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Abstract— Online approaches to physical design tuning have
received considerable attention in the recent literature, with a
focus on the problem of online index selection. However, it is
difficult to draw conclusions on the relative merits of the proposed
techniques, as they have been evaluated in isolation using
different methodologies. In this paper, we make two concrete
contributions to address this issue. First, we propose a benchmark
for evaluating the performance of an online tuning algorithm in
a principled fashion. Second, using the benchmark, we present
a comparison of two representative online tuning algorithms
that are implemented in the same database system. The results
provide interesting insights on the behavior of these algorithms
and validate the usefulness of the proposed benchmark.

I. INTRODUCTION

Recent studies [1], [2], [3] have advocated an online ap-
proach to the problem of physical design tuning. In a nutshell,
an online tuning algorithm monitors and analyzes continuously
the current workload, and changes automatically the physi-
cal design to maximize the efficiency of query processing.
Contrary therefore to off-line tuning [4], [5], [6], where the
system is tuned based on a representative workload, the main
assumption is that the workload is volatile and requires the
system to be retuned repeatedly.

Current research efforts have focused on the variant of the
problem that deals with online index selection. The proposed
tuning algorithms [1], [2], [3] cover a wide gamut of features
with respect to the type of indices that can be materialized,
the performance guarantees enabled by the algorithm, and the
complexity of the workloads that can be handled. However,
each algorithm has been evaluated in isolation in the respective
study, using a different methodology and execution environ-
ment. This makes it difficult to draw conclusions on the rela-
tive merits of the proposed techniques. Clearly, it is desirable
to evaluate empirically the proposed tuning algorithms in the
same execution environment using a common methodology.

A natural question is whether we can reuse the method-
ology of a previous study as the basis for the comparison.
Unfortunately, the reported experimental methodologies are
specific to each study and fail to exercise several important
aspects of the proposed algorithms. For instance, the exper-
imental study presented in [3] does not employ workloads
with update statements, which can affect index performance
and thus the decisions of the tuning algorithm. As another
example, the methodology in [1] employs workloads of limited
volatility, which does not allow stress testing the performance
of online tuning. Overall, it is desirable to design a principled

experimental methodology for benchmarking the performance
of online tuning algorithms.

In this paper, we make concrete contributions in the pre-
viously outlined directions. First, we propose a principled
benchmarking methodology for evaluating the performance of
online tuning algorithms. The proposed benchmark consists of
several workload suites, designed to exercise specific aspects
of a tuning algorithm. The workloads are constructed using a
general methodology that can be used to generate additional
interesting suites. Using the benchmark, we then present
an empirical evaluation of two representative online tuning
algorithms that we have integrated in the PostgreSQL DBMS.
The results lead to interesting insights about the relative
merits of the two algorithms, and are thus of interest to both
database researchers and practitioners who wish to employ the
existing algorithms. In that sense, the results also validate the
usefulness of the benchmark as a platform of comparison. To
the best of our knowledge, this is the first study to examine
different online tuning algorithms using the same database
system and a common experimental methodology.

II. ONLINE INDEX SELECTION: PROBLEM STATEMENT

We define a configuration as a set of indices that can
be used in the physical schema. We use S to denote the
space of possible configurations, and note that in practice
S contains all sets of indexes that can be defined over the
existing tables, whose required storage is below some fixed
limit. We use cost(q, C) for the cost of evaluating query q
under configuration C. There is also a cost d(C,C ′) involved
with changing between two configurations C,C ′ ∈ S.

We formulate the problem of online index selection in
terms of online optimization. In this setting, the problem input
provides a sequence of queries q1, q2, . . . , qn to be evaluated
in order. The job of online index selection is to choose for
each qi a configuration Ci ∈ S to process the query, while
minimizing the combined cost of queries and configuration
changes. In other words, the objective of an online tuning
algorithm is to choose configurations that minimize

OBJ =
n∑

i=1

d(Ci−1, Ci) + cost(qi, Ci)

where C0 denotes the initial configuration. Furthermore, the
online algorithm must select each configuration Ci using
knowledge only from the preceding queries q1, . . . , qi−1, i.e.,



without knowing the queries that will be executed in the future.
This is precisely what gives the problem its online nature.

