

Congressional Budget Office

Goldman Lecture in Economics, Wellesley College

Preparing for Our Common Future: Policy Choices and the Economics of Climate Change

Peter Orszag Director October 27, 2008

- Growing emissions of greenhouse gases (GHGs) are accumulating in the atmosphere
- Mainly from fossil fuel use and land use
- Growing concentration of GHGs will change and warm the global climate
- Global climate change represents one of our most serious long-term risks

Numerous Greenhouse Gases from Diverse Sources

- CO₂ 84.80
- CH₄ 7.90
- N₂O 5.20
- HFCs 1.80
- PFCs 0.09
- SF₆ 0.25
- Total ~100.00

Source: Data from EPA.

- Virtually impossible to account for 20th-century changes in climate without attributing a significant but uncertain share to anthropogenic GHG emissions
- Only about half of warming already set in motion has occurred to this point
- Much more warming than that is likely, however
 - Reducing *emissions* from current levels would still mean rising *concentration*

Historical and Projected Climate Change Under Various Scenarios

The Basic Science of Climate Change: Potential Impacts

Projected change in global climate ranges from modest to very dramatic

- Likely temperature increase over next century:
 - 0.3 °C to 6.4 °C
- Potential decline in global GDP from 4 °C increase:
 - 1 percent to 5 percent
- Small chance of much larger damages

The Basic Science of Climate Change: Uncertainty in Outcomes

Significant uncertainty in distribution of changes

- Across seasons and regions
- In ranges and extremes of temperature and precipitation
- In the potential for abrupt shifts
- In the effects on human and natural systems
- Possibility of nonlinearities in system
- Also, significant uncertainty in the economic valuation of damages and mitigation/adaptation costs

Some Potential Impacts as a Function of Different Changes in the Global Average Temperature

1 °C Increase

- Risk of extinction in up to 30 percent of all species
- Grain production will tend to increase at higher latitudes and decrease at lower latitudes

2 °C Increase

- Likely increase in worldwide coastal flooding
- Widespread mortality of coral

3 °C Increase

- Approximately 30 percent of global coastal wetlands lost
- Substantial public health impacts due to malnutrition, altered development of infectious diseases, and increased natural disasters

Negative externality

- Uncertainty over effects
- Effects occur over a long time span
- Significant free-rider problem
 - Effective response likely to require international collective action

- Three potential responses, not all mutually exclusive
 - Research: continued study of problem's scope and mitigation/adaptation options
 - Mitigation: emission reductions and sequestration
 - Adaptation: adapt to warming that will occur
- For each response, optimal policy would balance expected marginal costs against expected future discounted marginal damages
 - Does one consider global costs/benefits or just domestic?

- Assessment of what action should be taken today is sensitive to one's choice of discount rate
 - Opportunity cost of avoiding damages (or compensating future generations for damages) is the real risk-adjusted rate of return on long-term investments
 - Adjustment for uncertainty about the future returns implies a lower implicit discount rate and more recommended mitigation today

The Economics of Climate Change: Discounting (continued)

- Alternate view: Valuation of future benefits should be viewed primarily as a decision about equity rather than as a traditional investment decision
- But viewed as an equity issue, inconsistencies arise relative to how other intergenerational trade-offs are analyzed

The Economics of Climate Change: Distributional Issues and International Coordination

Developed countries have already contributed a very large share of historical emissions

- Per capita incomes/emissions in developed countries (especially the United States) are much higher than those of most developing countries
- The US has about 5 percent of the world's population, but accounts for more than 20 percent of global GHG emissions (and also more than 20 percent of global GDP)

Range of Uncertainty in Cumulative CO₂ Emissions, Developed vs. Developing Countries

The Economics of Climate Change: Distributional Issues and International Coordination (continued)

- Developing countries' per capita emissions are very low
 - But growing rapidly and will ultimately dominate in the aggregate
 - Many opportunities for low-cost reductions
- Developing countries' damages from climate change are likely to be larger, especially relative to income

The Economics of Climate Change: Distributional Issues and International Coordination (continued)

