

Airport Capacity and Delay

REPRINT INCORPORATES CHANGE 1 AND 2

AC: 150/5060-5 Date: 9-23-83

Advisory Circular

Federal Aviation Administration **Advisory Circular**

REPRINT INCORPORATES Change 1 and 2

Subject: AIRPORT CAPACITY AND DELAY

Date: 9/23/83

Initiated by: AAS-100

AC No: 150/5060-5

Change:

- 1. <u>PURPOSE</u>. This advisory circular (AC) explains how to compute airport capacity and aircraft delay for airport planning and design.
- 2. CANCELLATIONS. This publication cancels the following Federal Aviation Administration (FAA) Advisory Circulars (ACs):
- a. AC 150/5060-1A, Airport Capacity Criteria Used in Preparing the National Airport Plan, dated July 8, 1968, and
- b. AC150/5060-3A, Airport Capacity Criteria Used in Long Range Planning, dated December 24, 1969.
- 3. <u>BACKGROUND</u>. Changes in the composition of the nation's aircraft fleet together with improvements in air traffic control (ATC) practices have outdated capacity calculations contained the cancelled ACs. An FAA contractor reexamined the procedures for determining airport capacity and suggested improvements to update them. This AC implements these improvements. In addition, this AC refines definitions of capacity and delay. CAPACITY is the throughput rate, i.e. the maximum number of operations that can take place in an hour. DELAY is the difference in time between a constrained and an unconstrained aircraft operation. These definitions take into account that delays occur because of simultaneous demands on the facility. The acceptable level of delay will vary from airport to airport.
- 4. APPLICATION TO AIRPORT DESIGN. To apply these procedures, a reasonable understanding of the aeronautical activities being conducted at, or projected for, the airport is required. Care should be exercised in using available data so as to avoid data which represents a level of activity occurring sporadically during the year—unless it is intended to examine that specific condition. Since few airports operate at "peak demand" levels for more than two or three consecutive, hours in any one day and demand fluctuates throughout a period even as short as one hour, some delay will occur during a typical hours operations. It is suggested that airport design-be based on an hourly demand which can be expected to occur at least on a weekly basis.

6. <u>REFERENCE</u>. Report No. FAA-RD-74-124, Techniques for Determining Airport Airside Capacity and Delay, dated June 1976 is available from the National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, Virginia 22161, telephone (703) 557-4650. The NTIS reference number is AD-A032 475.

Jenard E. Mudd

Director, Office of Airport Standards

CONTENTS

Paragra	aph Page
	CHAPTER 1. AIRPORT CAPACITY AND DELAY
1-1.	General
1-2.	Airport Components
1-3.	Capacity Terms
1-4.	Capacity, Demand, Deiay Relationships
•	CHAPTER 2. PRELIMINARY PROCEDURES
2-1.	General
2-2.	Capacity Assumptions
2-3.	ASV Assumptions
2-4.	Airport Capacity and Annual Service Volume
2-5.	Aircraft Delay
2-6.	Airport Design
2-7.	Cost of Aircraft Delays
	CHAPTER 3. AIRPORT CAPACITY AND AIRCRAFT DELAY CALCULATIONS
3-1.	General
3-2.	Hourly Capacity of Runway Component
3 - 2.	Hourly Capacity of Taxiway Component
3-4.	Hourly Capacity of Gate Group Components
3-5.	Airport Hourly Capacity
3-6.	Annual Service volume (ASV)
3-7.	Hourly Delay to Aircraft on the Runway Component 1
3-a.	Daily Delay to Aircraft on the Runway Component When the D/C Ratio is 1.0 or Less for Each Hour
3- a .	Daily Delay to Aircraft on the Runway Component When the D/C Ratio is Greater Then 1.0 for One or More
5 7.	Hours
3-10.	Annual Delay to Aircraft on the Runway Component
3-11.	Hourly Demands Corresponding to a Specified Level of Average Hourly Delay
	CHAPTER 4. SPECIAL APPLICATIONS
4-1.	General
4-2.	PVC Conditions
4-3.	Absence of Radar Coverage or ILS
4-4.	Parallel Runway airports With One Runway Restricted to Use by Small Aircraft
4-5.	Single Runway AirportSmall Aircraft Only
4-6.	Threshold Stagger
	CHAPTER 5. COMPUTER PROGRAMS FOR AIRPORT CAPACITY & AIRCRAFT DELAY
5-1.	General
5-2.	Simulation Model (SIMMOD)
5 - 3.	Airport Model
5-4.	Airfield Delay Simulation Model (ADSIM)
5-5	Airfield Capacity Model
5-6.	Model Availability
5-7.	Airport Design Computer Model
5-a.	Proprietary Models

Paragr	raph .	Page
	APPENDIX 1. EXAMPLES APPLYING CHAPTER 2 CALCULATIONS	
1. 2.	Examples	
	APPENDIX 2. EXAMPLES APPLYING CHAPTER 3 CALCULATIONS	
1.	General	1
2.	Examples	1
	APPENDIX 3. EXAMPLES APPLYING CHAPTER 4 PROCEDURES	
1. 2.	General	i
	APPENDIX 4. GLOSSARY OF SYMBOLS/TERMS (2 pages)	
	APPENDIX 5. BLANK FORMS (26 pages)	
Table		Page
1-1.	Aircraft classifications	2
1-1. 2 - 1.	Assumptions incorporated in figure 2	. 4
2 -1 . 2-2.	Typical airport capacity and delay printout	
3 - 1.	ASV weighting factors	
3 - 2.	Typicaldemandratios	
Figure		Page
2 - 1.	Capacity and ASV for long range planning	8
2-2.	Average aircraft delay for long range planning	. 12
3-1 .	Information required for capacity and delay calculations	
3-2.	Runway-usediagrams	21
3-3 to	3-42. Hourly capacity of runway-use diagrams for VFR conditions	23-42
3-43 to	3-65. Hourly capacity of runway-use diagrams for IFR conditions	43-54
3-66.	Hourly capacity of a taxiway crossing an active runway with arrivals only, or with mixed operations	
3-67.	Hourly capacity of a taxiway crossing an active runway without arrivals	
3-68.	Hourly capacity of gates	
3- 69.	Averageaircraftdelayinanhour	58
3-70.	Average aircraft delay during saturated conditions	
	3-89. Delay indices for runway-use diagrams in VFR conditions	61-70
	3-102. Delay indices for runway-use diagrams in IFR conditions	70-76
4-L	Special application	. 80
4-2 to	4-14 Hourly capacity of runway-use diagrams (Capacity 4 in PVC)	81 -8 4
	24-16. Hourly capacity of runway-use diagrams (In radar/nonradar environment)	
4-1/to	24-20. Hourly capacity of runway-use diagrams (Runway restricted use in VFR)	. 86
	4-25 Hourly capacity of runway-use diagrams (Runway restricted use in IFR)	
4-26.	TIOUTTY CAPACITY OF SHIGH TURNAY APPOITS, WITHOUT FACAL COVERAGE, OF ILS SERVING SMAIL AFFICIAL ONLY	. 05

Figure		Page
Al-l.	Investigate runway capability	. 2
A1-2.	Identify 2-runway configurations	
AI-3. `	Determine annual delay	4
Å1-4.	Savings associated with reduced delay.	5
A2-1.	Hourly capacity of the runway component	2
A2-2.	Hourly capacity of the taxiwav compapent	6
A2-3.	Hourly capacity of the gate group component	8
A2-4.	Airport hourly capacity	10
A2-5.	Annual service volume	
A2-6.	Hourly delay	13
A2-7.	Daily delay, D/C ratio equal or less than 1.00	17
A2-8.	Daily delay, D/C ratio is greater than 1.00	
A2-9.	Annual delay	
A2-10.	Hourly demand at a specified level of delav .	26
A3-1.	Hourly capacity in PVC conditions	
A3-2.	Hourly capacity on the absence of radar coverage or ILS	4
A3-3.	Hourly capacity of parallel runway airport with one runway restricted to small aircraft	6
A3-4.	Hourly capacity of a single runway airport used exclusively by small aircraft that lacks radar or ILS	
As-l.	Hourly capacity. ASV, delay for long range planning	3
A5-2.	Hourly capacity runway component	5
A5-3.	Hourly capacity taxiway component	7
A5-4.	Hourly capacity gate group component	9
A5-5.	Airporthourly capacity	
A5-6.	Annual service volume	
A5-7.	Hourly delay	
A5-8.	Daily delay	
A5-9.	Tabulation hourly demand for representative days	19
A5-10.		
A5-11.		
A5-12.	•	. 25
A5-13.	The runway-use configuration sketches printout	26-27