OBJ has been used in studies of metrical task systems [7],
[8] and also in more closely related work in online tuning [1].
It is a natural choice to describe the problem, as it accounts for
the main costs of query processing and index creation that are
affected by online index selection. It is also straightforward
to compute using standard cost models, making it a useful
yardstick for measuring the performance of a self-tuning
system. On the other hand, it does not model all practical
issues involved with online tuning. For instance, observe that
our statement of the problem assumes that the configuration Ci

is always installed before query qi is evaluated. This may not
be feasible in practice because there may not be enough time
between qi−1 and qi to modify the physical schema, unless the
evaluation of qi is delayed by the system. It is more realistic
to change the index configuration concurrently while queries
are answered, or wait for a period of reduced system load.

The OBJ metric also does not reflect the overhead work
required to analyze the observed queries q1, . . . , qi−1 in order
to choose each Ci. One significant source of this overhead
can be the use of what-if optimization [6], [9] to estimate
cost(q, C) for a candidate configuration C. The what-if opti-
mizer simulates the presence of C during query optimization to
obtain the hypothetical cost, which is used in turn to gauge the
benefit of materializing C in the physical schema. Although
this is an accurate measure of query cost, each use of the
what-if optimizer can take significant time, akin to normal
query optimization. It is thus important for a tuning algorithm
to limit the use of what-if optimization, or evaluate cost(q, C)
more efficiently.

III. EXISTING APPROACHES TO ONLINE INDEX
SELECTION

The earliest study of online index selection known to us is
over three decades old [10]. There has recently been a renewed
interest in this problem, with three proposed algorithms in
the past two years: the work of Bruno and Chaudhuri [1]
(henceforth referred to as BC), COLT [3], and the “soft index”
system of Sattler et al. [2] (which we will call SOFT). Below,
we discuss the salient features of these algorithms and classify
their designs along different dimensions that affect critically
the performance of online index selection. These dimensions
also become significant in the development of the benchmark
that we describe in the next section.

Decision Logic: We begin with the most important di-
mension that concerns the underlying logic driving the deci-
sions of the algorithm. The approaches that have been studied
can be classified as either “predictive” or “retrospective”. A
predictive approach makes predictions about future queries,
and chooses indices that have the most benefit with respect
to those predictions. Both COLT and SOFT are predictive
algorithms, but employ different forecasting models to make
predictions about the future benefit of indices. On the other
hand, the strategy of BC is better described as retrospective:
the idea is to analyze the history of queries in hindsight

to determine what indices would have been optimal in the
past, then schedule these indices to be materialized next.
Overall, we expect predictive approaches to perform well when
the workload fits the assumptions of the forecasting model,
whereas retrospective approaches guard against adversarial
workloads by only creating indices that would be created
earlier by an optimal strategy.

Candidate Indices: All of the algorithms in our discus-
sion initialize their search of the configuration space by gener-
ating interesting index candidates for individual queries. COLT
only considers single-column indices for attributes that appear
in selection predicates. Both BC and SOFT allow for indices
with multiple columns, by looking at all clauses of a query.
However, the selection criteria for the two algorithms differ:
SOFT bases its choices on the syntax of the query, whereas
BC chooses candidates based on the optimized physical plan.

Index Interactions: Several previous works [11], [12]
have observed that a major challenge in index selection stems
from index interactions, i.e., cases where the benefit of an
index is affected by the presence of other indices. COLT im-
plicitly accounts for some interactions involving materialized
indices, because these indices are considered to be available
when using the what-if optimizer. SOFT and BC take a more
proactive approach to model index interaction using specific
formulas to manipulate the measured benefits of candidate
indices.

