Finding the Needles in the Haystack: Multidimensional Extensions to a Distributed Filesystem

Presenter: Milo Polte, CMU Mentors: John Bent, Meghan Quist, James Nuñez

UNCLASSIFIED: LA-UR-07-5379

Slide 1

Talk Outline

- What is a multidimensional filesystem and why do we need them?
- Examples of multidimensional datasets
- Why filesystems or databases alone aren't a solution
- Description of our hybrid system
- Evaluation of Overhead
- Remaining Challenges of Implementation
- Road Map

UNCLASSIFIED: LA-UR-07-5379

Slide 2

Why do we need a multidimensional filesystem?

- Our ability to capture and store data is outpacing our ability to organize and analyze it
 - Data Volumes are doubling each year
 - Scientific instruments are gaining greater precision
 - Automation is creating vast stores of data
- Traditional filesystems allow one to access files along a single dimension: That of the filename and path
 - Filenames are frequently irrelevant; analysis needs to be applied to all data with a certain set of attributes not a certain name
- A multidimensional filesystem is one which also indexes and allows efficient access to files based on their meta-data tags
 - Gives a more expressive way to describe and find files

U N C L A S S I F I E D: LA -UR-07-5379

Slide 3

Motivation continued

- Lets you find the files you need quickly
 - Must scale even when the file system contains billions of files
- Allows you to define your own application specific search tags for your application
 - Not just file type, owner, name, etc.

Already exists for desktop systems

- Google Desktop for Windows
- Spotlight File System for OS X
- Etc.

• Our work is adding this functionality to a fast, parallel file-system

- Important for scientific computing
- Extremely large number of files

U N C L A S S I F I E D: LA -UR-07-5379

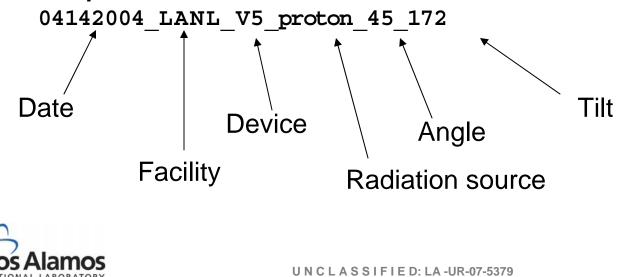
Slide 4

Example of Multidimensional Datasets 1: Sloan Digital Sky Survey / SkyServer

Work between Jim Gray and the astronomy community.
<u>http://skyserver.sdss.org</u>

Information on roughly 230 million distinct photometric objects

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.


UNCLASSIFIED: LA-UR-07-5379

Slide 5

Example of Multidimensional Dataset 2: Effects of Radiation on Field Programmable Gate Arrays

- Work by Heather M. Quinn and Sarah Michalak at LANL
- Studies effects of radiation on bit flip errors
- Groups samples into single files whose names are a concatenations of sample attributes:

Slide 6

Sample Queries

Scientific:

- All satellite image files taken from a particular telescope and marked by an intelligent program as having a probability > 70% of being a Nebula.
- All NMR results taken on the folding of a certain protein since Tuesday.

• Administrative:

- Space saving: Show me the five largest files in the system that haven't be accessed in a month or more.
- Security: Show me all system files whose content hash doesn't match a list of correct values.
- Auditing: Show me all files accessed on Monday between 2 AM and 4AM

UNCLASSIFIED: LA-UR-07-5379

Slide 7

Why are filesystems approaches insufficient?

The filename tag approach

- Filenames become concatenation of tags: <date>_<instrument>_<run#>.dat
- Currently used on the FPGA data
- Search is slow Running find
- Adding a new tag to a single file will require renaming all indexed files

The directory tag approach

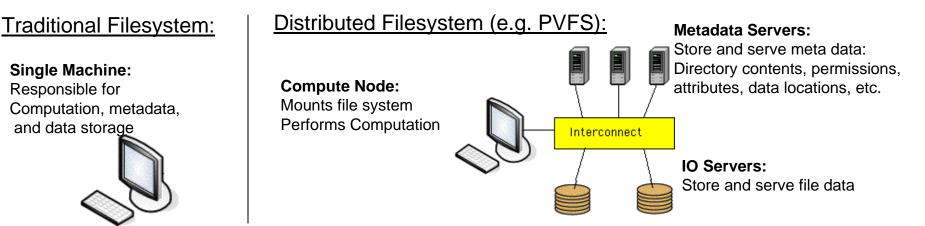
- Files are stored in hierarchical directories based on tags: /<date>/<instrument>/<run#>.dat
- Similar to how users organize personal files
- Search can be slow depending on ordering decisions
- Adding a new tag requires shuffling the entire hierarchy
- Duplication is a problem, leading to either 2 copies or incompletion
 - Does a picture of your niece and your dog go in /Pictures/Niece or /Pictures/Dog ?