9/23/83 AC 150/5060-5

CHAPTERI.. AIRPORT CAPACITY AND AIRCRAFT DELAY

1-1. **GENERAL.** Hourly airport capacities and annual aircraft delay canputations are needed to design and evaluate airport **development** and **improvement** projects. The method for computing airport capacity and aircraft delay is the **throughput** method provided in this AC.

a. <u>Background</u>. The throughput **method** for calculating airport capacity and average delay per aircraft is derived from computer models used by the **Federal** Aviation Administration (FAA) to analyze airport capacity and reduce aircraft delay. Calculations of hourly capacity are needed to determine average delay. Since airport and airport component hourly capacities vary throughout the day due to variations in runway use, aircraft mix, ATC rules, **etc.**, a number of calculations **may** be **needed**.

b. AC Organization.

- (1) Chapter 1 provides an overview of airport capacity and aircraft delay analyses.
- (2) Chapter 2 contains calculations for computing airport capacity, annual service volume (ASV), and aircraft delay for long range evaluations.
- (3) Chapter 3 contains more detailed computations suitable for a wide range of airport design and planning applications.
 - (4) Chapter 4 contains special computations of capacity relating to:
 - (i) Periods of poor visibility and ceiling conditions.
- (ii) Airports without radar coverage and/or an instrument landing system (ILS).
- (iii) Airports with parallel runways when one runway **is** limited to use by small aircraft.
- (5) Chapter 5 identifies **computer** models which may be used to further refine runway capacity and aircraft delay analyses.
- (6) The appendices contain examples applying chapter 2, 3, and 4 calculations.
- c. <u>Units</u>. Since FM operational standards for spacing aircraft taking-off and **landing are in** customary units (feet, knots, etc.), it is expedient to perform capacity and delay computations in the same units.

1-2. AIRPORT COMPONENTS.

- a. Runway. The term runway includes the landing surface, plus those portions of the approach and departure paths used in common by all aircraft.
- b. <u>Taxiway</u>. The term taxiway includes the parallel taxiways, entrance-exit taxiways, and crossing taxiways, recognizing that a capacity limiting condition may exist where an arriving or departing stream of aircraft must cross an active runway.

c. Gate Group. The term gate group identifies the number of gates located in the terminal complex which are used by an airline, or shared by two or more airlines, or other aircraft operating at the airport on a regularly scheduled basis. In most cases the terminal gates are not used by general aviation aircraft.

- 1-3. <u>CAPACITY TERMS</u>. The following subpargraphs **define** terms used herein. Symbols used in this AC are defined in Appendix 4, Glossary of Symbols/Terms.
- a. <u>Aircraft Mix</u>. Aircraft mix is the relative percentage of operations conducted by each of the **four** classes of aircraft (A, B, C, and **D)**. Table **1-1** identifies physical aspects of the four aircraft classes and their relationship to **terms** used in the wake turbulence standards.

Aircraft class	Max. Cert. T.O. might (lbs)	Number Engines	Wake Turbulence Classification				
A	12,500 or less	Single	Small (S)				
В	12,300 01 1655	Multi	biliati (b)				
С	12,500 - 300,000	Multi	Large (L)				
D	over 300,000	Multi	Heavy (H)				

Table 1-1. Aircraft classifications

- b. <u>Annual Service Volume (ASV)</u> ASV is a reasonable estimate of an airport's **annual capacity.** It accounts for differences in runway use, aircraft mix, weather conditions, etc., that **would** be **encountered** over a **year's time**.
- c. Capacity. Capacity (throughput capacity) is a measure of the maximum number of aircraft operations which can be accommodated on the airport or airport component in an hour. Since the capacity of an airport component is independent of the capacity of other airport components, it can be calculated separately.
- d. Ceiling and Visibility. For purposes of this AC, the terms VFR, IFR, and PVC are used as measures relating to the following ceilings and visibilities.
- (1) Visual **flight** rule (VFR) conditions occur whenever the **cloud** ceiling is at least 1,000 feet above **ground** level and the visibility is at least three statute miles.
- (2) Instrument flight rule (IFR) conditions occur whenever the reported cloud ceiling is at least 500 feet but less than 1,000 feet and/or Visibility is at least one statute mile but less than three statute miles.
- (3) Poor visibility and ceiling (PVC) conditions exist whenever the **cloud** ceiling is less than 500 feet and/or the visibility is less than one statute **mile.**
- e. **Delay**. Delay is the difference between constrained and unconstrained operating **time**.

9/23/83 AC 150/5060-5

f. <u>Demand</u>. Demand is the magnitude of aircraft operations to be accamnodated in a specified time period.

- g. Gate. A gate is an aircraft parking position used by a single aircraft loading or unloading passengers, mail, cargo, etc. A parking position which is regularly used by two aircraft at the same time is two gates for capacity calculations.
- (1) <u>Gate type</u> is the size of the gate. A **Type** 1 gate is capable of **accommodating** all aircraft, including **widebodies** such as the A-300, B-747, B-767, **DC-10**, L-1011. A **Type** 2 gate will **accommodate** only non-widebodied aircraft.
- (2) <u>Gate mix</u> is the percent of non-widebodied aircraft accommodated by the gate group.
- (3) <u>Gate **occupancy time**</u> is the length of time required to cycle an aircraft through the gate.
- h <u>Mix Index</u>. Mix index is a mathematical expression. It is the percent of Class C'aircraft plus **3 times** the percent of Class D aircraft, and is written: **%(C+3D)**.
- i Percent Arrivals (PA). The percent of arrivals is the ratio of arrivals to total operations and is computed asfollows:

Percent arrival8 = $\frac{A+\frac{1}{2}(T&G)}{A+DA+(T&G)}$ x 100, where

A = number of arriving aircraft in the hour

DA = number of departing aircraft in the hour

T&G = number of touch and go's in the hour

j. Percent Touch and Go's. The percent touch and go's is the ratio of landings with an immediate takeoff to total operations and is cauputed as follows:

Percent touch and go'8 = $\frac{(T&G)}{A+DA+(T&G)} \times 100$, where

A = number of arriving aircraft in the hour

DA = number of departing aircraft in the hour

T&G = number of touch and go's in the haur

Touch and go operations are normally associated with flight training. The number of these operations usually decreases as the number of air carrier operations increase, as demand for service approaches runway capacity, or as weather conditions deteriorate.

k. Runway-use Configuration. Runway-use configuration is the number, location, and orientation of the active runway(s), the type and direction of operations, and the flight rules in effect at a particular time.

1-4. CAPACITY, DEMAND, DELAY RELATIONSHIPS, As demand approaches capacity, individual aircraft de&y is increased. Successive hourly demands exceeding the hourly capacity result in unacceptable delays. When the hourly demand is less than the hourly capacity, aircraft delays will still occur if the demand within a portion of the time interval exceeds the capacity during that interval, Because the magnitude and scheduling of user demand is relatively unconstrained, reductions in aircraft delay can best be achieved through airport improvements which increase capacity.