Cost Estimation: An important component of any tuning
algorithm is the mechanism to estimate the cost of queries
using hypothetical indices (i.e., the cost(q, C) metric for
a hypothetical configuration C). This component typically
entails what-if optimization and thus affects directly the over-
head of online tuning. SOFT uses a what-if optimizer for all
estimations of cost(q, C). COLT also makes use of a what-
if optimizer, but tries to reduce overhead by limiting the
frequency of what-if calls and reusing the cost(q, C) values
for different queries. The BC algorithm takes a very different
approach: It computes an upper bound on cost(q, C) by
making minor transformations to the optimal plan of q under
the materialized configuration. This avoids the cost of what-
if optimization since the optimal plan is a free byproduct of
processing q.

IV. BENCHMARK DESCRIPTION

At a high level, the proposed benchmark models a host-
ing scenario where the same system hosts several separate
databases, and the workload may shift its focus to different
subsets of the databases over time. In what follows, we discuss
the specifics of the benchmark, starting with the environment
in which the online tuning algorithms must operate and the
metrics used to quantify their overall performance. We then
describe the data sets employed in our benchmark and the
methodology for generating shifting workloads. Finally, we
define the specific test cases that comprise the benchmark.
These cases are organized into four workload suites that
exercise different aspects of an online tuning algorithm.



A. Operating Environment

As mentioned above, our benchmark uses an environment
in which several databases reside on a single server. More
specifically, we assume that the data is stored in a traditional
relational database system. It is preferable for the system
to employ state-of-the-art query processing techniques, but
this leaves some ambiguity, since existing DBMSs are not
all designed with the same features. This is an important
point because online tuning algorithms typically depend on the
design of the database system. For example, COLT and SOFT
require the optimizer to provide a what-if interface, and BC
assumes that queries are processed by tree-structured physical
plans. Rather than fix a particular set of DBMS features, we
require the system to implement the features that are assumed
by the online tuning algorithms under evaluation, provided
that the assumptions of different algorithms do not conflict.
This requirement is not ideal, since it causes the benchmark
specification to depend on the algorithms being tested, but
it avoids the greater danger of choosing system features that
are biased toward one index selection algorithm. Section V
details the the database features involved in our benchmark
implementation.

Another important aspect of the environment is the maxi-
mum storage allowed for indices created by the online tuning
algorithm, which we refer to as the storage budget. A larger
storage budget intuitively makes the problem easier since it
allows a large number of indices to be materialized without
needing to choose indices to evict. On the other hand, the
budget should be large enough for the tuning algorithm to
materialize an index configuration with significant benefit.
Based on these observations, we compute the physical storage
required by the tables in each database, and set the storage
budget to the mean of the database sizes. This results in a
moderate storage budget that is interesting for index selection.

B. Benchmark Metrics

We employ two metrics to measure the performance of a
tuning algorithm for a specific workload. The first metric is the
OBJ metric defined in Section II that captures the total work
to run the workload statements under the current configuration
and to materialize indices. The work for each of these tasks is
estimated using the cost model of the query optimizer, so as
to measure performance under the same “world model” that
the online tuner consults to make its decisions. As argued in
a previous study [13], this metric is robust in the sense that it
is not affected by any mismatch between the statistics of the
optimizer and the actual execution environment.

As a complementary performance metric, we measure the
total wall clock time to complete the workload. To ensure
determinism and some statistical stability in measurements, we
replay the workload using a single client with a cold cache.
The measured time includes two components that are not
measured by the ideal metric, namely, the overhead of online
tuning (e.g., what-if optimization) and the slow-down caused
by asynchronous index materializations. Another difference
is that the benefit brought by an index appears only after

the index is materialized, whereas the ideal metric assumes
that the index is available to use for the query immediately
following the decision to create the index. The use of both
metrics thus provides a well-rounded approach to evaluating
a tuning algorithm.

For both metrics, we report the improvement brought by
online tuning compared to a baseline system configuration
that does not contain any indices (except perhaps for any
primary or foreign key indices that are created automatically).
We choose this “naked” baseline in order to gauge the max-
imum benefit of a particular online tuning algorithm. More
concretely, assuming that Xot and Xb measure the cost of
the online tuning system and the baseline system respectively
using one of the aforementioned metrics, we measure the per-
formance of online tuning with the ratio ρ = (Xb−Xot)/Xb.
The sign of ρ indicates whether online tuning improves (ρ > 0)
or degrades (ρ < 0) system performance compared to the
baseline. The absolute value |ρ| denotes the percentage of
improvement or degradation.