UNCLASSIFIED: LA-UR-07-5379

Slide 8

Why not a pure database system?

- Scientific applications are usually based on a POSIX API
 - Many tools are scripts or compiled programs that might be difficult to modify to use a database
- Users are accustomed to a POSIX API
- Databases are good at storing structured data, but most don't store large unstructured data well
- Distributed Filesystems already used in large scale clusters (PVFS, PanFS, LUSTRE, etc)
- Note: Google's Bigtable is a pure database on top of GoogleFS
 - Serves only Google apps


UNCLASSIFIED: LA-UR-07-5379

Slide 9

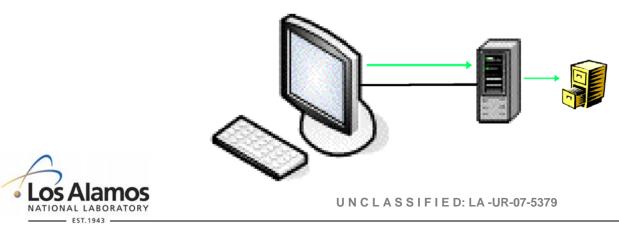
Design of our prototype system

 Built on top of the open source Parallel Virtual File System (PVFS) distributed filesystem

- PVFS has both standard attributes (owner, atime, etc.) and extended attributes (arbitrary key-val pairs)
- Integrates an sqlite3 SQL database on each of PVFS's meta-data servers. Sqlite3 databases used to index and query metadata. Called the 'Ledger'
 - Embedded solution low total cost of ownership
 - Indexes all 'normal' metadata (POSIX attributes, file sizes, etc.) stored at the MDS
 - Also allows application-specific metadata to be added as extended attributes for any file indexed by the MDS

UNCLASSIFIED: LA-UR-07-5379

Slide 10


Operated by Los Alamos National Security, LLC for NNSA

I LABORATORY

PVFS Integration - Replication of Attributes

- Client behavior remains the same
- Server state machines set-attr.sm and set-eattr.sm (responsible for normal attributes and extended attributes) have new states to store information in the Ledger
- Attributes asynchronously written to SQLite DB
- EAttrs sufficient for testing
 - Eventually separate application specific schema into distinct tables

Slide 11

PVFS Integration - Querying

- Queries are SQL style query strings. Expressiveness limited only by application metadata tags
- Current design: New client program distinct from POSIX
 - Issues query to each MDS in parallel
 - MDSes search their ledger and respond
 - Clients collate and report results
- Eventually needs semantic integration with the file-system
 - Plan: Special top-level directory for semantic operations '/mdfs'
 - mkdir/mnt/pvfs/mdfs/query/"<query string>"
 - If the the client detects this special directory, different path is taken than normal mkdir
 - Populate directory with symbolic links to results of queries

UNCLASSIFIED: LA-UR-07-5

Slide 12

Evaluation of Overhead

- Measurement of overhead imposed on PVFS by the MDFS extension
- Measures the sustained throughput of typical filesystem operations (create, seteattr, etc.) on unmodified PVFS versus multidimensional PVFS
- Graph of aggregate operation throughput versus number of clients (keeping number of MDSes constant at 1)
- Want lines to be close and symmetrical (I.e. small overhead, normal behavior)

UNCLASSIFIED: LA-UR-07-5379

Slide 13

Experimental Methodology

- Experiments run on lambda cluster
 - Dual Pentium III nodes connected by Gig-E ethernet
- For each experiment single server was used for both MDS and IO/Server
 - Performance should scale as the number of MDSes increases
 - Will test, but not today
- On each trial a clean file system was created with one directory per client and one file per client
- Client machines chosen at random for every trial
- Tests were one hundred operations per client
 - Throughput calculated as Num_Clients * 100 / Time
- Ten trials used to generate each data point

