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Optimizing the removal of small fish passage barriers
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Removing small artificial barriers that hinder upstream migrations of fish is a major problem in riparian habitat restoration. Because
of budgetary limitations, it is necessary to prioritize barrier removal and repair decisions. These have usually been based on scoring and
ranking procedures, which, although simple to use, can be very inefficient in terms of increasing the amount of accessible instream habitat.
We develop a novel decision-making approach, based on integer programming techniques, which optimizes repair and removal decisions.
Results show based on real datasets of barrier culverts located in Washington State that scoring and ranking is over 25% below the optimum
on average and a full 100% below in the worst case, producing no net habitat gain whatsoever. This is compared to a dynamic programming
method that was able to find optimal solutions in less than a second, even for problems with up to several hundred variables, and a heuristic
method, which found solutions with less than a 1% average optimality gap in even less time.
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1. Introduction

Wild salmon have shown dramatic population and range
declines worldwide over the past two centuries. In the
United States alone, wild salmon stocks have been extir-
pated from over 40% of their historical range in the Pacific
Northwest [1] and over 80% in the Atlantic Northeast [2].
In areas that still support wild salmon runs, most popula-
tions are heavily depressed. For example, it is estimated that
adult annual production has fallen by as much as 85% in the
Columbia River basin during the past 150 years [3]. Even
more drastic declines have been experienced recently such
as the in Inner Bay of Fundy, Canada, where salmon runs
have fallen from 40,000 adults to only several hundred (over
a 99% decline) in just the past 20 years [4].

One of the biggest sources of salmon decline, and one
which still presents a major obstacle to recovery, is the pres-
ence of an extremely large number of small artificial barri-
ers, such as small dams, culverts, dikes, levees, floodgates
and weirs, which reduce or block access of salmon to large
portions of their historical habitat. Small barriers have a
wide variety of negative effects on salmon and resident fish.
Some barriers, like small dams and levees, may completely
block fish from accessing high quality rearing and spawn-
ing habitat in side channels or upper tributaries to a river.
Full barriers also reduce the distribution of resident fish and
can cause an increased risk of extinction among small, iso-
lated populations. In contrast, partial and temporal barri-
ers, like floodgates and many culverts, may block migra-
tion some of the time or simply reduce access to weaker
fish or fish at younger life stages. Consequently, both full
and partial/temporal barriers reduce population growth rates
through a combination of increased mortality and predation
and decreased egg production.

Besides their direct impacts on fish demographics, pas-
sage barriers have other less well-known biological and eco-
logical impacts. These include increasing the level of in-
breeding among resident fish, lowering nutrient inputs to
upstream reaches provided by the carcasses of anadromous
adults and causing artificial selection for stronger swimming
fish species. A more thorough review of the various prob-
lems associated with reduced fish migration due to artificial
passage barriers is given in Meehan [5].

Given the magnitude and severity of the problem, re-
connecting isolated stream habitat has become an important
priority for the restoration of impaired anadromous salmon
stocks. Indeed, Roni et al. [6] rank it as the most impor-
tant type of restoration activity in their prioritization hier-
archy due to its high cost-effectiveness. They cite various
studies attributing the majority of increases in local salmon
populations to barrier removal as opposed to other types
of restoration like the placement of instream structures and
sediment reduction. Furthermore, these increases were fre-
quently demonstrated within one year after removal of bar-
riers. For example, Beechie et al. [7] estimated that impass-
able culverts and other artificial barriers have reduced coho
summer and winter smolt production by as much as 24–34%
in the Skagit River basin in Washington State. What is more,
this loss was considered greater than the combined effect of
other adverse forest management activities and hydropower
generation within the basin.

Extensive engineering guidelines for the building of new
instream structures and the retrofitting of existing barriers to
enhance fish passage have been developed by various state,
tribal and federal management agencies [8–11]. Unfortu-
nately, few formal methods exist for deciding which barri-
ers to repair or replace when multiple barriers are present.
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Because budget limitations often preclude the removal of
all barriers, the most common method for making repair
and replacement decisions is based on a scoring and rank-
ing scheme. The simplest methods assign scores to each
barrier according to a set of key physical, ecological and
economic attributes independently of their spatial arrange-
ment. Most include some measure of the following para-
meters: (1) habitat quantity, (2) habitat quality, (3) degree
to which a barrier impairs movement, and (4) cost of repair.
A barrier’s benefit–cost ratio is a typical example. Bene-
fit is usually based on the potential gain in quality-weighted
upstream habitat or equivalent fish production gain multi-
plied by the percentage increase in fish passability. Up-
stream habitat is usually taken as the total length of stream,
or some combination of spawning and rearing area, up to the
first natural point barrier. Passability is usually given as a
single value representing the average passability for all fish
species and life stages, but can be stratified according to dif-
ferent species or life stages if sufficient data are available.
These values are typically obtained using professional judg-
ment or through more sophisticated modeling techniques,
e.g. with the FishXing software [12]. Given a specified bud-
get amount, the basic premise of scoring and ranking pro-
cedures is to move down an ordered list selecting barriers
to repair in decreasing order of rank until the budget is ex-
hausted.

Examples of scoring and ranking methods can be found
in [11,13,14]. Pess et al. [13] use rankings of benefit–cost
ratios based on the potential gain in upstream smolt produc-
tion divided by the cost to repair a barrier. Changes in fish
passability are not considered by the authors. The Wash-
ington Department of Fish and Wildlife [14] uses a some-
what different prioritization scheme based on a function of
upstream production gain that is adjusted for species inter-
actions, repair cost, change in fish passability and the mo-
bility and threat status of the species affected by a barrier.
Taylor and Love [11] suggest a similar scoring system that
accounts for species’ threat status, current level of passabil-
ity, total quality-weighted habitat gain, barrier maintenance
status and risk of structural failure. Unlike [13] and [14],
however, Taylor and Love do not consider the fiscal impacts
of repair in their rankings.

The major advantage of scoring and ranking techniques
is that they are easy to implement and can be used to find
solutions to complex problems having large numbers of bar-
riers with multiple fish species and assessment criteria. The
major disadvantage associated with them comes from their
inherently static nature and the frequently limited consider-
ation given to the spatial arrangement of barriers. Scores are
usually assigned with no regard for the levels of passability
at upstream and downstream barriers. As a result, a priori-
tized list may produce solutions in which upstream barriers
should be fixed prior to one or more impassable barriers lo-
cated downstream, despite the fact that this would produce
no habitat gain whatsoever. Further, even when spatial con-
text is taken into account, because lists have a fixed ordering,
they still do not readjust for changes in the system caused by

each successive repair decision. For example, the relative
impact of fixing an upstream barrier usually increases once
one or more of its downstream barriers have been repaired.
This occurs because access to this barrier, which may for-
merly have been very low or even completely inaccessible,
may be greatly improved, thus making it more of a bottle-
neck to upstream migration. Taken together, repair and re-
placement decisions based on scoring ranking have the po-
tential to be highly inefficient.