- Some conflict over distribution of costs between developed and developing nations is inevitable
- But to create a substantial impact on global emissions, the number of nations that need to coordinate is relatively small

Cumulative CO₂ Emissions by Selected Countries, With and Without Land-Use Change, 1950 to 2000

- Can influence behavior of consumers through creation of new social norms
- Can raise price or restrict quantity and, in theory, reach the same outcome
 - Carbon tax
 - Cap and trade

Change in Energy Consumption and Behavioral Economics

- The basic contours of a cap-and-trade program are straightforward
 - A CAP limits the total amount of emissions. Allowances equal to that total amount are auctioned or otherwise allocated to emission sources
 - Emission sources may then TRADE allowances with other emission sources
- Emission sources must hold allowances (either allocated or purchased) equal to or greater than their emissions or else be subject to penalties

- Two sources of emissions: Firm A and Firm B
- Under "business as usual" (BAU), each firm emits 4 units. The total emissions of the two firms thus equal 8 units.
- New Policy: A cap-and-trade system is instituted to reduce emissions by 50% from current levels

Cap and Trade 101: An Illustrative Example (continued)

Assumptions

- Two allowances are auctioned or allocated to each firm
- Three times as costly for Firm B to reduce emissions as Firm A, such that

Firm A

Firm **B**

Emissions	Total Cost	Marginal Cost	Emissions	Total Cost	Marginal Cost
4 (BAU)	0	0	4 (BAU)	0	0
3	1	1	3	3	3
2	3	2	2	9	6
1	6	3	1	18	9
0	10	4	0	30	12
L					

- If no trading was allowed, each firm would have two allowances, and each firm would emit two units
- Total cost associated with 50% emission reduction
 - Firm A: \$3
 - Firm B: \$9
 - Total: \$12

- If trading is permitted, Firm A will sell one allowance to Firm B
 - Firm A will hold 1 allowance and will emit 1 unit
 - Firm B will hold 3 allowances and will emit 3 units
- Total cost associated with 50% emission reduction
 - Firm A: \$6
 - Firm B: \$3
 - Total: \$9

- Savings with trading: \$3 (\$12 without trading versus \$9 with trading)
- Emission sources will trade to point at which marginal costs of reducing emissions are equalized
- Trading offers the lowest-cost means of achieving the environmental objective

- Economists' answer: Cap should be set where the marginal cost equals the marginal benefit of emission reduction
- But ascertaining the marginal benefits of environmental improvement in dollar terms is a difficult task

Working Examples of Cap and Trade: The U.S. Acid Rain Program and SO₂ Emissions

- The Clean Air Act Amendments of 1990 established a cap-and-trade program to reduce overall atmospheric levels of SO₂ and NO₂ to 50% of 1980 levels
- The program has met (and even exceeded) its goals
 - Emissions have declined 40% since 1990; acid rain levels have declined 65% since 1976
 - Prior to the program's launch, the expected market price for SO₂ allowances was between \$579-\$1,935 per ton; the actual market price as of March 2008 was \$380 per ton

SO₂ Emissions Under the Acid Rain Program

The Acid Rain Program: Baseline Acid Rain Concentrations, 1989 to 1991 Average

The Acid Rain Program: Acid Rain Concentrations After Cap and Trade, 2000 to 2002 Average

Other Examples of Cap and Trade: European Union Emission Trading System (EU-ETS)

- World's first CO₂ cap-and-trade program
- EU-ETS began with a three-year trial period (2005–2007); will be used to meet binding requirements of the Kyoto Protocol beginning with the second trading period (2008–2012) and beyond
- Early Difficulties
 - High price volatility
 - Overallocation of allowances (and lack of banking) leads to collapse of the allowance price in first period

EU-ETS: Allowance Prices in Period One and Period Two, 2005–2007

Source: Mission Climat of Caisse des Dépôts (2008).