12/1/95 AC 150/5060-5 CMG 2

CHAPTER 2. CAPACITY AND DELAY CALCULATIONS FOR LONG RANGE PLANNING

2-1. **GENERAL** pter contains calculations for **determining** hourly airport capacity, ASV, and aircraft delay for long-range airport planning. Appendix 1 contains examples of these calculations. When more precise results are required, or if the conditions differ significantly **from** the assumptions described in the following paragraphs, apply the calculations found in subsequent chapters.

- 2-2. <u>CAPACITY ASSUMPTIONS</u>. Hourly VFR and IFR values in figure 2-1 are based on runway utilizations which **produce** the highest sustainable capacity consistent with current ATC ties and practices. These values are representative of typical U.S. airports having similar runway-use configurations. VFR and IFR hourly airport capacities in figure 2-1 are based on the following assumptions:
- a. <u>Runway-use Configuration</u>. Any runway layout **can** be approximated by one of the 19 depicted runway-use configurations. Multiple arrival streams are only to parallel runway configurations.
 - b. <u>Percent Arrivals</u>. Arrivals equal departures.
 - c. <u>Percent Touch and Go's</u>. The percent of touch and go's is within the ranges in table 2-1.
- d. <u>Taxiways</u> a full-length parallel taxiway, ample runway entrance/exit taxiways, and no taxiway crossing problems.
- e. <u>Airspace Limitations</u> There are no airspace limitations which would adversely impact flight operations or otherwise restrict aircraft which could operate at the airport. Missed approach protection is assured for all converging operations in IFR weather conditions.
- f. <u>Runway Instrumentation</u> The airport has at least one runway equipped with an **ILS** and has the necessary ATC facilities and services to carry but operations in a radar environment. For independent operations, 3,400 feet separation requires Precision Runway Monitor (**PRM**) equipment with high update radar. If PRM equipment is not available, independent operations will require 4,300 feet separation.

is will require 4,300 feet separation.

Table 2-1. Assumptions incorporated in figure 2-1

			Demand Ratios								
Mix Index %(C+3D)	Percent Arrivals	Percent Touch & Go	Annual Demand Av. Daily Demand*	Av. Dailv Demand* Av. Peak Hour Demand*							
. O-20	50	O-50	290	9							
2 1-50	Ħ	0-40	300	10							
5 1-80	n	O-20	310	11							
81-120	n	0	320	12							
121-180	n	0	350	14							

* In the peak month

- **2-3. ASV_ASSUMPTIONS.** The ASV values in figure 2-1 are based on the assumptions of paragraph 2-2, table **2-1**, and the following:
 - a. WRather ather conditions occur roughly 10 percent of the time.

AC 150/5060-5 CHG 2

b. <u>Runway-use Configuration</u> Roughly 80 percent of the time the airport is operated with the runway-use configuration which produces the greatest houriy capacity.

- **2-4. AIRPORT_CAPACITY_AND_ANNUAL_SERVICE_VOLUME.** Calculate the approximate hourly capacities and **the ASV** as follows:
 - a. Determine the percentage of aircraft classes C and D using, or expected to use, the airport.
- b Select the runway-use configuration from figure 2-1 that best represents the airport. Runway-use configurations 9 through 19 show by means of arrows the predominant direction of runway operations. When no direction is specified, the direction of operation is not critical. Runway-use configurations 14 through 19 indicate by dashed lines the limit of the range of runway orientation. For airports having three or more runway orientations (consider parallel runways as one runway orientation), identify the two-runway orientation that is operated most frequently. To adjust for staggered thresholds see paragraph 4-6.
 - c. Calculate the mix index.
 - d. Read the approximate VFR and IFR hourly capacities and the ASV directly from figure 2-1.
- 2-5. AIRCRAFT DELAY. Calculate the aircraft delay as follows:
 - a. Estimate annual demand using current or historical **information** or projections of future traffic.
 - b. Calculate the ratio of annual demand to ASV.
- c. Obtain average delay per aircraft from figure **2-2.** The upper portion of the band applies to airports where air carrier **operations** dominate. The **full** width of the band applies to airports where general aviation operations dominate. Delays 5 to **10** times average could be experienced by individual aircraft.
 - d. **Calculate** total annual aircraft delay as the average delay multiplied by the annual demand.
- 2 6 <u>AIRPORT DESIGN COMPUTER MODEL. The Airport Design Computer Model capacity and delay outputs are</u> the 'same as those obtained **from** this chapter. The **computer** model covers the same runway-use configurations and **traffic** mixes as figure 2-1.
 - a. Entire Datamputer model requires the following:
- (I) The percentage of operations by aircraft **weighing more than** 12,500 pounds but less than 300,000 pounds with respect to the total number of aircraft operations.
- (2) The Percentage of operations **by** aircraft weighing more than 300,000 pounds with respect to the total number of aircraft operations.
 - (3) The targeted level of annual operations (the demand).
 - (4) The predominate operations (either air carrier or general aviation).
- b. <u>Output</u>. The Airport Design model lists the runway-use configurations in rank order of capacity and least delay. Other considerations (project costs and/or land availability) may preclude the **selection** and development of the highest ranking runway-use configuration (normally configuration No. 8). Table 2-2 illustrates a typical **airport** capacity and delay printout. Figure **A5-13** illustrates a printout of the runway-use configuration sketches.

12/1/95 AC 150/5060-5 CHG 2

Table 2-2. Typical airport capacity and delay printout

AIRPORT CAPACITY AND DELAY DATA

C =	Percent	of	airp	lane	S	ovei	r i	12,	500	lk	s]	but	nc	t	OV	er	30	Ο,	000	1	bs		55
D =	Percent	of	airp	lane	s	ove	r	300	,00	0 1	.bs	•		•	•	•				•	•	•	4
200 000 35-																							
Annua	al demand																						220,000
Air	carrier	900	rati	ons	dor	ninat	e																

AIRPORT CAPACITY AND DELAY FOR LONG RANGE PLANNING

				Ratio of	Avera	age			
Runway-use Capacity				Annual	Delay	per		Minute	es of
Configurati	on		ASV	Demand	Aircı			Annua	1 Delay
				to Asv					J
(Sketch)	(Ops/	Hour)			(Min	utes)		(0	00)
No.	VFR	IFR		Ratio	Low	High			High
8	242	111	515,000	0.43	0.3	0.4	•	66	88
7	184	111	455,000	0.48	0.3	0.5		66	110
4	126	111	305,000	0.72	0.7	1.1		154	242
12	126	111	305,000	0.72	0.7	1.1		154	242
6	184	65	290,000	0.76	0.8	1.2		176	264
5	171	65	285,000	0.77	0.9	1.3		198	286
3	126	65	275,000	0.80	1.0	1.5		220	330
11	126	65	275,000	0.80	1.0	1.5		220	330
16	164	56	275,000	0.80	1.0	1.5		220	330
18	164	56	275,000	0.80	1.0	1.5		220	330
19	158	56,	275,000	0.80	1.0	1.5		220	330
13	145	56	270,000	0.81	1.0	1.5		220	330
2	121	56	260,000	0.85	1.1	1.7		242	374
10	121	S 6	260,000	0.85	1.1	1.7		242	374
17	121	56	260,000	0.85	1.1	1.7		242	374
14	85	56	220,000	1.00	2.3	3.5		506	770
1,5	82	56	215,000	1.02	2.6	4.0		572	880
9	77	56	215,000	1.02	2.6	4.0		572	880
1	63	56	205,000	1.07	3.6	5.7		792	1254