By contrast, optimization models do not suffer the same
shortcomings. Optimization provides a normative and sys-
tematic framework for making decisions that guarantees
achievement of the maximum possible benefit (or mini-
mum cost) given one or more operational/resource con-
straints [15]. In spite of this, however, it has been suggested
by some that because optimization models never completely
capture all forms of risk or limitations imposed by adminis-
trative process, their practical value in real-world planning
situations is limited. Although this really appears to be more
of a critique of modeling in general, which by necessity
requires some abstraction of reality, the fact is alternatives
like scoring and ranking certainly fare no better at incor-
porating real-world complexities. Usually they are worse
in this regard, as discussed previously, and are almost al-
ways less cost-effective than optimization whatever the level
of knowledge or data quality may be. What is more, even
when a solution to an optimization model may not be ideal
in light of all possible uncertainties and political realities,
the model may still be useful for screening out particularly
bad solutions or illustrating important tradeoffs among dif-
ferent management objectives. At the very least, optimiza-
tion models provide a baseline with which to compare to
more politically agreeable management alternatives.

Perhaps the only real drawbacks of using optimization
are its technical complexity, often necessitating expert math-
ematical and computer programming knowledge, and the
computational burden required to solve problems to opti-
mality. Structural complexity is unavoidable but potentially
lengthy solution times can often be overcome with better for-
mulations and the use of heuristic techniques [15] that do
not guarantee optimality but can usually generate optimal to
near-optimal solutions much more quickly. In this context,
scoring and ranking procedures can be viewed as very simple
heuristics that frequently produce far less efficient solutions,
albeit much faster, than more intelligent types of heuristics.
Thus, it would seem that the advantages of optimization, vis-
à-vis its ability to handle many important real-world com-
plexities and produce cost-effective results, outweigh any of
its limitations.

A diverse array of problem applications employing opti-
mization techniques exist within the wider environmental re-
source management field such as forestry, natural reserve se-
lection and reservoir and river system management, to name
a few [16–18]. Unfortunately, the use of optimization in the
conservation and restoration of salmon habitat, however, has
been extremely limited. The work by Paulsen and Wernstedt
[19], therefore, is noteworthy. They examine the use of lin-
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ear programming for integrated salmon recovery planning
in the Columbia River basin. The objective of their prob-
lem is to find a “least-cost” solution, consisting of various
combinations of higher fish passage, habitat improvements
and harvesting levels that meet stock-specific goals on har-
vest and recruitment population sizes. Their formulation,
however, is limited in scalability due to how mitigation de-
cisions are handled in their model. Because mitigation al-
ternatives, such as alternative hydroelectric dam operating
strategies and small barrier removal, have cumulative effects
that cannot be expressed as closed-form equations, individ-
ual projects must be modeled in combination with each other
using a simulation model. Consequently, problems quickly
become intractable as the number of possible project com-
binations grows exponentially with increasing numbers of
individual mitigation projects.

What is needed is a general-purpose optimization model
for planning the removal of small barriers that is more scal-
able and avoids the immense difficulty of relying upon simu-
lation. In response to this, the goal of this paper is to demon-
strate how fish passage barrier removal problems can be suf-
ficiently modeled and solved using optimization techniques.
To this end, the remainder of this paper is organized into five
main sections. First, we give a detailed description of the
problem of fish passage barrier removal and then formalize
it mathematically using a nonlinear binary formulation that
maximizes the net gain in quality-weighted habitat above
passage barriers given a budget constraint. In section two
we show using an example how a simple scoring and ranking
method may yield particularly poor results. This is followed
in the third section by the description of two new solution
approaches: an exact method based on dynamic program-
ming techniques and a heuristic method that uses a greedy
mechanism to construct an initial solution followed by a lo-
cal search procedure to improve it. Fourth, a practical case
study is presented in which the different algorithms are com-
pared to each other based on computation results from sev-
eral datasets of barrier culverts located in Washington State.
Finally, we provide some concluding remarks and suggest
some important areas for further research.

2. Problem formulation

In fish passage barrier removal planning, the most com-
mon explicitly or implicitly stated goal of public agen-
cies and private organizations is to maximize the net in-
crease in accessible habitat, in terms of quality-weighted
area or length [11], or similarly potential gain in fish produc-
tion [14]. The obstructions themselves, which might include
culverts, small dams, levees and other small structures, usu-
ally vary in terms of the percentage of fish that are able to
pass through them. Although hydroelectric dams and other
large hydro-modifications may represent significant fish pas-
sage barriers, these are generally excluded from considera-
tion given that they are more or less permanent structures
whose removal involves a whole host of competing social

and economic concerns beyond just environmental interests.
As such, we concern ourselves with small structures that
have relatively little effect on the downstream passage of fish
but do impair upstream passage.

The scope of any particular problem may range widely
from a handful of barriers along a few tributaries up to thou-
sands of barriers scattered across one or more highly reticu-
lated river basins. By definition, barrier passability is taken
as the fractional rate, within the range [0, 1], at which fish are
able to pass through a barrier while migrating upstream. Ac-
cess to habitat above a barrier, which we term accessibility,
is taken as the product of all downstream barrier passabil-
ity values. Accessibility represents the percentage of fish
that are able to reach a particular area by swimming up-
stream, passing through each and every barrier starting at
the mouth of the river. It is assumed, based on this definition
of accessibility, that barrier passability values are indepen-
dent of each other. Consequently, fish that are able to pass
beyond one barrier are neither more nor less likely to pass
beyond any successive upstream barriers. In general, mul-
tiple repair or replacement alternatives may be available at
any given barrier, each having a variable effect on passabil-
ity, e.g. low cost/low passability improvements versus high
cost/high passability improvements. Of course at most one
repair option can be implemented. This, however, does not
exclude multi-stage projects, with later stages possibly be-
ing optional, since these too can be represented mathemati-
cally as a single combined project. While political or other
administrative constraints may sometimes be important, we
focus only on the most important type of restriction, a bud-
get. Also, we assume that barriers are arranged as a tree
network similar to the one shown in figure 1, which depicts
six different passage barriers arranged along several adjoin-
ing streams. With an underlying tree structure, it is assumed
that streams never diverge as they flow downstream, thereby
excluding braided rivers and deltas that allow multiple paths
to same upstream location. While not strictly necessary, this

Figure 1. An example fish passage barrier network. Barriers are represented
as nodes. Arcs indicate the direction of stream flow and represent areas of

stream habitat between barriers.



88 J.R. O’Hanley, D. Tomberlin / Optimizing the removal of small fish passage barriers

assumption is realistic and makes the problem easier to for-
mulate and solve.

To formulate the problem mathematically, consider the
following notation. Let J be the set of all barriers, with in-
dices j and k. The set Dj denotes all barriers downstream
from and including barrier j . Current passability at barrier j

is given by p̄j . Let Aj be the set of repair and replacement
projects with index i that can be implemented at barrier j .
The parameters pij and cij represent, respectively, the in-
crease in passability and cost of project i at barrier j . Also,
let vj be the net amount of habitat between barrier j and
its nearest set of artificial or natural upstream barriers. The
amount of available budget is represented by b. Finally, the
variables of the model are given by,

xij =
{

1 if project i is chosen at barrier j,

0, otherwise,

αj = level of accessibility to habitat immediately above
barrier j .
Fish passage barrier removal problem

max z =
∑
j∈J

vjαj , (1)

s.t.

