Aviation Environmental Design Tool (AEDT) Continuous Descent Approach (CDA) Modeling Demonstration

Presented to: TRB AEDT/APMT Workshop #4

By: Eric Dinges

Date: 6-8 December 2006

What is a CDA?

• Continuous Descent Approach (CDA):

- An optimized approach procedure where the aircraft descends continually at idle thrust from cruise to landing.
- Actual procedures and trajectories dependent upon aircraft performance, aircraft equipage, and local airspace considerations

Motivation

- FAA/PARTNER Center of Excellence sponsors research in Continuous Descent Approach (CDA) Operational Studies:
 - Quantified Environment Effects in 2002 Flight Test
 - Air Traffic Control Operational Proofing in 2004 Flight Test
 - Demonstrations Identified Reduced Noise, Fuel Burn, Engine Emission and Time savings (Louisville CDA study: Report No. PARTNER-COE-2005-002, January 2006)
- Modeling CDA offers an alternative aircraft operational flight procedure for targeted environmental mitigation.
- Establishing this capability in AEDT allows for:
 - modeling real-world, wide-scale environmental benefits
 - projecting cost/benefits of future CDA implementation

CDA Modeling Demonstration December 6-8, 2006

Typically Modeled vs. Actual Approach Profiles

Federal Aviation

Administration

Assumptions

• Limited initial airport study :

- Operations and trajectories derived from 3 days of radar data
- Only one operating configuration modeled
- Only Approach operations modeled
- Hypothetical CDA trajectory assumed
- Assumed CDAs can be implemented across all approach routes
- Assumed CDA implementation levels determined by traffic levels
- Ongoing/future rounds of analyses will include expanded scope

CDA Modeling Demonstration December 6-8, 2006

Baseline Approach Profiles

- Radar is the best widely available data source for current baseline approach trajectories
- Requires derivation of thrust levels in order to be used for environmental modeling
 - No standardized method exists
 - Requires aircraft performance data that is missing from available databases for several important aircraft
- Society of Automotive Engineers (SAE) A21 committee has recently formed a Project Working Team to address the issue
 - Current CDA Demonstration methodology to serve as the basis for guidance document development

Federal Aviation

Administration

CDA Approach Profiles

- CDAs assumed to follow constant 3-deg glide slope with aircraft type-specific speed schedules observed from Straight-In approaches
- Future analyses will use actual observed CDA profiles

CDA Implementation Levels

- Realistic CDA implementation levels are currently undefined for most airports
- Six scenarios ranging from current baseline to all-CDA operations were modeled using traffic flow thresholds

15-Minute Time Interval (1 = Midnight Local Time)

Scenario	Percentage of Operations Flying CDAs	
Baseline	0.0	
Threshold 1	5.9	
Threshold 2	21.0	
Threshold 3	42.9	
Threshold 4	67.3	
All-CDA	100.0	

Flight Path Dispersion Goal is to make CDA modeling capability available for Local Legacy analyses Requiring every actual radar trajectory to • define baseline conditions can be impractical Computationally prohibitive for Local analyses - Historical radar data does not allow for projecting flight paths and operational levels into the future - Large amounts of high-resolution radar data may not always be available Horizontal and vertical dispersion simplify modeled trajectories and allow profile trends to be projected into the future CDA Modeling Demonstration **Federal Aviation** 11 December 6-8, 2006 Administration **Horizontal Dispersion** Common practice in INM studies Recommended practice included in ECAC-**Doc 29** Automated for AEDT Radar track Dispersed track Cluster boundary

Runway -

CDA Modeling Demonstration December 6-8, 2006

10 Nautical Miles

Vertical Dispersion

- More challenging than horizontal dispersion as vertical position trends more heavily impact aircraft thrust, noise, fuel burn and emissions
- Difficulty is in simplifying vertical profiles without washing-out key characteristics like level segments
- Various automated methods are being created and evaluated for use in baseline modeling

CDA Modeling Demonstration December 6-8, 2006

Federal Aviation

Administration

Vertical Dispersion 2

• Length distribution of level segments lost

Distance from Touchdown (ft)

SEL Comparisons

Fuel Burn and Emissions

F urlies	% Change Relative to Baseline			
Emiss	Straight- In	Downwind	Southern	
СО	-8.7	-13.8	-26.7	
THC	-8.8	-11.0	-23.9	
NMHC	-8.8	-11.0	-23.9	
VOC	-8.8	-11.0	-23.9	
NOx	-18.1	-32.3	-51.8	
SOx	-14.7	-26.9	-46.1	
CO ₂	-14.7	-26.9	-46.1	
H ₂ O	-14.7	-26.9	-46.1	
Fuel	-14.7	-26.9	-46.1	

10,000 ft AFE to Touchdown

Verification and Validation

- Modeling simplifications such as vertical dispersion need to be validated against results using all data at several airports
- Methods for calculating thrust from RADAR data can be enhanced and validated using Flight Data Recorder (FDR) information, preliminary efforts have already been completed
 - Comprehensive FDR data sets are being obtained
 - SAE A-21 PWT efforts will directly support this

CDA Modeling Demonstration December 6-8, 2006

- Lack of CDA profile definitions
 - Round 2 analysis currently underway using data observed from actual CDAs at the modeled airport to define flight paths
- Unknown CDA implementation issues
 - Changes to the airspace required for CDAs not accounted for
- Limited operations data set
 - Round 2 analysis currently underway using a larger radar data set from throughout the year
- Limited aircraft performance data
 - EUROCONTROL currently working with Airbus to supply necessary data for entire Airbus fleet, FAA working on additional Boeing data
- Limited use of wind data
 - Need to balance accuracy requirements vs. publicly available wind data sources

Federal Aviation

Administration

Context for AEDT

- Baseline and CDA operations definitions and trajectories developed for the CDA Demonstration are usable across AEDT and legacy models
- Methodology applicable to modeling other alternative flight procedures
- Radar analysis capabilities developed for the CDA Demonstration can support PARTNER efforts related to CDA implementation, JPDO efforts, and other AEDT efforts related to operations mitigation
- Automated aircraft identification and horizontal/vertical dispersion methods available for legacy analyses to improve standardization across modelers

CDA Modeling Demonstration December 6-8, 2006

n

23

Summary

- New modeling methods being developed and applied
 - Methods still being refined and require validation
 - Working in conjunction with technical groups such as SAE A21

Limited scope analysis completed

- Limited radar data set
- Only one operating configuration
- Only approach operations
- CDA benefits vary greatly across approach routes
- Analysis scope will be increased and repeated at multiple airports

Next Steps

- Obtain and incorporate additional aircraft performance data
- Support development of and incorporate standardized methodology for deriving thrust from aircraft position data
- Develop guidance on appropriate vertical dispersion techniques
- Evaluate CDA Demonstration methodology at a number of airports
- Develop method for concurrent display of noise and emissions results
- Perform significant validation work on any new computational methods developed

CDA Modeling Demonstration December 6-8, 2006

FAA Environmental Tools web site:

http://www.faa.gov/about/office_org/headquarters_offices/aep/models/

Federal Aviation

Administration