
Finally, we can solve for w(x) and we use the constants         and                            :

This is the raw data plot (z vs. µ).  This data is obviously not linear 

but is the data we wish to fit.  So we need to use some transforms to 

make the data linear.

First, we use the fact that                  transform the data in terms of 

so                             .   A regression equation: will have problems 

with non-constant variance.  To correct for this problem we will 

instead transform the z variable.

Here the z variable is transformed by            and we use     .   

The regression equation fit was:                                .  This 

equation showed some sign of slight curvature so the squared term 

was added for a new regression equation:

(You could leave this equation in terms of µ instead of  and it would 

still be linear.)

Each supernova has its own error measurement.  We use the reciprocal of one standard 

deviation of the estimated error as the weight for each supernova.  This means that supernovas 

with more measurement error will carry less weight in our model. We transform the weights to 

match the transforms we put on the data to make it linear.  After analyzing this model we see 

there is not a large difference in the parameter estimate of the fit of the line compared to the     

regression without weights.  
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Bayesian Normal Regression

Fit of w(z)

Weighted Bayesian Normal Regression
Normal Model- 95% Probability Intervals for a run of 10,000 samples Fitted line and 95% Predictive Intervals 

Parameter Lower bound Estimated value Upper bound

β0
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β1
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Normal Model with weights- 95% Probability Intervals                               Fitted line and 95% Predictive Intervals

Parameter Lower bound Estimated value Upper bound

β0
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β1
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β2
0.032682 0.05757346 0.08279315
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The estimate of  w(z) is around the value negative 

one.  The blue line is the mean fit and the red lines are 

the 95% probability intervals.  There is a large amount 

of variation for the larger values of z because of a few 

points in this region. 

Other papers have also estimated w(z) around 

negative one, so these results are consistent with other 

sources. Which means our model is consistent with 

others’ findings.

• We will fit a t-distribution with heavy tails to account for the non-Normality in the Q-Q plot

• A neural net will be fit and w(z) approximated from that fit

• We will look at other similar data sets

• We can examine the few outliers or larger z values more carefully

•We can analyze more of the measurement error and also the error in some of the constant 

terms used to approximate w(z) ie. the Hubble constant

The residual plot on the left we 

can use this to examine the 

assumptions of constant variance.  

The plot of Bayesian residuals on 

the right show the distribution of 

each residual.

The plot on the left is a QQ plot 

for the Normal distribution which 

is showing a few outliers and 

possibly heavier tails than a 

Normal distribution.  And the 

histogram on the right looks 

somewhat Normal but may be 

skewed.

These last two plots are of the 

original data but with the two 

outliers of interest highlighted.  

We wanted to see where these 

points fell with respect to z.  (The 

multi-colors mark different data 

collectors.)

The analysis was done using a Bayesian regression model with non-informative prior.  10,000 

draws were taken for each Beta parameter being estimated, as well as, the estimated variance 

being drawn from an Inverse Chi-square distribution.  There was no problem with burn in, 

mixing, or autocorrelation of the posteriors because Gibbs steps were used. 
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We start with our regression equation and take some derivatives:

Then we need Hubble’s parameter and its derivative (where x = z + 1):

and

where                                and 

Conclusions

• We have shown that simple Bayesian regression  models can be used to obtain valid 

information about w(z) when using transformations on the data

• Both models here allow for estimation of uncertainty bands in a straightforward way

• Incorporating the measurement error via weights affects the estimation of w(z)

• For larger values of z there is a large amount of uncertainty

The weights still leave our Q-Q plot with heavy 

tails and the same outliers that need to be analyzed 

as the previous model.  A heavier tailed 

distribution may fit the data better. 

These measurement weights do affect w(z).  These 

cause our 95% probability bands to be wider, 

which is expected since there is more uncertainty in 

the model.  
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