αj =
∏

k∈Dj

(
p̄k +

∑
i∈Ak

pikxik

)
−

∏
k∈Dj

p̄k ∀j ∈ J,

(2)∑
i∈Aj

xij � 1 ∀j ∈ J, (3)

∑
j∈J

∑
i∈Aj

cij xij � b, (4)

xij ∈ {0, 1} ∀j ∈ J, i ∈ Aj . (5)

The Fish Passage Barrier Removal Problem (FPBRP)
maximizes the total net gain in accessible habitat that can
be achieved by removing or repairing fish passage barriers
given a limited budget. The objective (1) measures the sum
of accessibility-weighted net habitat upstream from each
barrier. For each barrier j , the net amount of accessible up-
stream habitat is equal to the net amount of habitat vj located
between barrier j and its nearest net increase in set of artifi-
cial or natural barriers upstream from j times the accessibil-
ity αj immediately above j . Equation (2) calculates the level
of accessibility αj to habitat immediately above barrier j ,
where 0 � αj � 1. It is the product of adjusted passabil-
ity at j times adjusted passability at all downstream barriers
k ∈ Dj , k �= j , minus initial accessibility

∏
k∈Dj

p̄k . For
each barrier, adjusted passability is equal to initial passabil-
ity p̄k plus the increase in passability

∑
i∈Ak

pikxik given
any repairs. Of course equation (2) could just as easily be
substituted directly into the objective (1) thereby eliminat-
ing the need for the αj variables. It is shown separately here
for purposes of clarity. The set of constraints (3) mandate
that at most one passage improvement project can be chosen
for site j . Naturally, it is assumed that Aj contains only un-
dominated projects, where a project h is dominated by i if

Table 1
Parameter values for the example fish passage barrier network.

J vj p̄j |Aj | cij pij Dj

1 200 0.3 1 200 0.7 1
2 300 0.0 3 60, 70, 100 0.25, 0.5, 1.0 1, 2
3 150 0.6 2 30, 70 0.2, 0.4 1, 3
4 1000 0.4 1 30 0.6 1, 2, 4
5 500 0.0 1 80 1.0 1, 3, 5
6 100 0.8 2 10, 40 0.1, 0.2 1, 3, 6

phj � pij and cih > cij . If, as is often the case, only one
repair option exists, i.e. |Aj | = 1, so that the only decision
is to either fix a barrier completely or not, constraints (3)
could be dropped from the model entirely. Constraint (4) is
a budget constraint, which simply requires that the total cost
of barrier improvement projects not exceed available funds.
Finally, constraints (5) stipulate that all decision variables be
binary. Figure 2 shows an illustration of how FPBRP would
be formulated for the example fish passage barrier network
shown in figure 1 based on the problem data provided in ta-
ble 1.

Frequently, a multi-objective approach is required for the
problem of barrier repair and removal. Other ecological,
economic or management issues in addition to the amount
of habitat gain or increase in fish production can play a sig-
nificant role in deciding which barriers to fix. Factors such
as environmental quality, the importance of certain areas to
threatened and endangered species, the risk of structural fail-
ure, and improved fishing in specific locales are some com-
mon decision criteria that policy makers consider when eval-
uating repair options. Many of these issues can be handled
in the model by weighting them in the objective function.
For example, habitat quality can be handled by scaling the
amount of habitat by a quality rating score qj , using perhaps
some sort of habitat suitability index model [20]. The new
objective function values qjvj can then more broadly repre-
sent measures of quality-adjusted habitat. Likewise, greater
emphasis can be placed on increasing the amount of habitat
for threatened or endangered stocks, when multiple stocks
are being considered, by simply giving more weight to the
critical areas they are expected to occupy. This could be
done by assigning weights ws to each individual species s

among a group of species S and setting the objective values
vj = ∑

s∈S wsvjs , where vjs is the net amount of habitat
available for species s above barrier j .

FPBRP presumes one rate of passage at each barrier. This
single value might represent the average of all fish species
and life stages or the critical passage rate of a single target
species or life stage. To be more realistic, FPBRP could eas-
ily be adjusted to account for different rates of passage for
each species or life stage by indexing the values for pass-
ability p̄js and pijs , habitat vjs and accessibility αjs over
each species or life stage s. Besides having to sum the ob-
jective function z = ∑

s∈S

∑
j∈J wsvjsαjs over this new

index s, an expanded formulation would require a commen-
surate increase in the number of accessibility equations (2)
for each species or life stage. Accounting for different pas-
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max z = 200α1 + 300α2 + 150α3 + 1000α4 + 500α5 + 100α6

s.t.

α1 � 0.3 + 0.7x11,

α2 � (0.3 + 0.7x11)(0.25x12 + 0.5x22 + x32),

α3 � (0.3 + 0.7x01)(0.6 + 0.2x13 + 0.4x23) − 0.18,

α4 � (0.3 + 0.7x11)(0.25x12 + 0.5x22 + x32)(0.4 + 0.6x14),

α5 � (0.3 + 0.7x11)(0.6 + 0.2x13 + 0.4x23)x15 − 0.18,

α6 � (0.3 + 0.7x11)(0.6 + 0.2x13 + 0.4x23)(0.8 + 0.1x16 + 0.2x26) − 0.144,

x11 � 1,

x12 + x22 + x32 � 1,

x13 + x23 � 1,

x14 � 1,

x15 � 1,

x16 + x26 � 1,

200x11 + 60x12 + 70x22 + 100x32 + 30x13 + 70x23 + 30x14 + 80x15 + 10x16 + 40x26 � 100,

x11, x12, x22, x32, x13, x23, x14, x15, x16, x26 ∈ {0, 1}.

Figure 2. Formulation of FPBRP for the example fish passage barrier network (figure 1) given a $100,000 budget.

sage rates of each species or life stage is intentionally left
out of the model here both for ease of presentation and since
most management organizations themselves generally con-
sider only one passage rate for planning purposes.

As mentioned previously, it is assumed that rivers have
an underlying tree structure. To handle the more general
case, in which rivers can split and then rejoin as they move
downstream, would require a more complicated formulation.
Such a formulation would need to consider the minimum or
weighted average of the passability values at each group of
barriers constituting a multipath barrier. Because few real-
world examples exist in which barriers are located along all
branches of a diverging river, consideration of multi-path
barriers, in our view, is an unnecessary complication to in-
clude in the model.

3. Example problem

Having outlined the problem, we now describe, through
the use an example, how inefficient the status quo method
of making repair and replacement decisions based on scor-
ing and ranking can be compared to an optimal approach
based on FPBRP. Consider the example fish passage barrier
network shown in figure 1 with associated problem data pro-
vided in table 1. A list of barrier repair options in descend-
ing order of priority is shown in table 2. Although many
different scoring procedures are possible, we use the follow-
ing rule, which is structurally similar to the ones described
in [11] and [14],

Sij =
pij (vj + ∑

k∈Uj
vk)

cij

. (6)

Table 2
Rankings of barrier repair options based on equation (1) for the

example fish passage barrier network.

