Assessing Fuel and Emissions Benefits of the <u>Reduced Vertical</u> Separation <u>Minimum (RVSM)</u>

Presented to:TRB AEDT/APMT Workshop #4By:Gregg Fleming and Ian WaitzDate:December 6-8, 2006

Motivation

- What is Reduced Vertical Separation Minimum (RVSM)?
 - Reduction of the vertical separation distance from 2,000 to 1,000 ft for aircraft flying at levels between 29,000 and 41,000 ft
- In 2005 FAA implemented RVSM for domestic operations
 - Increased number of available cruising altitudes
 - Allows more optimal flight profiles
 - Reduced fuel burn and costs

Benefits of RVSM December 6-8, 2006

Objectives

- Develop improved methods for modeling aircraft performance for application in FAA's Aviation Environmental Design Tool (AEDT)
- Use improved AEDT to evaluate the changes in fuel burn and emissions associated with implementation of RVSM

Timeline

- Study initiated (May 2006)
- Initial results (September 2006)
- Final results (expected December 2006)
- Publish results (expected January 2007)

Federal Aviation

Administration

Assumptions

- Geographic scope: United States
- Assimilated weather data
 - Source: NASA Goddard (<u>http://gmao.gsfc.nasa.gov/index.php</u>)
 - Data: Temperature, Pressure, Humidity, Wind Speed
 - Coverage: Global, 1 x 1.25 degree grid
- Radar data from FAA's Enhanced Traffic Management System (ETMS) for one month prior to and following RVSM implementation in the U.S.
 - Pre-RVSM Dates:
 - 11/14/2004-11/20/2004
 - 12/05/2004-12/18/2004
 - 1/9/2005-1/15/2005
 - Post-RVSM Dates:
 - 2/13/2005-3/12/2005

Benefits of RVSM December 6-8, 2006

Approach

- Develop and apply improved aircraft performance model in AEDT
 - Analyze 1000+ flights from computerized flight data recorder (CFDR)
 - Develop improved Specific Fuel Consumption (SFC) Model
 - A319, A320, A321, A330, A340, B757, B767
- Match ETMS flight ID's, OD pairs, a/c types: 150,000 flights
- Compute changes in fuel burn and emissions

Federal Aviation Administration

Approach: BADA SFC Equation

• BADA SFC Equation:

$$SFC = \frac{C_{f1}}{60000} \left(1 + \frac{1.9438V}{C_{f2}} \right) C_{fcr}$$

• Where:

- V: Velocity
- Cf1, Cf2, and Cfcr: Unique constants for each aircraft

Need to account for:

- Changes in meteorological conditions from sea level
 - Temperature
 - Pressure
- Changes in aircraft SFC with cruise altitude

Benefits of RVSM December 6-8, 2006

Approach: Improved SFC Equation

• Final SFC equation:

$$\frac{SFC}{\sqrt{\theta}} = \alpha + \beta_1 M + \beta_2 e^{-\beta_3 \left(\frac{\tau}{\delta^{\beta_4}}\right)^{\beta_5}}$$

• Where:

 α, β_i 's = Statistically derived constants

- $\theta =$ Temperature ratio with respect to sea level std
- $\delta =$ Pressure ratio with respect to sea level std
- $\tau =$ Thrust ratio with respect to sea level maximum

Benefits of RVSM December 6-8, 2006

Federal Aviation

Administration

Approach: BADA Drag Equation

• BADA drag equation:

$$C_D = C_{d0} + C_{d2}C_L^2$$

- Where:
 - C_L : Coefficient of lift
 - C_{d0} and C_{d2} : Unique constants for each aircraft
- Need to:
 - Include a transonic drag components, i.e., change in drag as sonic airflow begins to appear at some point on the surface of the aircraft (critical Mach number)

Benefits of RVSM December 6-8, 2006

Approach: Improved Drag Equation

• Final drag equation:

$$C_{d} = \left(C_{d0} + C_{d2} C_{L}^{2} + \Delta C_{dC} \right)$$

- Where:
 - C_L : BADA Coefficient of Lift
 - $\varDelta C_{dc}$ Transonic drag component

Federal Aviation

Administration

Approach: Improved Performance Model

- Improved SFC models developed and are being implemented in AEDT
- Based on BADA drag coefficients, then statistically analyzing CFDR data to find SFC coefficients that best match fuel flow rate data

Example results (green = new model, red = BADA)

Approach: Model Sensitivities and Uncertainty

- Three scenarios investigated to demonstrate the impact of meteorological data and SFC/drag adjustments
 - BADA Only
 - BADA with meteorological data
 - BADA with meteorological data and adjusted SFC/drag Equations (still in progress)

Benefits of RVSM December 6-8, 2006

Results: RVSM Benefits

Federal Aviation

Administration

Context for AEDT

 RVSM demonstration is an example of AEDT's ability to assess operationally-based policy decisions

Accomplishments

- Included weather in computing aircraft performance within AEDT
- Making enhancements to the BADA aircraft performance model in AEDT
- Working towards a comprehensive assessment of RVSM fuel burn and emissions benefits in the U.S.

Summary

- Methods used for prior RVSM benefits assessments
 - Did not account for weather
 - Used EUROCONTROL's Base of Aircraft Data (BADA) aircraft performance model, which contains Specific Fuel Consumption (SFC) coefficients that do not depend on cruise altitude
 - Also true for several contrail re-routing assessments that have been conducted
- Improved drag and SFC modeling methods are being developed
 - Can be applied within AEDT for other analyses
 - Can be incorporated into other models
- Weather effects on aircraft performance incorporated into AEDT

Next Steps

- Investigate the accuracy of the SFC and thrust values computed by airline using parameters in the CFDR data (ongoing)
- Obtain more CFDR flight data to further assess and improve performance modeling methods (ongoing)
- Investigate impact of meteorological variation on overall results (ongoing)
- Provide feedback to EUROCONTROL (12/07)
- Finalize and publish the results (1/07)
- Investigate potential trades among operationallybased policy options (e.g., RVSM vs Reduced Thrust) (TBD)

??? Questions ???

FAA Environmental Tools web site:

http://www.faa.gov/about/office_org/headquarters_offices/aep/models/