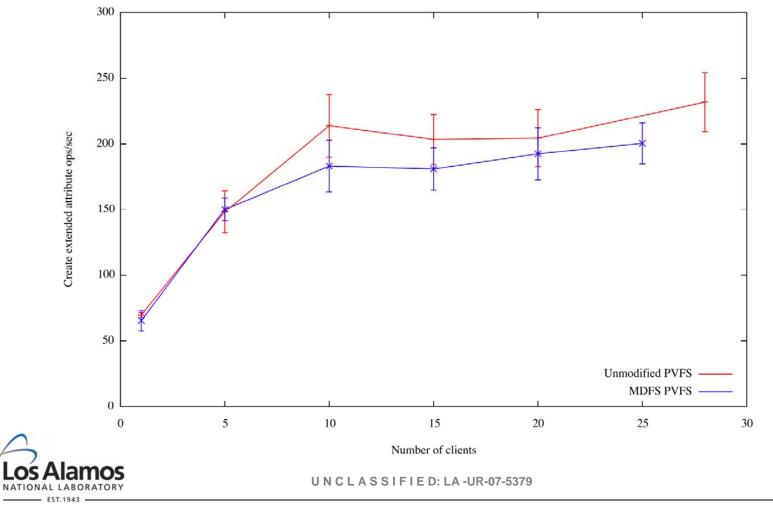
UNCLASSIFIED: LA-UR-07-5379

Slide 14

Updating extended attributes

Set extended attribute ops/sec Unmodified PVFS MDFS PVFS Number of clients UNCLASSIFIED: LA-UR-07-5379 NATIONAL LABORATORY

Overhead on Extended Attribute Operations

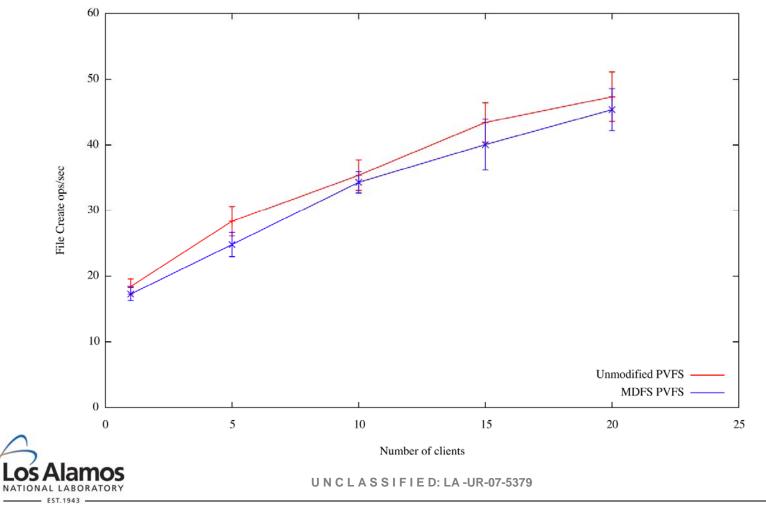

Operated by Los Alamos National Security, LLC for NNSA

EST. 1943

Slide 15

Creating extended attributes

Overhead On Unique Extended Attribute Operations


Operated by Los Alamos National Security, LLC for NNSA

0

Slide 16

Creating Files

Overhead On File Create Operations

Operated by Los Alamos National Security, LLC for NNSA

0

Slide 17

Further Evaluation Plan: Performance of Queries

- Compare performance of MDFS to traditional approaches (I.e. find, locate, ls) on a variety of queries using the FPGA dataset.
- The overhead time to extract the tags and add them to the database will be included in the measurement of MDFS and locate performance
- Graph of query time versus size of dataset, on various structures (sparse queries, bushy directories, etc.)
- Graph of query time versus number of MDSes on various structures
- Expect performance of find and ls to fall off much more rapidly than the MDFS interface

UNCLASSIFIED: LA-UR-07-5379

Slide 18

PVFS Integration Challenges

File names

- Returns from queries are file handles
- Want names/paths, dynamically created symbolic links
- Keep name and parent of each object in its extended attributes and reconstruct?

Size attribute

- Not stored on MDSes. Requires querying of data servers
- Who does it?
 - Clients? (Normally not responsible for coherence)
 - MDS? (May not see data operations)
- Related to transducer challenges

More PVFS-like behavior

- Extensibility: Needs abstraction layer for different ledger implementations
- fsck extension

UNCLASSIFIED: LA-UR-07-5379

Slide 19

Roadmap

Milestone 0: Overhead

• Extend overhead evaluation out to 50+ nodes

Milestone 1: Querying system

- Finish querying system
- Semantic behavior
- Symbolic link creation

Milestone 2: Evaluation of queries

- FPGA dataset
- Other datasets
 - NIST Face/Iris Recognition datasets?
 - Interested in your ideas!

Milestone 3: Transducers

- Transducers for things like content hashes
- Trade off between time-to-coherence and performance

UNCLASSIFIED: LA-UR-07-5379

Slide 20