C. Databases

We use the following data sets as the distinct databases of
the benchmark: TPC-H, TPC-C, and TPC-E from the TPC
benchmarking suite 1, and the real-life NREF data set 2.
(Note that TPC-H and NREF have been used in a previous
benchmarking study on physical design tuning [14].)

The selection of these specific data sets is not crucial for
the benchmark. Indeed, it is possible to apply the overall
methodology to a different choice of databases. Any selection,
however, should contain sufficiently different data sets, so
that we can create a diverse workload by shifting from one
database to another. On the other hand, the data sets should be
roughly equal in size, so that no database becomes too cheap
(conversely, too expensive) to process. To model an interesting
setting, we require that the total size of the databases exceeds
the main memory capacity of the hardware on which the
benchmark executes.

Our choice of databases make use of some synthetic data
with attribute values generated from a uniform distribution.
This does not necessarily match the characteristics of real-
life data sets, but we work around this issue in our workload
generation methodology: the main idea is to directly control
the selectivity of predicates, which does not rely on the data
following any particular distribution (more details below).

D. Workload Generation

We present next a systematic methodology for generating
shifting workloads over the set of loaded databases.

Query-Only Workloads: We define a workload phase as
a sequence of queries drawn from a specific distribution of
database popularity. The distribution is described by a vector
of positive weights (w1, . . . , wm), where m = 4 is the number
of databases and

∑
wi = 1. The weight wi indicates the

probability of observing a query on database i, 1 ≤ i ≤ m.

1http://www.tpc.org
2http://pir.georgetown.edu/pirwww/dbinfo/nref.shtml
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Fig. 1. Weight vectors for the phases in a query
workload. Shaded bars denote the focus.

Fig. 2. Weight vectors for the phases in an update workload. Shaded bars denote the focus of the
phase. The notation “Q: DB1” denotes queries on database DB1, whereas “U: DB1” denotes updates.

Thus, the next query for the phase is generated by first
sampling a database index and then generating a random query
for the specific database. (We discuss query generation below.)
A workload is created by concatenating several phases of the
same number of queries. To avoid abrupt and easily detected
shifts, the workload shifts gradually from one phase to the
next, using a transitional period with a “mixed” distribution.
We do the shift during the last 10% and first 10% of the queries
in each phase, with a linear transition between the two query
distributions. For example, if there are 100 queries per phase,
then queries 91–110 will be drawn from a mix of the query
distributions for the first two phases.

We use three possible templates to generate random queries
that reflect different levels of workload complexity. In the
description that follows, a low selectivity predicate refers to a
range predicate with a selectivity factor randomly distributed
in (0, 0.01]. A high selectivity predicate is defined analogously
for the interval (0.01, 1].

– A simple query computes a COUNT(*) aggregate over a
single table, applying a single low selectivity predicate. This
template represents the simplest case for online tuning: an
index on the predicated attribute always brings a large benefit,
as it covers the query and has to retrieve fewer than 1% of
its entries; and, all queries employ a single predicate, which
excludes any index interaction in query evaluation. These
properties simplify considerably the bookkeeping that needs
to be performed by an online tuning algorithm.

– A moderate query is similar to a simple query but applies a
conjunction of low and high selectivity predicates on several
attributes. This query class is more challenging for online
tuning: high selectivity predicates imply that not all indices
are beneficial; the covering index for a query may be multi-
column; and, physical plans can employ index intersection,
which implies that indexes may interact. Clearly, these features
may complicate the bookkeeping of a tuning algorithm.

– A complex query may involve several relations linked
through key/foreign-key equi-joins. It also applies several
selection predicates similar to a moderate query. This tem-
plate introduces an additional challenge for an online tuning
algorithm, as the query can now benefit from indexes on the
join predicates. Moreover, index interactions become more
involved, as join indices may reduce the benefit of indices
on predicated attributes (and vice versa).

