cycle: Below 3,000 feet (914.4m) AFE

Metric TonsMetric TonsMetric TonsMetric TonsMetric TonsMetric Tons

202020162012200820062002
Seat Class

100 – 210 seat class dominant below 10,000 feet

211 – 650 seat class dominant over entire flight  

Sample Results:
Baseline NOx emissions by altitude and entire flight

Note: These results reflect assumptions that are specific to this analysis.  Changes to these assumptions will affect the results.

Policy decisions warrant investigation of 
NOx per passenger-mile or other 
normalization techniques

However, this is only a demonstration of 
modeling capabilities, not a complete policy 
analysis
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Sample Results:
Effects of stringency implementation ranked by 

amount of total NOx reduction

-5% in 2012-5% in 2012-5% in 2012Lowest

-5% in 2008-5% in 2008-5% in 200811th

-10% in 2012-10% in 2012-10% in 201210th

-15% in 2012-15% in 2012-15% in 20129th

-20% in 2012-20% in 2012-10% in 20088th

-10% in 2008-10% in 2008-20% in 20127th

-25% in 2012-25% in 2012-25% in 20126th

-30% in 2012-30% in 2012-15% in 20085th

-15% in 2008-15% in 2008-30% in 20124th

-20% in 2008-20% in 2008-20% in 20083rd

-25% in 2008-25% in 2008-25% in 20082nd

-30% in 2008-30% in 2008-30% in 2008Highest

StringencyStringencyStringencyRank

Entire FlightBelow 10,000 Feet AFEBelow 3,000 Feet AFE
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Sample Results:
Cumulative change in NOx 2002-2020

Below 3,000 feet AFE
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Sample Results:
Cumulative change in NOx 2002-2020

Below 10,000 feet AFE
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Sample Results:
Cumulative change in NOx 2002-2020

Entire Flight
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Note: These results reflect assumptions that are specific to this analysis.  Changes to these assumptions will affect the results.
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Context for AEDT
 NOx Demonstration is a significant step toward a 

noise/emissions tradeoff capability

 Key accomplishments
 Harmonized data between EDMS, INM, MAGENTA, SAGE

• Airports

• Fleet

 Harmonized performance module

 Harmonized emissions module

 Distributed modules of AEDT benefit from NOx 
Prototype
 EDMS 5.0 used for the demonstration

 INM 7 includes harmonized system tables
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Conclusions
 The NOx Modeling Demonstration successfully demonstrated the 

following elements of AEDT
 Dynamic gate-to-gate aircraft performance data
 Global airport database
 Global operations database
 Global fleet database
 Methodologies that are necessary to assess interdependencies
 Implementation of a CAEP-approved flexible forecasting system rather 

than a set of static lookup tables
 Addition of unscheduled flights, through radar data, resulting in a more 

precise representation of actual global flights
 Use of meteorological data for aircraft performance and emissions 

calculations
 Use of Boeing Fuel Flow Method 2
 Consideration of a broad range of aircraft and traffic types – no longer 

restricting global analyses to commercial jets
 Use of schedule data and delay modelling
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Conclusions

 The demonstration used modules that are now common to noise 
and emissions tools within AEDT

 Moves AEDT closer to being able to model noise and emissions 
trades and interdependencies

 Critical for providing comprehensive evaluation of future 
policies
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