Barrier (j) Repair option (i) Score (Sij ) Cost (cij )

4 1 20.00 30
2 3 13.00 100
2 2 9.29 70
1 1 7.88 200
5 1 6.25 80
2 1 5.42 60
3 1 5.00 30
3 2 4.29 70
6 1 1.00 10

The set Uj represents the collection of all barriers lo-
cated upstream from barrier j . The value Sij represents
the benefit–cost ratio of barrier j given implementation of
repair project i. The benefit of project i at barrier j is
thus calculated as the total amount of habitat upstream from
j, vj + ∑

k∈Uj
vk , multiplied by the net change in passabil-

ity pij given implementation of repair i. Note that this rule
completely ignores passability at downstream and even up-
stream barriers.

Using the scoring and ranking procedure with a fixed bud-
get, one simply proceeds from the top to the bottom of ta-
ble 1, making all affordable repairs until no more barriers
can be fixed. Once a barrier has been repaired, one can ei-
ther (1) remove all the other repair options associated with
it from the list or (2) replace the current repair if and when
a better (i.e. higher pij ) and affordable one is encountered
while moving down the list. For example, with a budget of
$100,000, one would start by making the single repair op-
tion at barrier 4, located at the top of the list. This, however,
would produce no net gain in accessible habitat since pass-
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ability at downstream barrier 2 is still zero. With $70,000
remaining, the next and last affordable repair is the second
repair option at barrier 2, yielding a total net gain of 135 m
of habitat (i.e. 0.3 × 0.5 × [300 m + 0.6 × 1000 m]). This
is substantially less than the optimal solution found with
FPBRP (figure 2), which consists of doing only the third re-
pair option at barrier 2 to produce a net gain of 210 m of
habitat (i.e. 0.3 × 1.0 × [300 m + 0.4 × 1000 m]). Meth-
ods for finding optimal and near optimal solutions to FPBRP
are discussed in the following section. While results will of
course vary depending upon the particular problem data and
the type of scoring rule that is used, this simple example
clearly illustrates the deficiencies that can and generally do
arise with scoring and ranking procedures.

4. Solution methods

4.1. Dynamic programming

Since FPBRP is a nonlinear integer program, solving it
exactly presents an especially challenging problem. Existing
commercial nonlinear solvers, like MINOS, are generally
better suited for problems with continuous variables and are
only guaranteed to find local optima, not global ones. For-
tunately, a dynamic programming (DP) formulation [15,21]
can be devised that is guaranteed to find a global optimal so-
lution. DP essentially works by breaking a problem down
into a series of smaller subproblems, which can then be
solved in an iterative fashion to find a solution to the original
problem. To do so, a problem is first divided into a number
of stages with a set of discrete states defined for any stage.
For each stage and state combination pair, an optimal deci-
sion is made by determining its value with respect to the cur-
rent state and the change in state that it would produce at lat-
ter stages. With DP, therefore, an optimal policy is produced
for all possible states at any given stage. For FPBRP, stages
correspond to barriers while states correspond to the amount
of budget. At any given barrier and budget amount, the best
repair decision is made taking into account both the poten-
tial gain in habitat produced by a repair and the remaining
budget that would be available for repairs at any upstream
barriers.

For the rest of what follows, we use standard graph the-
ory terminology to describe the DP algorithm. A node is
used to refer to a barrier. A parent node is defined as any
node with at least one upstream node incident to it. Like-
wise, a child node is defined as the node incident to a parent
node and siblings are any group of nodes having the same
downstream parent. For example, with respect to the exam-
ple in figure 1, which shows a set of fish passage barriers
represented as nodes in a tree, node 1 is the parent to two
children, nodes 2 and 3. Node 2, therefore, is the sibling of
node 3 and vice versa. In a similar fashion, node 4 is the
child of node 2, its parent. Throughout, it is assumed that
a barrier network is oriented vertically, with the root node
at the bottom of the tree as shown in figure 1. For prob-
lems having multiple individual networks of barriers located

in different river basins or subbasins, a dummy node can al-
ways be created to serve as the root for all subtrees, i.e. the
root nodes of each tree can be redefined as the children of
the dummy root node.

The DP algorithm for FPBRP operates by evaluating
nodes from right to left, starting from the uppermost layer
of a tree and working downward to the root node. Thus, a
parent node is always evaluated after a child node, which is
located further up in the tree. There are four different types
of recursive value functions depending on (1) a node’s rel-
ative position with respect to its siblings and (2) whether
a node has any children. A childless node that is either an
only child or the youngest sibling, where youngest is defined
as occupying the rightmost position among a group of sib-
lings, is referred to as terminal leaf node. A nonterminal
leaf node is any other childless node that is not the youngest
sibling. Likewise, a parent node that is either an only child
or the youngest sibling is known as a terminal branching
node while any other parent node is termed a nonterminal
branching node.

To begin, let Fj (d) denote the value function for barrier
j at state d , where states represent the amount of remain-
ing budget. Without loss of generality, it is assumed that
states are integer-valued in the range [0, b]. For each par-
ent node j , let Fkid(j)(·) denote the value function of j ’s
oldest child, where oldest is defined as the leftmost node
among a group of siblings. For each nonterminal node j ,
let Fsib(j)(·) be the value function of j ’s next older sib-
ling. Finally, let Tjd be the set of barrier repair and replace-
ment activities that are affordable for barrier j at state d ,
i.e. Tjd = {i ∈ Aj | cij � d}. By definition, assume
max{∅} = −∞. The DP equations for each type of node
over all states d = 0, 1, . . . , b are given by:
Terminal leaf

F 1
j (d) = max

{
0; max

i∈Tjd

{pij vj }
}
, (7)

Nonterminal leaf

F 2
j (d) = max

{
Fsib(j)(d);
max
i∈Tjd

{
pij vj + Fsib(j)(d − cij )

}}
, (8)

Terminal branch

F 3
j (d) = max

{
p̄jFkid(j)(d);
max
i∈Tjd

{
pij vj + pijFkid(j)(d − cij )

}}
, (9)

Nonterminal branch

F 4
j (d) = max

0�u�d

{
F 3

j (u) + Fkid(j)(d − u)
}
. (10)

For a terminal leaf node, equation (7) stipulates that the
optimal value in terms of accessible upstream habitat for
any budget value d is the maximum of not making a re-
pair, or making the most profitable repair, maxi∈Tjd

{pij vj }.
If Tjd is empty, then no repair is made since all types of
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repair are unaffordable. On the other hand, if Tjd is non-
empty, one chooses the most profitable, affordable repair.
In equation (8) for nonterminal leafs, unlike (7), one must
also consider the tradeoff in the value of the cost-to-go func-
tion Fsib(j)(·) when making a repair decision. When all
repairs are unaffordable, the null decision is simply to do
nothing. When one or more repairs are affordable, how-
ever, one must decide whether to repair the barrier, con-
sidering that fewer funds will be available for any subse-
quent repairs Fsib(j)(d − cij ), or leave the barrier as is
so that more funding will be available for later decisions
Fsib(j)(d). The equation for terminal branches (9) is struc-
turally similar to (8), with the exception that the cost-to-go
function Fkid(j)(·) for j ’s oldest child must be used in place
of Fsib(j)(·) and must also be multiplied by the passabil-
ity value, p̄j or pij , depending on whether or not repairs
are made. Finally, when evaluating nonterminal branches,
equation (10) requires one to compute the best allocation of
funds u assigned to it and any of its upstream nodes, based
on the value of F 3

j (·) assuming it were a terminal branch,
and the compliment d − u assigned to its next older sib-
ling Fsib(j)(·). The function F 3

j (·), calculated by means of
equation (9), determines the value of the best repair decision
at a nonterminal branch given any possible budget amount.
The use of F 3

j (·) inside equation (10) is justified by the
fact that once a budget amount has been allocated to a non-
terminal branch, it can effectively be treated as a terminal
branch.