We employ a 50/50 mix of low and high selectivity
predicates for moderate and complex queries. For all query

templates, the tables participating in each query are chosen
at random, with a selection probability that is proportional
to the corresponding tuple cardinality. This method mirrors
the common assumption that query distribution follows data
distribution. Given a table, selection predicates can be placed
only on a subset of its non-key attributes which we term the
predicated attribute-set. The size of each predicated attribute-
set is bounded by a benchmark parameter that essentially
controls the degree of workload variability. More concretely,
given a value for this bound, say k, the predicated attribute-
set contains the k attributes with the largest active domains.
The rationale is that these attributes are the most “interesting”
in terms of predicate generation. Thus, a low bound implies
that fewer attributes carry predicates, which in turn results in
fewer candidate indices that can benefit more queries. In a
sense, the tuning problem becomes easier in this scenario of
low variability. Conversely, tuning becomes more challenging
as the number of predicated attributes increases, since there are
more candidate indices and their benefit may not be as clear.
As a convention, we assume that the predicated attribute-set
contains all the non-key attributes of each table if the bound
is equal to infinity.

An alternative approach to random queries would be to use
standardized query sets that come with the chosen databases.
As an example, for the TPC-H database, we could draw at
random from the predefined TPC-H queries. However, we still
need to define a query generator for databases that do not
come with a standardized query set, e.g., NREF. It is thus
meaningful to use the same generator for all databases to
ensure uniformity. Moreover, it is difficult to create interesting
scenarios for online tuning using standardized workloads, as
the latter are not designed for this purpose. For instance, it
is challenging to create a diverse workload using just the 22
queries of the TPC-H workload.

Workloads with queries and updates: We extend the
previous methodology to the generation of workloads with
queries and updates. The distribution in each phase is now
described with a vector (w1, . . . , w2m), where w2i is the
probability of observing a query on database i, and w2i+1 is
the probability of observing an update on the same database,
1 ≤ i ≤ m. The stitching of several phases is done in a similar
fashion as for queries.

We generate a random update statement by building an
UPDATE SQL command on a randomly chosen attribute. The
generated commands follow two possible templates, namely,
Simple and Complex updates. Simple updates employ a single



Suite Number of Phases Phase Length Distribution
of DB popularity Query Template Update Template Maximum size of

predicated attribute-set

C1 4

50
100
200
400

80-20 Moderate - ∞

C2 4 300 80-20
Simple

Moderate
Complex

- ∞

C3 4 300 80-20 Moderate Simple
Complex ∞

C4 1 500 Uniform Moderate - ∞

C5 4 300 80-20 Moderate -

1
2
3
4

TABLE I
WORKLOAD GENERATION PARAMETERS FOR THE TEST SUITES.

low selectivity predicate in the WHERE clause of the state-
ment, whereas complex updates have a conjunction of low
and high selectivity predicates (similar to the moderate and
complex query templates). In both templates, the SET clause
applies a small randomized modification to one attribute so
that the expected change over multiple update statements is
equal to 0. This approach ensures that the update statements
do not modify the data distribution significantly.

E. Workload Suites

The core of the benchmark consists of four workload suites
that exercise specific features of an online tuning algorithm.
Each workload suite uses a variety of parameter settings for
our workload generation methodology. For ease of reference,
Table I summarizes the parameter settings for each suite.

C1: Reflex: The first suite examines the performance of
online tuning for shifting workloads of varying phase length.
This parameter essentially determines the speed at which the
query distribution changes, and thus aims to test the reaction
time of an online tuning algorithm.

A workload contains queries in the moderate class, which
involve multi-column covering indices that may interact. There
are m = 4 phases, whose weight vectors are shown in
Figure 1. Each phase concentrates most of the accesses on
two databases using an 80-20 rule, i.e., 80% of the queries
are spread uniformly across two databases and the remaining
20% on the other two databases. The focus of the workload
shifts to two different databases with each phase, ensuring
that consecutive phases overlap on exactly one database. This
implies that consecutive phases have overlapping sets of useful
indices, which creates an interesting case for online tuning.