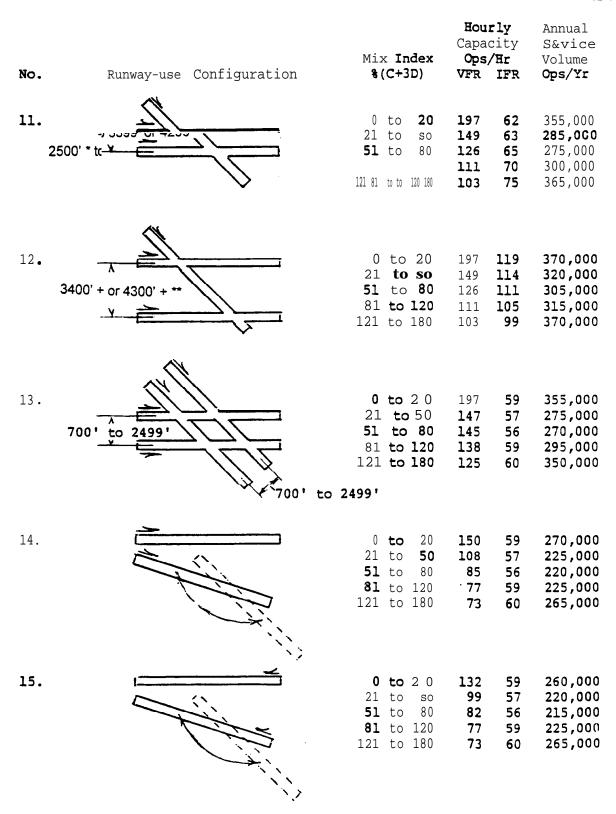
- 2-7. <u>COST OF AIRCRAFT DELAYS</u> A major factor which influences a decision to proceed with a project is the benefit versus the cost of the improvement: The airport capacity and aircraft delay computations operate on the premise that individual aircraft within the broad aircraft classes A, B, C, and D (See table 1-1) have comparable service times. A cost computation however requires a more refined breakdown of aircraft types and usages.
- a. <u>Delay Costs</u>. The per minute costs of figure A5-12 are conservative estimates and are based on the best data currently available. The costs represent a reasonable estimate of crew, fuel and maintenance costs for operators of air carrier and air taxi aircraft, and fuel and maintenance costs for operators of general aviation aircraft. Other data sources may be used in the calculation of savings. When other data sources are used, document the data source as well as the rationale used to allocate delay savings among the cost classes being identified.
- b. <u>Estimating Savings</u>. Appendix 1 contains an example for calculating the **savings** associated with the reduced aircraft delays based on the figure A5-12 aircraft groupings and estimates of delay costs. Figure A5-12 is the form used in this calculation.

Chap 2 **Par 2-1**

NO.	Runway-useConfiguration	Mix Index %(C+3D)	Hourly Capacity Ops/Hr VFR IFR	Annual Service Volume Ops/Yr
I.	:	0 to 20 21 to 50 51 to 80 81 to 120 121 to 130	98 59 74 57 63 56 55 53 51 50	230,000 195,000 205,000 210,000 240,000
2.	700' to 2499'*	0 to 20 21 to 50 51 to 80 81 to 120 121 to 180	197 59 145 57 121 56 105 59 94 60	355,000 275,000 260,000 285,000 340,000
3.	2500' * to 3399' or 4299' ***	a to 20 21 tc 50 51 to 80 81 to 120 121 to 180	197 62 149 63 126 65 111 70 103 75	355,000 285,000 275,000 300,000 365,000
4.	3400'+or 4300'+ · =	0 to 20 21 to 50 51 to 80 81 to 120 121 to 180	197 119 149 113 126 111 111 105 103 99	370,000 320,000 305,000 315,000 370,000
5.	700' to 2499'	a tc 20 21 to so 51 to 80 81 to 120 121 to 180	295 62 213 63 171 65 149 70 129 75	385,000 345,000 285,000 310,000 375,000

^{*} Staggered threshold adjustments may apply, see paragraph 4-6.
** Refer to paragraph 2-2.f.

Figure 2-1. Capacity and ASV for long range planning


12/1/95 AC 150/5060-5 CHG 2

No.	Runway-use Configuration	Mix Index %(C+3D)	Hour Capac Ops/ VFR	ity	Annual Service Volume Ops/Yr
6.	700 '\ to \(\frac{2499'}{\tau}\) 2500' * to 3399' or 4299' ***	0 to 20 21 to 50 51 to 80 81 to 120 121 to 180	295 219 184 161 146	62 63 65 70 75	385,000 310,000 290,000 315,000 385,000
7.	700 'A to 2499' 3400'- or 4300'+ **	0 to 20 21 to 50 51 to 80 81 to 120 121 to 180	29s 219 184 161 146	119 114 111 117 120	625,000 475,000 455,000 510,000 645,000
8 •	3400'+ or 4300' +	0 to 20 2151 to to 50 81 to 120 121 to 180	394 290 242 210 189	119 114 111 117 120	715,000 550,000 515,000 565,000 675,000
9.		Oto 20 21 to 50 51 to 80 81 to 120 121 to 180	98 77 77 76 72	59 57 56 59 60	230,000 200,000 215,000 225,000 265,000
10.	700' to 2499'*	0 to 20 21 to so 51 to 80 81 to 120 121 to 180	197 14s 121 105 94	59 57 56 59 60	355,000 275,000 260,000 285,000 340,000

^{*} Staggered threshold adjustments may apply, see paragraph 4-6.
** Refer to paragraph 2-2.f.

Figure 2-1 .Capacity and ASV for long range planning (cont.)

AC 150/5060-5 CHG2

^{*} Staggered threshold adjustments may apply, see paragraph 4-6.

Figure 2-I. Capacity and ASV for long range planning (cont.)

^{**} Refer to paragraph 2-2.f.

12/1/95 AC 150/5060-5 CHG 2

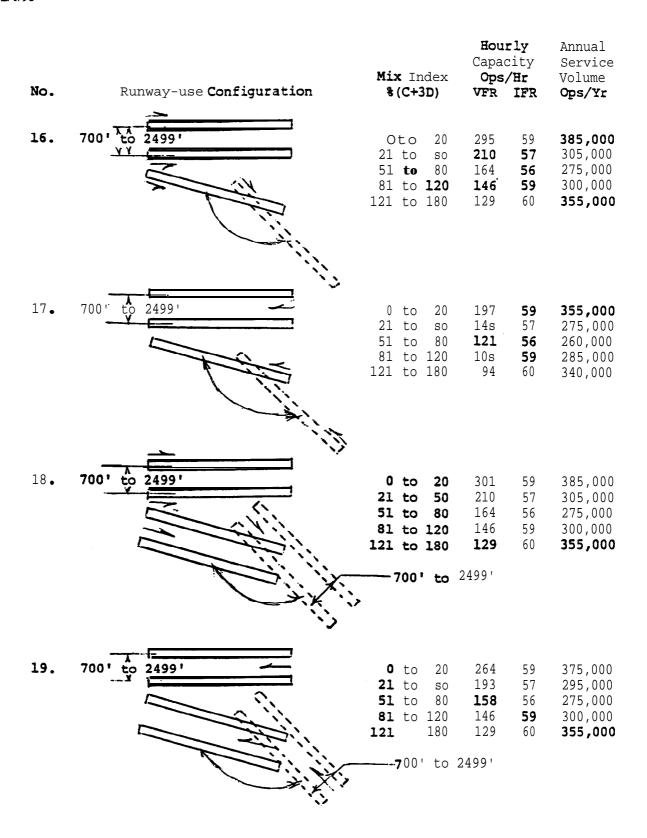
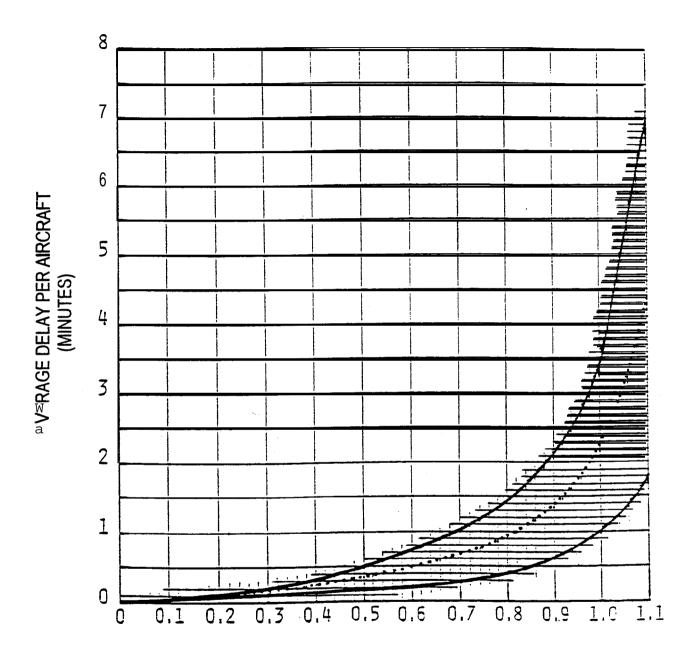



Figure 2-1. Capacity and ASV for long range planning (cont.)