Each of the equations (7) through (9) can be solved with
little computational effort. Finding the optimal decision at
each state d simply involves a comparison of all feasible ac-
tions, i.e. no repair and all affordable repairs. Finding a so-
lution to equation (10), however, is considerably more com-
plicated as it requires a linear search on the value u to find
the best allocation of repair funds assigned to nodes on two
different branches of the tree.

To illustrate, again consider the example in figure 1. The
order of operations for the DP algorithm is in descending or-
der of node labels: 6, 5, . . . , 1. Nodes 6 and 4, which are
both terminal leaf nodes, are evaluated using equation (7).
Node 5 is a nonterminal leaf node and consequently is eval-
uated using equation (8). Nodes 3 and 1 are evaluated us-
ing equation (9) since these are both terminal branching
nodes. Finally, node 2, the only nonterminal branching
node in the network, is evaluated with equation (10). It is
important to note that because of the dependencies among
barriers, other orderings for the DP formulation will not
work.

It should be noted that our specific implementation of the
DP algorithm was fashioned in such a way that states that
could never be reached, e.g. budget amounts in between
the cost of two repairs, were eliminated from consideration.
This allowed us to greatly reduce the computational time in-
volved for many of the nodes by not having to compute the
objective function values for all budget values d between 0
and b. Details of this technique are discussed for the related
knapsack problem in Martello and Toth [22].

4.2. Heuristic method

Greedy type algorithms for integer programs, which are
designed to quickly construct solutions of reasonably good
quality, have been well studied in the operations research lit-
erature [15,22]. The basic premise underlying these greedy
heuristics is to iteratively set the decision variable with the
highest “utility” to one so long as the cost of the variable
does not exceed the remaining budget. For FPBRP, the most
straightforward measure of utility is the benefit-to-cost ratio,
which is equal to the accessibility weighted net habitat gain
over repair cost.

The greedy add with branch pruning (GABP) heuristic
uses a greedy adding procedure to construct an initial so-
lution and then tries to improve this solution through the
use of a local search technique we refer to as branch prun-
ing (figure 3). The construction phase GABP, uses a basic
greedy scheme for making barrier repair decisions. At each
iteration, benefit-to-cost ratios are computed for all afford-
able repairs and the repair with the highest value is chosen.
Obviously, when computing benefit-to-cost ratios, it makes
sense that information on any impassable downstream barri-
ers should also be taken into account. More specifically, if
current accessibility at a barrier is zero due to the presence
of one or more impassable downstream barriers, a barrier
should be repaired only if all impassable downstream bar-
riers are repaired as well. Thus, if impassable downstream
barriers are detected when computing the benefit-to-cost ra-
tio of a repair, GABP computes this ratio as the net amount
of all accessibility-weighted habitat above the barrier’s most
downstream impassable barrier, given the least cost repair
of all impassable barriers along the path between the barrier
and its furthest downstream impassable barrier, divided by
the total cost of all such repairs. Barriers for which no repair
is affordable are permanently fixed to their initial passabil-
ity values and removed from further consideration. In the
special case where initial passability is zero and no repairs
are affordable, all upstream barriers can be also fixed to their
current values, since no fish will be able to reach them.

When no more repairs are affordable, the construction
phase terminates and a simple local search procedure is initi-
ated. The local search routine consists of making alternating
destructive and constructive moves on an incumbent solu-
tion until an improving solution is found. If an improving
solution is found, the incumbent is replaced with the new
solution and the destructive/reconstructive moves repeated.
Specifically, during a destructive move, a branch of the net-
work is selected and “closed”, whereby the passabilities val-
ues for all repaired barriers in the closed branch are reset to
their initial values. The resulting cost savings from “unre-
pairing” these nodes is added back to the residual budget.
A constructive move then follows in which the same greedy
scheme used in the initial construction phase is carried out.

To force the algorithm away from the incumbent solution,
the closed branch is temporarily pruned from the network
during reconstruction so that repairs are only made to barri-
ers in the remaining “open” branches of the network. This
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Figure 3. Flowchart showing an outline of the heuristic GABP.

type of strategy was chosen based on preliminary tests which
showed it to be preferable to one in which repairs were also
allowed along the closed branch. Finally, for the results pre-
sented below, only repaired nodes were considered for prun-
ing. This reduced the overall computational time of the local
search by excluding pruning moves at unrepaired nodes as
well. Again, preliminary tests showed this modification to
be faster while still producing quite satisfactory results.

5. Case study: Culvert replacement in Washington State

5.1. Background

Culverts are far and away the most common type of fish
passage barrier in the State of Washington. It is estimated
that as much as 7,700 river kilometers of habitat in Wash-
ington is currently blocked by impassable culverts [6]. Fre-
quently, these barrier culverts are created by improper de-
sign or installation, subsequent changes to the stream chan-
nel, or lack of proper maintenance. The two most frequently
encountered problems are undersized and high-sloped cul-
verts. These types of culverts are impassable to juvenile or

adult fish due to high internal flow velocities that exceed the
swimming ability of fish. Others can have too little flow and
may even run completely dry during certain periods of the
year. Culverts with outflow heights greater than the maxi-
mum fish jumping ability are another common problem. In
some cases, culverts can become blocked by debris accumu-
lation or become so damaged that fish are maimed or killed
while entering or exiting a culvert. Besides acting as barri-
ers, culverts can have other deleterious effects that include
altering stream morphology and limiting the downstream
flow of sediment, large woody debris and other organic ma-
terials. Especially problematic is the catastrophic failure of
culverts during heavy storm events. This can cause flooding,
severe sediment scour and deposition, bank destabilization
and damage to riparian vegetation.