The suite comprises four workloads with phase length 50,
100, 200, and 400. An aggressive tuning algorithm is likely
to observe good performance across the board, even when
transitions are short-lived. A conservative algorithm is likely
to view short-lived transitions as noise, and show gains only
for larger phase sizes.

C2: Queries: The second test case examines the perfor-
mance of online tuning as we vary the query complexity of

the workload. This parameter affects the level of difficulty for
performing automatic tuning.

A workload consists of m phases, with the same weight
vectors as in the previous experiment. Thus, we have a grad-
ually shifting workload with overlapping phases. The phase
length is set to 300 queries, under the assumption that this is
long enough for a reasonable algorithm to adapt to each phase.

We generate three workloads consisting of simple, moder-
ate, and complex queries respectively. The simple workload is
expected to yield the highest gain for any tuning algorithm.
The moderate workload exercises the ability of the algorithm
to handle multi-column indices and index interaction. Finally,
the complex workload introduces join indices to the mix.

C3: Updates: The third suite examines the performance
of a tuning algorithm for workloads of queries and updates.
The goal is to test the ability of the algorithm to capture both
the benefit and the maintenance overhead of indices.

A workload in this suite consists of 2m phases, following
the ordering shown in Figure 2. Each phase applies again an
80-20 rule to determine the weight vector. The ordering of
phases creates the following types of phases: mixed, where
the same database is both queried and updated; query-heavy,
where most of the statements are queries over two different
databases; and, update-heavy, where most of the statements are
updates over two different databases. The idea is to alternate
between phases with a different effect on online tuning. For
instance, a query-heavy phase is likely to benefit from the
materialization of indices, whereas an update-heavy phase is
likely to incur a high maintenance cost if any indices are
materialized. Mixed phases fall somewhere in the middle,
since the same database is both queried and updated.

We generate two workloads with simple and complex up-
dates respectively. In both cases, the queries are of moderate
complexity. Clearly, simple updates involve less complicated
index interactions and hence the bookkeeping is expected to
be simpler. Conversely, we expect online tuning to be more
difficult for updates of moderate complexity.

C4: Convergence: This suite examines online tuning with
a stable workload that does not contain any shifts, i.e., the



whole workload consists of a single phase. The expectation is
that any online tuning algorithm will converge to a configura-
tion that will remain unchanged by the end of the workload.
Thus, it is interesting to identify the point in the workload
where the configuration “freezes”.

The suite consists of a single workload with a single phase
of 500 moderate queries. The phase employs a uniform weight
vector that places equal importance to all databases, i.e., wi =
1/m. This creates a setting where the choice of optimal indices
is less obvious, compared to a phase that focuses on a specific
set of databases.

C5: Variability: The last suite examines the performance
of online tuning as we expand the set of attributes that carry
selection predicates. The goal is to evaluate the effect of this
type of workload variability on a tuning algorithm.

The workloads in this suite are identical to suite C2, except
that we vary the maximum size of the predicated attribute-
sets as 1,2,3, and 4. Recall that a small maximum size implies
that fewer attributes can receive selection predicates, which
makes the workload less variable. We expect to observe a
direct correlation between the variability of the workload and
the effectiveness of an online tuning algorithm, but it is also
interesting to observe the relative difference in performance
for the different values of the varied parameter.

V. BENCHMARK IMPLEMENTATION

To validate the proposed benchmark, we use it to compare
experimentally two online tuning algorithms, namely, COLT
and BC. These algorithms form an interesting selection be-
cause they differ significantly (Section III) and most impor-
tantly because they represent the predictive and retrospective
approaches to online tuning.

A. Software Platform

We implemented both algorithms inside PostgreSQL. We
chose PostgreSQL as our testing platform since it is a mature,
robust system and the source code is freely available.

Our implementation of BC inside PostgreSQL had to ad-
dress some technical issues, due to certain assumptions behind
the design of the algorithm. First, the index selection of BC
is guided in part by information that is generally available
from a top-down query optimizer. Since PostgreSQL uses a
bottom-up optimizer, our implementation needed to simulate
this information as an additional step in the algorithm. Second,
BC tries to choose indexes that cover all attributes required
by a query, in order to avoid accessing the base table for
additional attributes. In PostgreSQL, indices are “lossy” in the
sense that they may return recently deleted tuples, hence all
index scans require access to the base table in order to filter
out false matches. Therefore, we extended the indexing system
of PostgreSQL to support lossless indices. Overall, we strived
to implement BC so that its performance in PostgreSQL is
correlated to its performance in a system with native support
for top-down optimization and lossless indices.