12/1/95 AC 150/5060-5 CHG 2

RATIO OF ANNUAL DEMAND TO ANNUAL SERVICE VOLUME

Figure 2-2. Average aircraft delay for long rangeplanning

I2 Chap 2

9/23/83 AC 150/5060-5

CHAPTER 3. AIRPORT CAPACITY AND AIRCRAFT DELAY CALCULATIONS

- **3-1. GENERAL.** This chapter contains instructions for calculating hourly capacity, **ASV**, and aircraft delay for a wide range of runway-use configurations and operational alternatives.
 - a. Capacity Calculations.
 - (1) Hourly capacity of the runway component.
 - (2) Hourly capacity of the **taxiway** canponent.
 - (3) Hourly capacity of gate group components.
 - (4) Airport hourly capacity.
 - (5) ASV.
 - b. <u>Delay Calculations</u>.
 - (1) Hourly delay.
 - (2) Daily delay.
 - (3) Annual delay.

Figure 3-1 provides a checklist of the data required **for** these calculations. Appendix 2 contains examples of these calculations.

- 3-2. **HOURLY CAPACITY OF THE RUNWAY COMPONENT. Except** for situations involving PVC conditions, an absence of radar coverage or **ILS**, and airports with parallel runways when one runway is limited to use by **small** aircraft (all of which are covered in chapter **4**), calculate the runway component hourly capacity as follows:
- a. Select the runway-use configuration in figure 3-2 which best represents the use of the airport during the hour **of** interest. To adjust for staggered thresholds, see paragraph 4-6.
 - b. Identify fraa figure 3-2 the figure number for capacity (for C^{*} , T, and E).
- c. Determine the percentage of Class C and D aircraft operating on the runway component and calculate the mix index.
 - d. Determine percent arrivals (PA).
 - e. Determine haurly capacity base (C*).
- f. Determine the percentage of touch and go operations during VFR operations and determine the touch and go factor (T). During IFR operations, T will be 1.00.
- g. Determine the location of exit taxiways (measured from the threshold at the approach end of the runway) and determine the exit factor (B).
- h. Calculate the hourly capacity of the runway **component** by the following equation:

Hourly capacity of the runway component = C* • T • E

OUTPUT

1. Hourly capacity of runway component

See: paragraph 3-2 appendix 2 (figure **A2-1)**

2. Hourly capacity of **taxiway** component

See: paragraph 3-3 appendix 2 (figure **A2-2**)

3. Hourly capacity of gate group components

See: paragraph 3-4 appendix 2 (figure **A2-3**)

4. Airport hourly capacity
See: paragraph 3-5
appendix 2 (figure **A2-4**)

5. Annual service volume
 See: paragraph 3-6
 appendix 2 (figure A2-5)

6. Hourly delay to aircraft on rummy component

See: paragraph 3-7 appendix 2 (figure A2-6)

7. Daily delay to aircraft on rummy component

See: paragraphs 3-8 and 3-9 appendix 2 (figure 8 A2-7, and A2-8)

8. Annual delay to aircraft on runway component

See: paragraph 3-10 appendix 2 (figure **A2-9**)

INPUT NEEDED

a. Ceiling and visibility (VFR, IFR, or PVC)

b. Runway-useconfiguration

c. Aircraft mix

d. Percent arrivals

e. Percent **touch** and go

f. Exit taxiway locations

a. Intersecting taxiway location

b. Runway operations rate

c. Aircraft mix on runway being crossed

a. Number and type of gates in each gate group

b. Gate mix

c. Gate occupancy times

Capacity outputs from 1, 2, and 3 above

a. Hourly capacities of runway component

b. **Occurence** of operating conditions

a. Hourly demand

b. **Hourly** capacity of the runway component

c. **Demand** profile factor

a. Hourly delay

b. Hourly demand

c. Hourly capacity

Annual demand

b. **Daily** delay

c. Hourly demand

d. Hourly capacities

e. Percent VFR/IFR conditions

f. Runway-useconfiguration

Data Sources:

National Climatic Center, Asheville, North Carolina Air Traffic Control Tower records Offical Airline Guides Airport Management

Observations

Figure 3-1. Information required for capacity and delay calculations

9/23/83 AC 150/5060-S

3-3. HOURLY CAPACITY OF THE TAXIWAY COMPONENT. Calculate the hourly capacity of a taxiway component as follows:

- a. Determine the distance from the runway end (start of takeoff roll) to the taxiway crossing.
- **b.** Determine the runway operations **rate**, **i.e.**, the demand being accommodated on the runway being crossed.
 - c. Calculate the mix index of the runway being crossed.
 - d. Determine the hourly capacity of the taxiway crossing.
- (1) **Use** figure 3-66 when the crossed runway accommodates arrivals or mixed operations.
- (2) Use figure 3-67 when the crossed runway accommodates only departures and touch and go's.
- **3-4. HOURLY CAPACITY** OF **GATE GROUP COMPONENTS**. Calculate the hourly gate group capacities as follows:
- a. Determine the number of gate groups and the number of gates in each gate group.
- b Determine the gate mix, i.e., the percent of non-widebadied aircraft using each gate group.
- c. Determine the percentage of gates in each gate group that can accommodate widebodied aircraft.
- **d.** Determine for each gate group the average gate occupancy time for **wide-** bodied **and** non-widebodied aircraft.
- **e.** When widebodied aircraft are served, calculate the gate occupancy ratio (R) by the following equation:
 - R = Average gate occupancy time for widebodied aircraft
 Average gate occupancy time for non-widebodied aircraft

When widebodied aircraft are not served, R equals 1.00.

- f. Calculate the hourly capacity of each gate group by use of figure 3-68.
- 3-5. AIRPORT HOURLY CAPACITY. Calculate the airport hourly capacity as follows:
- a. Calculate the hourly capacities of the runway, taxiway, and gate groups components and determine the hourly demands on each.
- **b.** Calculate the demand ratio for each cauponent by dividing the component demand by the runway component demand.

c. Calculate the component quotients by dividing each **components** capacity by its demand ratio.

d Identify the airport hourly capacity, i.e., the lowest quotient calculated in c above.

3-6. ANNUAL SERVICE VOLUME (ASV). Calculate the ASV as follows:

- a. Calculate the. weighted hourly capacity ($C_{\mathbf{w}}$) for the runway **component** as follows:
- (1) Identify the different runway-use configurations used over the course of a year.
- (2) Determine the percent of **time** each runway-use configuration is in **use** (P_1 through P_n). Include those times when the hourly capacity is zero, i.e., the weather conditions are below airport minimums or the airport is closed for other reasons. If a runway-use configuration is used less than 2 percent of the time, that time **may** be credited to another runway-use configuration.
- (3) Calculate the hourly capacity for each runway-use configuration ($\mathbf{C_1}$ through $\mathbf{C_n}$).
- (4) Identify the runway-use configuration that provides the maximum capacity. Generally, this configuration is also the configuration most frequently used.
- (5) Divide the hourly capacity of each runway-use configuration by the hourly capacity of the runway-use configuration that provides the **maximum** capacity.
- (6) Determine the **ASV** weighting factor (**W1** through Wn) for each runway-use configuration from Table 3-1.