In order to amend the situation, the Washington Depart-
ment of Fish and Wildlife (WDFW) and the Washington
State Department of Transportation (WSDOT) have spent
nearly $14 million dollars since 1991 on the inventory, pri-
oritization and correction of fish passage barriers. The sheer
number of culverts in Washington State makes this a daunt-
ing task. Based on their latest report [23], over 4,500 cul-
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Figure 4. Map showing the layout of the study area. Culvert locations are indicated by small dots.

verts have been surveyed throughout the state with many
more still remaining to be surveyed. Over half of them have
been found to be fish-bearing crossings and over 1,100 are
thought to be passage barriers. Of these, 754 have enough
upstream habitat to justify repair, yet only 124 have actu-
ally been fixed. These findings are somewhat better than
what might be extrapolated from [24], which found that up
to 75% of culverts in some forested watersheds were full or
partial impediments to fish passage. Summary results of the
WSDOT/WDFW fish passage barrier assessment project
have been compiled within the Salmonid Screening, Habitat
Enhancement, and Restoration (SSHEAR) database main-
tained by WDFW.

To examine the performance of the three solution meth-
ods for FPBRP (DP, GABP and scoring and ranking), eight
culvert network datasets were created based on GIS data ob-
tained from the SSHEAR database, WDFW’s Fish Program
and the Snohomish County Surface Water Management de-
partment. The data layers are organized based on a system
of watershed management areas used by the State of Wash-
ington known as Water Resource Inventory Areas (WRIAs).
In all, there are 62 nonoverlapping WRIAs spanning the
state. Four core culvert datasets: wria5, wria7, wria8 and
wria15, were created by overlaying the locations of bar-

rier culverts within WRIAs 5, 7, 8 and 15, respectively, on
top of 1 : 24,000 scale stream hydro-layers to determine the
network connectivity of culverts. One barrier in wria7 for
which complete SSHEAR habitat survey data was unavail-
able was excluded from the analysis. The remaining four
datasets: wa1, wa2, wa3 and wa4, are based on composites
of the four core datasets from WRIAs 5 and 7, WRIAs 8 and
15, WRIAs 7 and 8, and WRIAs 5, 7, 8, and 15, respectively.
A map showing the locations of barrier culverts for each of
the different WRIAs is provided in figure 4.

Habitat values vj (derived from the SSHEAR database)
were taken as the length in meters of river habitat between
each barrier j and its nearest artificial or natural upstream
barriers. This metric was chosen for its simplicity and be-
cause it is the primary metric used by WSDOT. Of course,
some weighted combination of spawning and rearing habi-
tat, which is also supplied in the SSHEAR database, could
just as easily have been used instead. Estimated costs to
fully repair barriers are denoted by values of 1, 2 or 3 in the
SSHEAR database. These values correspond in dollar fig-
ures to the three ranges �$100,000, ($100,000, $500,000]
and >$500,000, respectively. More precise estimates do ex-
ist, but for legal reasons are kept confidential. Instead of sim-
ply fixing a dollar amount to each value 1, 2 or 3, we chose
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to randomly generate repair costs in tens of thousands of dol-
lars rounded to the nearest thousand from the uniform distri-
butions [1, 10], (10, 50] and (50, 100], respectively. Thus, in
line with WSDOT, only two types of barrier repair decisions
were considered: full repair versus no repair.

5.2. Results

The four algorithms dynamic programming (DP), greedy
add (GA), i.e. without the branch pruning local search rou-
tine, greed add with branch pruning (GABP), and scoring
and ranking (SR) according to equation (6), were imple-
mented in JAVA 2 (JDK 1.3.1). All experiments were con-
ducted on the same 3.06 GHz Pentium 4 processor with
512 MB of RAM. It is important to point out that the re-
sults presented below are for demonstration purposes only.
They should not be construed to represent the best allocation
of repair funds or be used to form comparisons with past or
existing repair programs since the cost data were randomly
generated and since a known barrier culvert was excluded
from one of the test datasets for lack of habitat survey data.

This, however, in no way invalidates the types of conclu-
sions that can be drawn from this exercise. Obviously, more
precise costs are necessary to make real policy recommen-
dations. However, better data will certainly not change the
inherent differences among the solution methods in terms of
overall quality (as measured by total net habitat gain) or in
terms of computational time. Any observed differences are
purely due to the quality and robustness of the solution tech-
niques themselves, i.e. the way in which information is used,
since no solution method requires any greater data require-
ments than any other.

Table 3 shows, for each dataset, a comparison of the
different solution methods at four different budget values.
Budgets, expressed in hundreds of thousands of dollars, are
roughly equally spaced at 20% increments of the maximum
possible budget given under “Max Budget”, which repre-
sents the cost to repair all barriers in a dataset. The col-
umn labeled “Barriers” indicates the total number of barri-
ers present. The columns labeled “Obj” report the objective
values of the different solution methods in terms of the net
gain in meters of habitat. Solution times, under the heading

Table 3
Performance of each solution technique at various budget amounts.

Dataset Barriers Max Budget DP GA GABP SR
budget

Obj Time Obj %Gap Time Obj %Gap Time Obj %Gap Time

wria5 47 2,139 450 34,596 0.02 34,596 0 0.03 34,596 0 0.00 30,642 11.43 0.00
900 40,354 0.00 39,071 3.18 0.00 40,254 0.25 0.02 39,309 2.59 0.00

1,350 44,001 0.03 42,029 4.48 0.00 44,001 0 0.09 43,442 1.27 0.00
1,800 46,495 0.02 46,495 0 0.00 46,495 0 0.00 46,495 0 0.00

wria15 66 2,058 450 28,612 0.02 28,249 1.27 0.02 28,249 1.27 0.00 25,880 9.55 0.00
900 37,162 0.02 36,019 3.08 0.00 36,279 2.38 0.03 36,408 2.03 0.00

1,350 42,645 0.08 42,610 0.08 0.00 42,612 0.08 0.02 42,583 0.14 0.00
1,800 45,176 0.05 45,176 0 0.00 45,176 0 0.02 45,176 0 0.00

wria7 85 3,020 650 32,739 0.06 32,439 0.92 0.00 32,539 0.61 0.02 25,306 22.70 0.02
1,300 40,939 0.03 40,581 0.87 0.02 40,915 0.06 0.03 35,880 12.36 0.02
1,950 46,071 0.05 43,714 5.12 0.00 44,960 2.41 0.03 44,066 4.35 0.02
2,600 48,637 0.08 46,755 3.87 0.00 48,459 0.37 0.02 48,637 0 0.02

wria8 91 3,170 650 47,416 0.05 47,114 0.64 0.00 47,114 0.64 0.02 41,846 11.75 0.00
1,300 55,897 0.05 55,549 0.62 0.00 55,822 0.13 0.00 52,449 6.17 0.00
1,950 61,066 0.08 59,741 2.17 0.00 61,066 0 0.08 58,721 3.84 0.00
2,600 63,994 0.06 63,994 0 0.02 63,994 0 0.02 63,927 0.10 0.00

wa1 132 5,176 1,050 67,498 0.06 67,498 0 0.02 67,498 0 0.02 55,828 17.29 0.00
2,100 80,523 0.09 79,006 1.88 0.00 79,322 1.49 0.03 74,798 7.11 0.00
3,150 89,337 0.11 86,899 2.73 0.00 87,816 1.70 0.05 87,051 2.56 0.02
4,200 94,909 0.12 94,815 0.10 0.00 94,909 0 0.05 94,466 0.47 0.00