Working Examples of Cap and Trade: Regional Greenhouse Gas Initiative (RGGI)

- RGGI involves 10 Northeastern states, from Maryland to Maine
- Starting date is January 1, 2009
- Covers emissions for all fossil-fuelfired electricity-generating plants 25MW and larger
- Cap will "stabilize" emissions until 2014 (188 million allowances) and then reduce emissions 10% by 2018 (169 million allowances)

Cap and Trade: Two Key Decisions About Policy Design

Degree of flexibility in annual caps

- Include a floor and/or a ceiling for the price of an allowance?
- Allow firms to bank and/or borrow allowances?

Allowance allocation

- How to set initial number of allowances?
- Sell the allowances or give them away?
- Who gets free allowances or auction revenues?

- Cap and trade sets limit on emissions; price of emissions is uncertain
- Meeting strict annual targets can add significantly to total cost, with little offsetting benefit
 - Cost of meeting an annual cap is likely to vary significantly from year to year
 - In terms of climate effects, annual fluctuations in emissions matter little compared with multiyear trends
 - Inflexible caps would require too few reductions in low-cost years (when meeting the cap is easy) and too many reductions in high-cost years

Flexible Cap Designs Could Lower the Cost of Meeting Long-Run Targets

- Price floors and ceilings could provide timing flexibility and more certainty about allowance prices
 - Floor would tighten cap in low-cost years; ceiling would loosen cap in high-cost years
 - Floor and ceiling could be adjusted periodically to ensure that emissions are on track to achieve long-term targets

Flexible Cap Designs Could Lower the Cost of Meeting Long-Run Targets (continued)

Banking and borrowing allow firms to shift emission reductions across years

- Banking would allow firms to exceed required reductions in low-cost years and save the allowances for use in future years
- Borrowing would allow firms to use future allowances in current year if allowance prices were high

Illustrative Comparison of Various Policies to Reduce CO₂ Emissions Under Different Cost Conditions in 2018

Illustrative Comparison of Total Emission Reductions and Total Costs and After One High-Cost and One Low-Cost Year

Allocation Matters: Amount of the Allowance Value (Income) Transferred Likely to Be Large

Someone will receive the value of the allowances

- Determined by policymakers' decisions

Someone will pay for the allowances

- Determined by market forces

Allocation Matters: Who Will Receive the Allowance Value?

 "If I'm going to have buy those permits from the government, I'm going to have to turn around and charge the customers a lot more than I would if I just had those allowances allocated for free."

— Bruce Braine, American Electric Power

Source: National Public Radio (2007).

- Cost of holding an allowances would become a part of doing business
- Market forces would determine who bears the allowance cost
 - Primarily borne by consumers in form of price increases
 - Disproportionate burden on low-income households
 - Workers and shareholders could experience transitional costs

Consumer Price Increases Would Be Regressive

Illustrative Example Showing Increase in Average Household Costs from a 15 Percent Decrease in Carbon Emissions

	Average for Income Quintile						
	Lowest	Second	Middle	Fourth	Highest		
Cost Increase in 2006 Dollars	680	880	1,160	1,500	2,180		
Cost Increase as a Percentage of Income	3.3	2.9	2.8	2.7	1.7		

\bigcirc

Efficiency Cost of a 15 Percent Cut in CO₂ Emissions, with Revenues Used in Different Ways

Percentage of GDP

Effects of a 15 Percent Cut in CO₂ Emissions on Average After-Tax Real Household Income

- Requiring that firms meet an inflexible cap could substantially increase cost while providing little additional benefit
- Design features can allow timing flexibility
 - Banking and borrowing could help in some situations, though borrowing typically limited because of enforcement concerns
 - Price floor and ceiling could address wide array of situations and be adjusted over time to keep emissions on track to meet long-run cap

Value of allowances likely to be large

- Policymakers determine who receives their value
- Market forces determine who bears their cost
- Selling allowances would allow policymakers to capture their value, which could help to lower overall economic costs and offset costs to low-income households

- Freely allocating allowances would be equivalent to selling them and distributing the revenues to producers
 - Free allocations would not prevent price increases
 - Free allocations to producers could create windfall profits