Percent of	Weighting Factors													
Maximum	VFR		IFR											
capacity		Mix Index (0-20)	Mix Index (21-50)	Mix Index (51-180)										
91+	1	1	1	1										
E1-90	5	1	3 .	5										
66-80	15	2	8	15										
51-65	20	3	12	20										
0-50	25	4	16	25										

Table 3-1. ASV Weighting Factors

9/23/83 AC 150/5060-5

(7) Calculate the weighted hourly capacity (C_w) of the runway component by the following equation:

$$\mathbf{c_w} ^{\beta} \frac{(\mathbf{P_1 \cdot C_1 \cdot W_1}) + (\mathbf{P_2 \cdot C_2 \cdot W_2}) + \ldots + (\mathbf{P_n \cdot C_n \cdot W_n})}{(\mathbf{P_1 \cdot W_1}) + (\mathbf{P_2 \cdot W_2}) + \ldots + (\mathbf{P_n \cdot W_n})}$$

- **b.** Calculate the ratio of annual demand to average daily demand during the peak **month** (D). Typical annual demand to average daily demand ratios are provided in table 3-2.
- c. Calculate the ratio of average daily demand to average peak **hour demand** during the **peak month (H)**. Typical average daily to average peak hour demand ratios are provided in table 3-2.

Mix Index	Daily (D)	Hourly (H)
0-20	280-310	7-11
21-50	300-320	10-13
51-180	310-350	11-15

Table 3-2. Typical Demand Ratios

d. Calculate ASV by the following equation:

$$ASV = C_w \cdot D \cdot H$$

- 3-7. **HOURLY DELAY TO AIRCRAFT ON THE RUNWAY COMPONENT.** Hourly delay calculations described in this paragraph **apply to** those hours when the hourly demand **does not** exceed the hourly capacity of the runway component. For **those hours when the hourly** demand exceeds the hourly capacity of the runway **component**, paragraph 3-9 calculations apply. Calculate hourly delay as follows:
- a. Calculate the hourly capacity of the runway component for the specific hour of interest.
- b. Identify from figure 3-2 the figure number for delay (for the arrival delay index (ADI) and the departure delay index (DDI)).
- c. Identify the hourly demand (HD) and the peak 15 minute demand (Q) on the runway component.
 - d. Calculate the ratio of hourly demand to hourly capacity (D/C).
 - e. Determine the arrival delay index (ADI) and departure delay index (DDI).

f Calculate the arrival delay factor (ADF) and departure delay factor (DDF) by the f&owing equations:

$$ADF = ADI \cdot (D/C)$$

$$DDF = DDI \cdot (D/C)$$

g. Calculate the demand profile factor (DPF) by the following equation:

$$DPF = \frac{100 \text{ O}}{HD}$$

NOTE: Airports with a high percentage of air carrier activity normally have a DPF of 50 percent. Airports with a high percentage of general aviation activity normally have a DPF in the 30 to 35 percent range.

- h Calculate the average delay for arriving aircraft (DAHA) and departing aircraft. (DAHD) figure 3-69.
 - i. Calculate hourly delay (DTH) by the following equation:

DTH =
$$HD(PA \cdot DAHA + (100 - PA) \cdot DAHD)/100$$

- 3-8. DAILY DELAY TO AIRCRAFT ON THE RUNWAY COMPONENT WHEN THE D/C RATIO IS 1.0 OR LESS FOR EACH HOUR. Calculate the daily delay as follows:
- a. For each hour, calculate the hourly delay to aircraft on the runway component.
- b. Calculate the delay for the time period in question by summing the delay for each of the hours.
- 3-9. DAILY DELAY **TO** AIRCRAET ON THE **RUNWAY COMPONENT WHEN THE** D/C RATIO IS **GREATER** THAN 1.0 FOR ONE OR **MORE** HOURS. **Calculate the daily delay as follows:**
- a. Identify the saturated time periods. A saturated period consists of the consecutive hours when demand exceeds capacity (termed the overload phase) plus the subsequent hour(s) required to accommodate the residual demand (termed the recovery phase).
- b. For each saturated period (overload plus recovery phase), calculate the delay to aircraft as follows:
 - (1) Determine the duration of the overload phase.
- (2) Calculate the hourly AD/C ratio during the overload phase, i.e., the sum of the hourly demands during the overload phase divided by the sum of the hourly capacities during the overload phase.
- (3) Determine the percent of arrivals (PAS) for the saturated (overload plus **recovery**) **period.**
- (4) Determine the ADI and the DDI for the saturated (overload plus recovery) period.

9/23/83 AC 150/5060-S

(5) Calculate the arrival delay factor (ADF) and departure delay factor (DDF) using the following equations:

 $ADF = ADI \cdot (AD/C)$

 $DDF = DDI \cdot (AD/C)$

- (6) Determine the average delay per arrival (DASA) and per departure (DASD) during the saturated (overload plus recovery) period from figure 3-70.
- (7) Calculate the delay in the saturated period (DTS) by the following equation:

DTS = $(HD_1+HD_2+...+HD_n) \cdot (PAS \cdot DASA + (100-PAS) DASD)/100$, where

 HD_1 through HD_n = Hourly demand during hours 1 through n of the saturated period.

- c. Determine for each unsaturated hour the delay in accordance with the procedures in paragraph **3-8**.
- d Calculate the total daily delay by summing the saturated and unsaturated delay;.
- 3-10. ANNUAL DELAY TO AIRCRAFT ON THE RUNWAY COMPONENT. The following procedure uses 24 representative days, one VFR and one IFR for each calander month. Other increments of time may be selected. If the airport has considerable fluctuation in operations during the week, or if a more precise delay determination is needed, one representative VFR and one representative IFR day should be used for each day of the week. Variation in seasonal traffic will require repetition of these computations for each season. Airports which have consistent patterns of operations throughout the week and year require fewer computations.
 - a. Convert annual demand to average day demand for each month.
- (1) Distribute the annual demand to the 12 calendar months to account for seasonal variations in traffic.
- (2) **Develop** average day demand by dividing the monthly demands by the number of days in the respective month.
- b Adjust the average day demand to account for differences in VFR and IFR demand..
- (1) Determine from **weather** records the percent of the time that **IFR** and PVC operating conditions prevail (%IFR).
- (2) Determine **from** traffic records the percent IFR (and PVC) demand to VFR demand (**%IFR** demand).

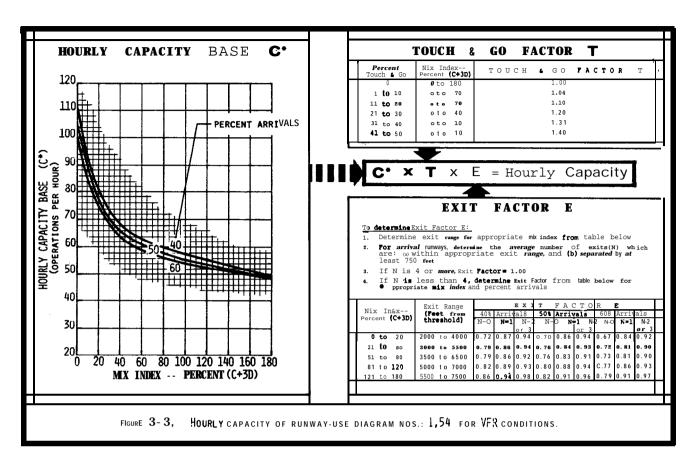
(3) Calculate the representative VFR day demand (VFR demand) and representative IFR day demand (IFR demand) by the following equations:

VFR demand = $\frac{\text{(Average day demand)}}{1-\$IFR(1-\$IFR \text{ demand/100)/100}}$

IFR demand = VFR demand . %IFR demand/100

- c. From historical data, develop a breakdown of hourly demand for the representative day(s).
 - d. Calculate the representative daily delays.
- e. Determine monthly delay by multiplying the representative daily delays by the number of days it represents and summing these quotients.
 - f. Sum the monthly delays.
- 3-11. HOURLY DEMAND CORRESPONDING TO A SPECIFIED LEVEL OF AVERAGE HOURLY DELAY.