wa2 157 5,236 1,050 75,573 0.08 75,358 0.28 0.00 75,358 0.28 0.02 63,088 16.52 0.00
2,100 93,699 0.11 93,197 0.54 0.00 93,531 0.18 0.03 89,313 4.68 0.00
3,150 102,801 0.12 102,524 0.27 0.00 102,524 0.27 0.02 100,575 2.17 0.00
4,200 108,585 0.14 108,211 0.34 0.00 108,258 0.30 0.05 108,490 0.09 0.00

wa3 176 6,214 1,250 80,708 0.08 80,387 0.40 0.02 80,480 0.28 0.05 66,821 17.21 0.02
2,500 96,732 0.12 94,766 2.03 0.00 96,534 0.20 0.06 89,696 7.27 0.02
3,750 106,309 0.16 104,102 2.08 0.00 105,283 0.97 0.08 102,018 4.04 0.02
5,000 112,211 0.17 108,722 3.11 0.00 112,195 0.01 0.06 112,050 0.14 0.02

wa4 289 10,805 2,200 146,759 0.30 145,392 0.93 0.02 145,445 0.89 0.06 123,674 15.73 0.00
4,400 175,135 0.36 173,130 1.14 0.02 173,311 1.04 0.11 166,953 4.67 0.00
6,600 192,904 0.44 188,515 2.28 0.02 189,093 1.98 0.23 187,896 2.60 0.00
8,800 203,809 0.50 203,002 0.40 0.02 203,362 0.22 0.14 203,538 0.13 0.00
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“Time”, are expressed in CPU seconds. Finally, “%Gap”
indicates for each heuristic method the percent gap (error)
of its objective relative to the optimal value found by DP,
where gap is calculated as the difference of the optimal and
heuristic objectives divided by the optimal objective.

One of the first observations about table 3 is that for each
dataset, the increase in the optimal objective value, given
by the value under DP, increases at a decreasing rate with
increases in budget. For example, 32,739 m of accessible
habitat could be gained for wria7 with a budget of $650,000.
By increasing the budget by $650,000 to $1.3 million, the
amount of accessible habitat only increases by 8,200 m to
40,939 m. The next two increments of $650,000 produce
increases of 5,132 m and 2,567 m, respectively. A similar
pattern plays out for each of the other data sets. This behav-
ior is more clearly seen in figure 5, which shows the efficient
frontier of maximum net increase in accessible habitat ver-
sus budget for three different datasets. Each curve is roughly
concave. Results such as this can be very informative to
decision makers during the budget proposal and allocation
process for determining a good level of tradeoff in situations
with decreasing returns on investment.

In terms of computational time, DP solved very rapidly,
usually in a few tenths of a second and never more than
half a second for the largest dataset and budget value. As
one would expect, solution time increased with both budget
amount and the number of barriers in a dataset. For exam-
ple, keeping the budget roughly fixed, DP found an optimal
solution for wria5 in 0.03 seconds with a budget of $1.35
million, while for wria8, which is roughly double the size of
wria5, solution time went up by less than a factor of two to
0.05 seconds at a comparable budget of $1.3 million. A sim-
ilar pattern is found for fixed problem size, as well. Solution
time increased only incrementally between the lowest and
highest budget values for the smaller datasets (wria5, wria7,
wria8 and wria15) and almost doubled for the larger datasets
(wa1, wa2, wa3 and wa4).

GABP found solutions of very high quality with low com-
putational effort. Solutions for GABP were generally only 1
to 3% below the optimum. For small problem sets, there

Figure 5. Maximum net habitat gain versus budget amount for select
datasets.

was practically no difference in time between the heuristic
and DP. As problem size and budget amount increase, how-
ever, the ratio of DP to GABP solution time did increase,
though in absolute terms the difference was rather negligi-
ble. The greedy adding heuristic GA (without branch prun-
ing) is shown only for comparative purposes. The occasion-
ally considerable improvement in optimality gap between
GA and GABP demonstrates the utility of performing the
local search routine.

By comparison, the scoring and ranking procedure SR,
in spite of requiring virtually no computational effort, fre-
quently produced much lower quality solutions than GABP
or GA. When budget values were relatively low, the percent
gap was quite high: frequently greater than 9% and as much
as 22% in the worst case based on table 3. As the budget
increased, however, the percent gap dropped markedly. For
the first three datasets, in fact, SR was able to find an optimal
solution for the largest budget value. This pattern can be at-
tributed to the underlying assumptions of the barrier scoring
procedure. Using equation (6), the passability at upstream
barriers is not directly taken into account, presupposing that
habitat above upstream barriers is freely accessible. Conse-
quently, scoring and ranking solutions generally get closer
to optimal as more and more barriers have been fixed and
scores become more globally accurate in terms of each bar-
rier’s overall importance to an optimal solution. This pattern
of high percent gap at low budget values is more clearly seen
in figure 6, which shows for SR the percent gap versus bud-
get amount for datasets wria5, wria7 and wria8. Looking at
the results for wria7, SR performed especially poorly with a
maximum gap of over 60% at a budget of $100,000 and was
still nearly 20% for budgets as high as $1 million. With even
finer gradations of the budget, SR was a full 100% below
the optimum, producing no gain whatsoever for wria7 at a
budget of $5,000, as seen in figure 7.

To get a better understanding of the performance of the
different heuristics, a total of 19 budget values (at 5% incre-
ments of the maximum budget) were evaluated for each of
the eight datasets. Table 4 presents summary results of the
average percent gap (Avg %Gap), the maximum percent gap

Figure 6. Percent gap of SR at budget increments of $100,000 for select
datasets.
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Table 4
Overall performance of each heuristic for 19 different budget values.

Dataset GA GABP SR

Avg Max Num Avg Max Num Avg Max Num
%Gap %Gap Opt %Gap %Gap Opt %Gap %Gap Opt

wria5 1.36 4.34 9 0.75 3.44 13 4.12 18.16 3
wria15 1.18 3.67 4 0.66 2.39 10 5.80 26.94 3
wria7 3.00 7.20 3 0.65 3.27 4 10.94 31.80 3
wria8 0.67 2.65 10 0.12 0.63 12 7.04 32.58 3
wa1 1.45 3.74 4 0.96 2.85 4 7.81 30.80 1
wa2 0.70 2.72 3 0.35 1.93 4 6.18 18.43 2
wa3 1.64 3.36 4 0.60 2.63 6 7.71 22.80 1
wa4 1.07 2.56 3 0.67 2.08 3 7.04 25.43 2

Avg 1.38 3.78 5.00 0.60 2.40 7.00 7.08 25.87 2.25
SD 0.74 1.52 2.83 0.26 0.89 4.04 1.97 5.73 0.89

Figure 7. Percent gap for SR at budget increments of $5,000 for dataset
wria7.