Our implementation of COLT followed the original algo-
rithm very closely. Our only change was an extension of

the forecasting model to account for index maintenance costs
associated with updates. We allowed COLT to use the lossless
indices that are required by BC, since COLT is not geared
toward any particular index format, and the use of lossless
indices allows us to judge COLT and BC on equal grounds.
Finally, we note that we extended the PostgreSQL optimizer
to allow COLT to perform what-if optimization.

B. Benchmark Setup

We used a dedicated Linux server to run the DBMS
(2x2.8GHz Pentium 4, 4GB RAM, Kernel 2.6.18-8.el5 with
SMP support, 7200RPM SATA disk).

PostgreSQL reported a total size of 4GB after loading all
data and building indices for primary keys. Of this, 2.9GB
was attributed to the base table storage. As specified by the
benchmark, we set the index storage budget to the mean of
the four database sizes, which in our case was about 750MB.
To create an interesting execution environment, we artificially
limited the available RAM to 1GB and set the DBMS buffer
pool to 64MB.3 We note that we kept a small data scale to
ensure timely completion of the experiments.

The workloads were replayed on a separate client machine
that connected to the database server. Time measurements were
taken at the server using the gettimeofday system call.

C. Results

We now discuss the results of executing the workload suites
described in Section IV. Due to limited space, our presentation
focuses on the OBJ metric, only reporting the wall-clock time
when it is most interesting.

Algorithm Reactivity: Figure 3 shows the performance
of COLT and BC on test suite C1, which uses workloads
with varying phase lengths. The plotted performance metric is
the improvement in the OBJ metric, taking all queries of the
workload into account. It is clear that both algorithms perform
better as the phase length increases, which is intuitive since
longer phases allow for more opportunity to adapt to shifts in
the workload. The worst case occurs with a phase length of
50, where both algorithms have very small benefit according
to the OBJ metric.

The results with the wall clock time metric are qualitatively
the same in most cases, but they can also reveal interesting
details about the performance of the two algorithms. Recall
that OBJ simulates a scenario where an index is available to
use immediately after choosing it for the configuration. This
is especially unrealistic when the phases are short, since the
latency to build an index is significant with respect to the
length of the period where the index is useful. The wall clock
time metric gives a more realistic view of performance in this
case, as the latency of index creation is captured in the metric.
Indeed, this intuition is verified in Figure 4, which depicts the
wall clock time for the shortest phase length = 50. The plot
shows for each i the improvement in wall clock time for the

3We followed the practice advocated by PostgreSQL administrators to
delegate cache management to the file system.
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Fig. 3. Algorithm Reactivity. Benefit is measured for
varying phase lengths using estimated costs.

Fig. 4. Performance with a phase length of 50, according
to wall clock time.
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Fig. 5. Effect of Query Complexity. Benefit is measured
using estimated costs. Fig. 6. Update workloads. Benefit is measured using

estimated costs.

first i queries in the workload. The benefit of COLT dominates
BC for most of the time, but the final measurement shows that
both algorithms slightly degrade performance. This indicates
that the OBJ metric may be too rough an approximation for
a rapidly changing query distribution.

Comparing for other phases, we observe that BC has more
benefit than COLT for a phase length of 100, but COLT seems
to have more benefit than BC for workloads with longer
phases. This matches our intuition discussed in Section III:
a retrospective algorithm will have better stability in cases
with a high degree of volatility in the workload, since it
carefully creates indices only if they were optimal in the past.
In contrast, a predictive approach tries to identify patterns in
the workload, and performs better when the phases are longer
and those patterns are clear.