 Determine the hourly demand which corresponds to a stipulated average level of delay by trial and error, i.e., using a graphical plotting of delay versus demand.


•		Bant Decise		F (AU-91)-		T	Remar Seasons	l I	- Cream	-		L							
	0144.	t= Feet		PETT			4	}	DIME		762 C	PICITY	1 240	n. er	П					21Q4	٧.	
towar-ye Name	1	(1)] :F8		_	+_	Summer Street	١.,	(4)	YFR	32.	S	123	1	Special value of the same	J144.	hat f	500 C	WKIH	f Fee	SEL AT
	_		3-3	3-45	3-71	⊁ %	J	+ 	ı	i	ł		1		Н		-	 	199	9	L.P.	1.0
	,	700 ++	١.,	1.44	3-72	1	1		l		l		l		11	+ +	١. ١		1		ı	11 17
 →	١ ٠	/00 11	* ') "/"	3-32			35	2000 at 16872	-21	7-78	7-12	>-12	11	₩•	74	0" 10 14"	> 5	1 5.4	3.74	3-41
	_		+		⊢	┼	4	+ ==== +		l	i		ŀ		H	//	•			ļ.	ı	11
	3	700 to 2899	2.5	L14	1-73	3-91	Н		+-				_	\blacksquare	ł					ŀ	1	
	•	200 sa upag	3- 5	3-45	3-74	3-42	ı	+ +	x	2000 to 4000	1-22	2-73	1-13	3-11	ł		75	15° 18 90°	3- 6	امخا	3-74	3-12
	-	700 to 2490	3.7	3-44	3-75	2-91	1	* 	1 ~			-"	~~	-77	П	*	1				1	ľ
			1	ı	•	1	ı	+	1		l		l	i I	П	+				-	_	
		2500 to 3399 3400 or more	. ::	344	3-75 3-75	3-93	1		ע	4200 to west	1-22	3-52	}-13	5-92	ı	α /						
	-	 	12:	344	271	3-91	┰		+-			-			1	$\mathbb{V}_{\mathfrak{s}}$						
	,	100 to 2499	1		- "			→		1	l	1			ı		76	*	3- 1	340	3-75	3-1
<u></u>	11	2500 to 3390	3-16	3-59	ותב	3-95	1	+	,	3000 en mest	3-22		١. ـ		Į			ľ		1		
		3400 or more	- 10	2.01	1.71	144	_	· 	-	~~~~	""	3-58	7-83	3-91	H				il		1	
	13	700 to 2000	3-11	2-52	3-76	3-97	1	*	1						Ш	*		i			l	l. I
			1			1	Т	·				\vdash	_			* +					Г	T T
			i i	1	ľ	l	1.	 								÷	" ,	0" rs [4"			l	
	iS	2500 or mare*	5 11	3-91	3-74	Lu.	1_	7	39	3000 as mast	3-23	3-58	١	١ا	1		"	o ma (a.	3-14	3 - u	3-72	s-9
	16	700 to 2495	3-12	1-12	3-77	3-17	1	, 	1"1		7.5	××	3-21	3-1t	ı	1					į	
				' ''		l '"	1	+ 													ł	
s		l				i	1					_	_	ļ	ı		78*	15° 10 90°	3-14		3-78	3-i
*	18	2500 er =====	3-13	3-8	2-78	L-	1	1 == 1	1						[]	A		12 10 70	71.	3-57	· · ·	٠,
	19	700 to 2199	3-10	3-54	3-78	3-100	1	7		3000 on mort	3-20	3-58	3-84	3-11	Ш		_				Ш.	l l
		İ					1	* *	1						ı	++		i i				
	21	2500 to 3398	1-13	3-55	3-71	3-45			ш		-					+					l	
	-4-	3400 to 2011	7.22	-53	5-71	C#1	1	·				_	-									
=== +	,							+	! !		l i					1/2	79		2.17	5-14	3-77	5-91
	23	700 se -sec	3-15	1-96	3-7\$	3-100		ss	1 4	5000 e4 mezt	1-25	3-52	3-80	3-91		//			-"	~		2-11
 +	- 1			1			li	7 === 7	1 1			- 1			ļ l					l l	1	
	29	700 To 2495	3-15	1-52	3-71	3-97	ł		L				.		i	T.						
								+												_	_	
*							lli	+				- 1	- 1			} ===+						
7	×	2500 or more*	3-15	3-55	3-10	3-99	! #	→	12	3000 on ment	≻ 26	3-5E	5-71	3-11		+ 	₩.	0° 70 14°	5-40	3-14	3-88	3-91
	7	700 ts 2999	3-15	3-52	3-79	3.97	[÷ ===========	1 1			1	j			Ma'					İ	
	ľ	/00 15 4/77	~ "	~"	""	-"										//						
	,,	Y000 en enert	Liz	Lu	120	141	ш	LEGEN	ura.							//			1			
			\vdash	-		\vdash											81 *	15° to 90°	3-40	3-57	5-M	3-10
	25	700 ra 2000	3-11	7.00	3.21	3.45		DENTIFIES TO	HAT TH	ie runway 🗠	USED	FOR AI	RRIVAI	S		, Yr i						
	- 1							/								4 -				-	_	-
	,,	2000 UI BERY*	3019	>>>	2-71	F 17	ш	THE IDENTIFIES TO	HT TA	E BUNWAY IS	USED	FOR DE	EPART	URES		#	1					
					-		ľ															
							ı	S IDENTIFIES A VARIAB	LE RU	WAY SPACEN	lQ.					₩•					١	
	12	3000 es -esc	3-29	3-54	3-72	3-91		C IDENTIFIES A RUNWA				rmn-				//	12.	*	3-17	Y - 4	3-80	3-91
	- 1		-"	-~ I		-"					U 4499	LLT				\\						
	-		\vdash	\dashv	\dashv		Н	X.Y IDENTIFIES INTERSE	CTION	Distances						//						
			_				ı	 IDENTIFIES THE ANG 	LE BET	WEEN NONE	ARALIT	et prov	WAV2	1		* :						
—	- 1	1		- 1	- 1	1								1	1		1					
\$ 1		3000 as sent	3-20	3.91	277	3-91		N.A. MEANS NOT APPLICAL						- 4		+			1			
	-	·	-		1			S INDICATES TESS THA	N.							00						
	- 1	!	1	- 1	- 1	- 1	- 1	≥ INDICATES GREATER	AT	00 00mm	_			1		· ////-						
	-i				1	\neg	- 1			OR EQUAL TO	r			- 1		11/41	If'	MA.	-41	j 24	3-11	⊢ 31
*	i		- 1	į	- 1	- 1	- 1	. SEE NOTES ITEM NO.,	3					- 1		/////						
	34	3300 se mest	3-21	3-58	3-12 J	3-11]	SEE CHAPTER 4 FOR CASES V	WHEN :	AIRCRAFT ARS	E REST	RICTE	,	- 1		1/1/						
== 1	- 1	i	- 1	i	ı	- 1	1	PROM USING ONE, OR MORE,	1T 10	E RUNWAYS.			•	- 1		**	,			1		
7		!					Ţ							7			_	ļ., l	-			لـــــا
														-								