(Max %Gap) and the number of times an optimal solution
was found (Num Opt) across all 19 budget values. On aver-
age, GABP was only 0.6% off the optimum (1.38% for GA)
but was more than an order of magnitude worse for SR at a
7.08% optimality gap. And even if a 7% average gap may
not seem like much, when one looks at the worst-case per-
formance of SR as measured by the maximum percent gap,
the potential disadvantage of a scoring and ranking proce-
dure is clearly evident. On average, the maximum gap for
the three heuristics was 26%, 4% and 2%, for SR, GA and
GABP, respectively. Another indication of SR’s inferiority is
the number of times the heuristics found an optimal solution.
On average, GABP found an optimum 37% of the time over
all budget values. This is somewhat better than GA, which
found an optimum 26% of the time, and considerably better
than SR, which only found an optimum 12% of the time.

The results indicate two important findings. First, for a
nominal amount of computational time, the heuristics GABP
and GA strictly outperformed the scoring and ranking pro-
cedure SR in all three performance measures: average gap,
maximum gap and frequency of finding an optimum. This
is particularly noteworthy, showing that the use of better al-
gorithms provides a sort of insurance against the worst in-
stances of miss planning. Second, using a heuristic with a

local search routine (GABP) produced solutions of signifi-
cantly higher quality with little added computational effort
than one without (GA).

6. Conclusion

The problem of reconnecting inaccessible stream habitat
is a major concern throughout the North America and else-
where due to the presence of large numbers of small artificial
stream barriers that block the upstream movements of fish.
This problem is especially relevant to salmon stocks because
of their extensive use of upstream areas during adult spawn-
ing and juvenile rearing. To combat the problem, public
resource agencies and private environmental organizations
have spent and continue to spend millions of dollars each
year to inventory and fix fish passage barriers.

Because of the absence of more formal procedures like
optimization models, current methods for making barrier
repair and replacement decisions generally rely on simple
scoring and ranking techniques. Though quick and simple to
use, scoring and ranking techniques can give arbitrarily bad
solutions due to their generally limited consideration of spa-
tial dependencies among barriers and their inability to read-
just rankings as some barriers are repaired. In their defense,
some would argue that scoring and ranking is the only avail-
able method that can account for multiple decision criteria,
like the amount and quality of habitat, the presence of endan-
gered or threatened species, regulatory requirements and the
presence of special political backing or funding certain ar-
eas. Yet, almost all of these factors can be incorporated into
an optimization model by directly including them as con-
straints that the model must satisfy or by adding them into
the objective function through the use of weights.

To overcome the shortcomings of scoring and ranking,
we have presented a novel decision-modeling approach for
deciding which fish passage barriers to repair or replace.
Referred to as the Fish Passage Barrier Removal Problem
(FPBRP), this nonlinear, binary model maximizes the gain
in accessible habitat above barriers subject to a budget con-
straint. The formulation is quite general in that many dif-
ferent types of fish passage barriers may be considered such
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as small dams, culverts, dikes, levees, floodgates, weirs and
many others. Additionally, multiple repair options at these
barriers can be considered. With simple modification, the
model can also handle multiple passage rates for different
fish species and life stages. Though it assumes that com-
ponent river networks have an underlying tree structure, ex-
tensions of FPBRP that consider several barriers arranged
in parallel along the same stretch of stream, as might exist
with deltas and braided rivers, are possible. Speaking more
generally, what makes FPBRP especially appealing is that
compared to other classes of optimization models used in en-
vironmental planning, which generally make a lot of strong
simplifying assumptions, FPBRP is quite robust in terms of
capturing an accurate description of the problem faced by
restoration managers. In this, FPBRP is well suited to give
actionable results, not just informative results.

Because it is a nonlinear integer model, existing commer-
cial solvers are ill suited to solving FPBRP optimally. To
overcome this, a dynamic programming (DP) formulation
was given that is guaranteed to find a global optimal solu-
tion. To examine the performance of the dynamic program-
ming routine, two alternative solution methods were investi-
gated. The first method, called GABP, is based on a greedy
construction heuristic combined with a local search proce-
dure that utilizes a branch pruning mechanism to improve an
initial solution. The second method, called SR, is based on
a simple scoring and ranking procedure that uses a benefit–
cost ratio for ordering repairs.

Computational results on eight real datasets of barrier cul-
verts located in Washington State show the dynamic pro-
gramming method to be very acceptable in terms of solu-
tion time. For problems with up to several hundred barri-
ers, DP found a solution in less than half a second. The re-
sults also confirm the potentially poor performance of scor-
ing and ranking methods. SR frequently produced solutions
that were 25% below the maximum and in the worst case
were 100% suboptimal, producing zero net gain.

By comparison, the more intelligent and robust heuris-
tic GABP found in almost all cases optimal or near optimal
solutions with relatively low computational effort. On aver-
age the heuristic was less than 1% below the optimum and
usually never more than a few percentage points below in
the worst case. Although it was found that GABP had re-
ally little advantage over DP in terms of reduced solution
time, especially for the smaller datasets, this method may
still be useful for several reasons. First, while there is no
evidence to confirm this, we believe that GABP could have
promise when dealing with large datasets having a thousand
or more variables that might be time consuming to solve
using DP. Second, the basic GABP structure can be quite
easily adapted to solve more complex barrier removal prob-
lems having additional constraints besides a budget. In this,
GABP may have especially useful applications.

There are several areas of further research we suggest for
extending the model. One natural extension could be to in-
corporate stochastic issues into the problem. With FPBRP,
it is assumed that barrier repair costs and passability values

are known with certainty, yet rarely does this actually hold in
practice. Handling uncertainty in passability is a very simple
matter assuming one is using a maximum expected value ob-
jective. It can be shown quit easily that one only need replace
the “known” change in passability of project i at barrier j ,
pij , with its expected value p̂ij . Thus, no structural changes
to the basic model or the solution algorithms are required
with this type of uncertainty. Cost uncertainty is more diffi-
cult to deal with, especially using a heuristic method. With
a heuristic it is necessary at the very least to minimize bud-
get overruns or more appropriately to find an order of re-
pairs and set of policies that determine when and when not
to fix different barriers depending on the amount of budget
remaining. Cost uncertainty, however, can be easily han-
dled using a stochastic dynamic programming framework.
Taking this approach would require only minor changes to
the deterministic dynamic programming formulation above.
One would simply need to take the expectation of the cost-
to-go functions Ec{Fsib(j)(d −cij )} and Ec{Fkid(j)(d −cij )}
on right-hand side of equations (8) and (9), respectively, in
order to find the best repair option. It is unlikely that this
more general formulation would require any drastic increase
in solution time.

Another interesting line of research might be to consider
the tradeoff between habitat quantity and quality. The cur-
rent model addresses only one piece, albeit an important one,
of the larger problem faced in restoration planning: how to
choose among many different types of restoration activities
to achieve the greatest benefit of fish and their ecosystems.
Habitat values are static using FPBRP. Although habitat can
be easily adjusted for current environmental quality, direct
control of this quality is not handled within the scope of the
model presented here. More generally, however, managers
need flexibility in trading off habitat quantity and quality. As
such, it may make little sense to open a large tract of inacces-
sible stream habitat if environmental quality is so poor that
additional restoration efforts need to be undertaken. These
might include rehabilitating riparian zones, lowering stream
temperatures, reducing pollution and sediment inputs and in-
creasing channel complexity through placement of instream
structures and large-woody debris.
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