
Log-structured Files for Fast Checkpointing

Motivation

Milo Polte, Jiri Simsa, Wittawat Tantisiriroj, Shobhit Dayal, Mikhail Chainani,
Dilip Kumar Uppugandla, Garth Gibson

• Approaching a checkpointing catatrasophe in HPC:
 - Systems with more nodes, failures
 - Larger datasets
 - Longer running, more frequent checkpoints
• At current trends, checkpoints will prevent most useful

application work within the next decade

0%

25%

50%

75%

100%

2006 2009 2012 2015 2018
Year

A
pp

lic
at

io
n

 U
ti

liz
at

io
n

 (
%

)

Projected Time Available to Application Code

Checkpointing
• Technique for fault tolerance
• Compute nodes barrier sync, write state to storage
• No useful work until checkpoint complete
• Concurrent strided writers introduce more seeks
• Most checkpoints never used
 - 1996 log of jobs from LLNL had orders of magnitude
 fewer failed jobs than checkpoints

Log-Structured Writing
Bu�er :

0 50 100

"Write 50 bytes at of fset 100"

"Write 50 bytes at of fset 0"

"Write 50 bytes at of fset 50"

Log
Representation :

• Writes on disk in temporal order rather than logical
• Reduces time lost to write seeks, but can slow reading
• Not appropriate for all workloads, all files
• Appropriate for checkpoints (“write-once, read-maybe”)
• Our idea: Per-file log representations

Write Performance

Read Performance

Current Status
• Student implementations show good write performance
• Promising potential for further work

• Read path improvements
 - Use footers for earlier terminated backwards scan
 - Flatten on first read
 - Separate index structure

• Generalize per-file representation technology
 - Per-file RAID
 - Optimized formats for scientific files

Implementation
• Assigned as class project in Advanced Storage Systems
• Implemented in PVFS2, a parallel distributed filesystem
• Writes checkpoint files in a log structure
 - Each write is written to the end of the file with a header
 - Header contains logical location and size of the write
• Reads serviced naively by scanning file for all headers
 - Simple implementation
 - Checkpoints rarely read
 - Students not graded on read performance
• Evaluated with mpi_io_test using 10 clients

• Best benefit seen for 16k writes
• 1k writes penalized by header overhead
• 4k writes have alignment issues

• Performance poor as reads scan entire file for applicable writes

0

50

100

150

200

250

300

1024 4096 16384 65536 262144

Size of Client Reads (bytes)

B
a
n

d
w

id
th

 (
M

B
/

s)

Original PVFS2

Log-structured PVFS2

0

10

20

30

40

50

60

70

1024 4096 16384 65536 262144

Size of Client Writes (bytes)

B
a
n

d
w

id
th

 (
M

B
/

s)

Original PVFS2

Log-structured PVFS2

IRHPIT INSTITUTE FOR REL IABLE
H I G H P E R F O R M A N C E
INFORMATION TECHNOLOGY