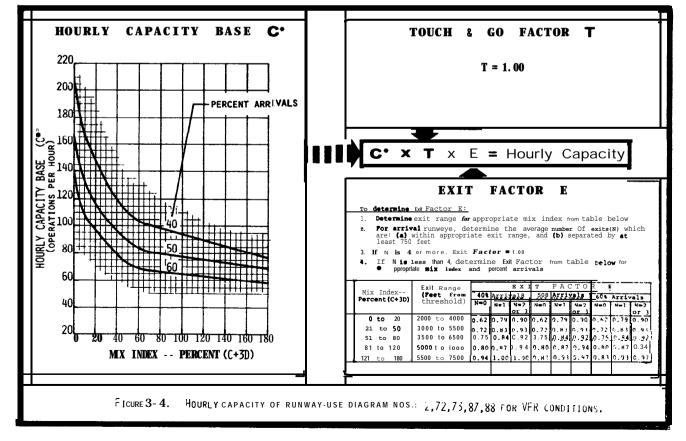
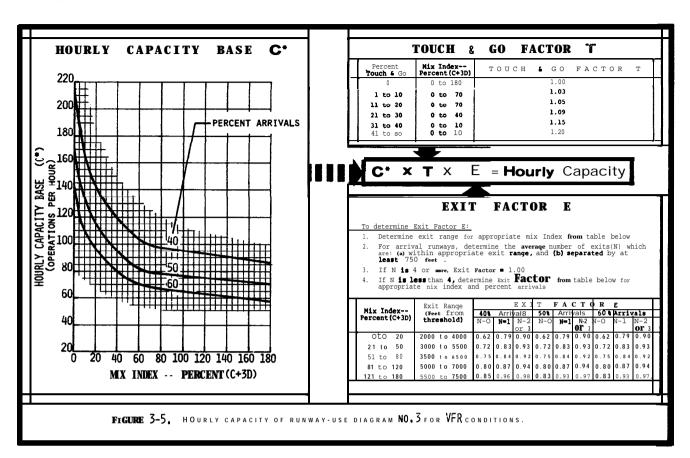
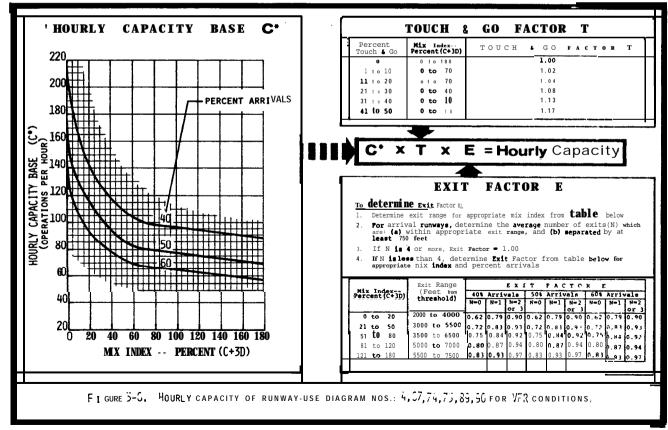
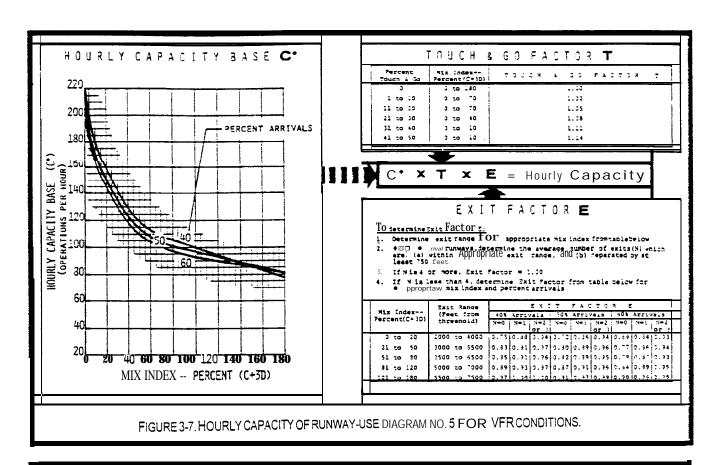
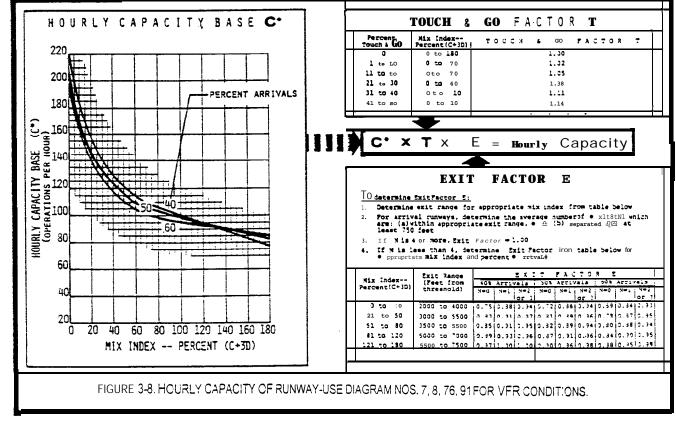

			1 frame to 1				_				1 1164 4				
	Zine.	leac a	2 m 2 s	**2177	F44 (F40 00.41			3144.	400.0 8	THE CHEST PER PILET			44.	
Samples Cincern	-			-12	34			Rames-vet Branes	1 44.	<u> </u>	7.5	:63	77.0		
#==		*	⊁•ı	3-44	5-29	3-91		###	ν	144	3-17	3-46	i-m	3-91	
**			_	<u> </u>				##	11	**	ы	3-44	3-26	3-11	
<u> </u>	n	0° 70 10°	3-42	3-14	3-74	3-41		*			ļ.,	_		_	
1	*	65° in 90°	3-12	3-57	3-74	3-101		*	75	•	⊁ei	}- =	>15	ЬH	
+	U	•	<u>3- 1</u>	3-44	3-77	5-11		*==	100	gë te 1s²	3-12	3-44	3-74	3-91	
+		W	3- 1	3-44	3-17	3-41			101	(5° 70 90°	ъ	1-17	3-74	Fisi	
+ + +	19	6° 70 34°	3- E	3-44 3-45	3-74 3-74	3-11 3-12		***************************************	162	*	5-11	у. щ	}-m	3-91	
74					-	-	-								
+ + +	11	**	3- 8	}-H	3-75	3-91		NOTES. 1. THE MINIMUM CONTESSANCE SPACING OF PASSALLES MINIMAYS USED FOR SHAULTH MINIMUM CONTESSANCES. 2. THE FEET WISSEN OF ALL MINIMUM CLASSES A.E.C. AND D.							
***	12	12, se an,	}-15 }-10	3-44 3-17	1-72 3-71	3-91 5-101		E. 500 FEET IT CHEED ONLY IT AUGUST COMES AND B C. 500 FEET IN CHEED COLLINEARY IT STAIGHT CLOSE A E. EXCEPTION AT A POSITIVE CONTROLLED AUGUST IN FLORIT FAAN THAT OF SEEDOMEANTH. THE COTTERLING THOUGHT FAAN TO ACCORDING TO BE CONTROLLED AUGUST THOUGHT IN A THE CONTROLLED CASE AND THE CONTROLLED AUGUST CONTROLLED CASE AND THE CONTROLLED AUGUST CONTROLLED CASE AND THE SACED FAANIES. INSTANCES A THE CONTROLLED CASE AND THE SACED FAANIES. INSTANCES A THE CONTROLLED CASE AND THE CONTROLLED AUGUST CONTROLLED AUGUST CONTROLLED CASE AND THE CONTROLLED AUGUST CONTR							
\	"	17 48 70	-"	"	-"	-191	ı	EVEN IN VYR CONDITION CLOSELY SPACED PARAL	LEL RUN	APACITY LIMITS WAYS AT POSITI	CONTI	OLLED SE ON			
###	14		3-12	3-40	3-17	3-91		2. DEVENTION OF THE THE STATE OF THE STATE O							
****	55 76	6° rs 14°	3-46 3-40	3-44 3-37	}# >#	⊁ 111		COTES FOR S C.C. 1940 ACTIVE CF16 FOLLOWING REALTHONORUS WILES THERE AN ADMILE DIS YOUR TURBER OF ALL ADMILES FOR THE ADMILES							

Figure 3-2. Runway-use diagrams


Chap 3 21 (and 22)


9/23/83 AC 150/5060-5




chap 3

12/1/95 **AC** 150/5060-5 CHG 2