The Effect of Query Complexity: Figure 5 shows the
results from test suite C2, which explores the effect of com-
plexity in the individual queries of the workload. Again, we
plot the relative improvement in the OBJ metric. We observe
that BC outperforms COLT for the simple workload, but the
trend is reversed for moderate queries. This is surprising, since
the moderate queries use several column from each table, and
BC should be able to take advantage of multi-column indices.
We further explore this point below, in our discussion of the
Variability suite. We also observe that both techniques have
the lowest performance for complex queries. It is not clear
whether there is another algorithm that would have a better
showing, but these queries provide an interesting challenge
for the future development of tuning algorithms.

It is interesting to examine closer the behavior of the two al-
gorithms on moderate queries. Essentially, COLT materializes
several single-column indices which can benefit many queries
in the workload. On the other hand, BC considers multi-
column indices that cover at least one past query. These indices
can yield significant benefits, as evidenced by the performance
of BC, but they are more specific and also fewer of them can
be materialized due to their size. These results indicate that
a middle-ground approach may outperform both algorithms.
The main idea would be to consider multi-column indices for
materialization, without restricting the selection to wide (and
large) covering indices.

Update Workloads: The results of our experiments with
updates are shown in Figure 6. The chart shows that COLT
has a small benefit on these workloads, around 5%. The BC
algorithm, on the other hand, shows almost no net effect on
performance. When analyzing the behavior of the algorithms,
we found that BC had a tendency to create a much larger
number of indices than COLT, by a factor of about 3. We
have also observed this type of behavior in other workload
suites. The reasons involve some detailed understanding of
the algorithms, but the high level reason for this is that COLT
requires indices to show their benefit frequently to take notice,
whereas BC may create an index even if it’s relevant queries
are widely spread out.

In many cases, the more eager materialization is beneficial
because the indices will eventually be useful enough to out-
weigh their materialization cost. In these workloads, however,
an index may be beneficial for some phase, but then require
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Fig. 7. Performance with static workload distribution,
according to estimated cost.

Fig. 8. Effect of the maximum number of predicated
attributes per table. Benefit is measured using estimated
costs.

high maintenance costs after a phase shift. This is a difficult
issue for any tuning algorithm to handle, but the problem is
slightly more amplified in the case of BC due to its larger
materialized set.

Static Workload Distribution: We next show our results
from the Convergence workload suite. Our results are shown
in Figure 7, which shows the evolution of the OBJ metric
over time. The first observation that we can make is that the
net effects of the two algorithms are very similar, providing a
benefit of about 15%. We can make more interesting observa-
tions from the shapes of the lines. Recall that this workload
has a static query distribution, so the best strategy should
intuitively create a good set of indices, and then stop changing
the materialized set. We see that BC creates several indices in
the early stages of the workload (signaled by downward jumps)
and after about 120 queries, the benefit steadily increases
because the set of indices has converged. COLT, on the other
hand, creates indices more slowly, including an index that is
created after more than 300 queries. The faster convergence of
BC may be preferred in some contexts, since it implies a short
period of instability followed by a long period of consistent
performance. It is also advantageous to create indices early and
use them for as many queries as possible—this is illustrated
by the results, since BC has better overall performance than
COLT after the first half of the workload.

Effect of Workload Variability: Our last suite shows the
behavior of the algorithms as we modify the maximum size
of the predicated attribute set. The performance according to
the OBJ metric is shown in Figure 8. There is a noticeable
difference between the bounds 1,2 and the bounds 3,4. In
the former case, BC has much higher benefit than COLT,
and in the latter case, the algorithms are roughly equal. To
understand this switch, we examined the statistics of candidate
indices within the BC algorithm. We found that the more
variable workloads caused BC to create a larger number of
index candidates. Since BC considers arbitrary multi-column
indices, the number of possible candidates grows very quickly
with the number of predicated attributes. When the bound on
the predicated attribute set size was ≥ 3, the number of index

candidates became too large to accurately track the benefits
of each one, which led BC to underestimate their benefit and
materialize them more slowly. This is not surprising, since the
number of relevant multi-column indices grows so quickly.
On the other hand, this workload suite provides an excellent
stress test to determine how well an algorithm scales with the
number of predicated attributes.
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