CHAPTER 3. DEPARTURE ROUTES

3.0 STRAIGHT ROUTE DEPARTURE SEGMENTS.

Straight departures are aligned within 15° of the runway centerline. The initial climb area (ICA) is aligned along the runway centerline for at least 2 NM (see paragraph 1.6). If a turn at the departure end of runway (DER) is desired, expand the obstacle clearance area in the direction of the turn an amount equal to the departure course degree of offset from runway centerline (see figure 3-1). Reduce the obstacle clearance area following the ICA on the side opposite the turn an amount equal to the expansion on the opposite side.

Figure 3-1. Turn $\leq 15^{\circ}$ at DER

3.1 DEAD RECKONING (DR) DEPARTURE.

The boundary lines of the departure obstacle clearance surface (OCS) splay outward 15° relative to the departure course from the end of the ICA (see figures 3-1 and 3-2). Limit the DR segment to a maximum distance of 10 NM from DER.

Figure 3-2. Dead Reckoning

3.2
 POSITIVE COURSE GUIDANCE (PCG) DEPARTURE, 15° OR LESS.

Calculating Obstruction Area Half Widths. Apply the values from table 3-1 to the following formulae to calculate the obstruction primary area half-width ($1 / 2 \mathrm{~W}_{\mathrm{P}}$), and the width of the secondary area $\left(\mathrm{W}_{\mathrm{S}}\right)$.

$$
\begin{gathered}
\frac{1}{2} W_{p}=k_{P} \times D+A \\
W_{S}=k_{S} \times D
\end{gathered}
$$

Table 3-1

$\mathbf{1} / \mathbf{2}$ Width	$\mathbf{k}_{\mathbf{p}}$	$\mathbf{k}_{\mathbf{s}}$	\mathbf{D}	\mathbf{A}
Dep DR	0.267949	none	Distance (ft) from DER	500^{\prime}
Localizer	0.139562	none	Distance (ft) from ICAE	3756.18^{\prime}
NDB	0.0833	0.0666	Distance (NM) from facility	1.25 NM
VOR / TACAN	0.05	0.0333	Distance (NM) from facility	1 NM

3.3 LOCALIZER GUIDANCE.

The obstruction evaluation area (OEA) begins at the initial climb area end-line (ICAE). The maximum length of the segment is 15 NM from DER. Evaluate for standard climb gradient (SCG) in accordance with paragraph 1.4.1. If necessary, calculate the required minimum climb gradient using the formula in paragraph 1.4.2 where D is the shortest distance to the initial climb area baseline (ICAB) (see figure 3-3).

3.3.1 NDB Guidance. Evaluate for SCG in accordance with paragraph 1.4.1. If necessary, calculate the required minimum climb gradient using the formula in paragraph 1.4.2. Figures $3-5,3-6$, and 3-7 illustrate possible facility area configurations.
3.3.2 VOR/TACAN Guidance. Evaluate for SCG in accordance with paragraph 1.4.1. If necessary, calculate the required minimum climb gradient using the formula in paragraph 1.4.2. Figures 3-4, 3-5, and 3-6 illustrate possible facility area configurations.

Figure 3-4. Facility Area and DR Area Relationship

Figure 3-5. DER within Primary Area Facility

3.3.3 Secondary Area Obstructions. Secondary areas may be constructed and employed where PCG is provided.

3.4 RESERVED.

Table 9. STANDARD STRAIGHT-IN MINIMUMS

${ }^{1}$ Add 50 ft to HAT for VOR without AF or NDB with FAF.
Add 100 ft to HAT for NDB without
${ }^{2}$ For NDB approaches, $3 / 4$ mile or RVR
${ }^{2}$ For NDB approaches, $3 / 4$ mile or RVR 4000 .
${ }^{3}$ For LOC and LNAV/VNAV, $3 / 4$ miles.or RVR 4000.

${ }^{4}$ ILS includes LOC, GS, and OM (or FAF). For an Offset LOC, the minimum HAT is 250 and minimum RVR is 2400.
NOTE: HIRL is required for RVR. Runway edge lights required for night.

Table 10. MILITARY STANDARD STRAIGHT-IN MINIMUMS

DME ARC APPROACH

AS REQUIRED	A-E	1	50	(REDUCTIONBELOW ONE MILE NOT AUTHORIZED)

${ }^{1}$ RVR shown in hundreds of feet, i.e., RVR $24=2,400$ feet.
${ }^{2}$ Minimum length of approach lights is 2,000 feet.
${ }^{3}$ For non-standard ALS lengths of:
a. 2,400 to 2,900 feet, use SSALR.
b. 1,000 to 2,300 feet, use SSALS.
${ }^{4}$ When the MAP is located $3 / 4$ statute mile or less from the threshold

INSTRUCTIONS FOR ESTABLISHING MULTAR STRAIGHT-IN MINIMUMS (Use Table 10)

STEP 1. \quad Determine the required DH or MDA by applying criteria found in the appropriate facility chapter of this Order.

STEP 2.	Determine the height above touchdown (HAT) zone elevation.
STEP 3.	Determine the visibility value as follows: a. Precision Approaches.

(1) HAT 250 feet or less. Enter "precision" portion of table 10 at HATvalte for aircraft approach category. Read across table to determine minimum visibility for the appropriate light system. If the HAT is not shown on the table, use the next higher HAT.
(2) HAT greater than 250 feet. Use the instructions for the nonprecision minimums in paragraph b below. Paragraph 331 does not apply.
b. Nonprecision Approaches. Determine the basic visibility by application of criteria in paragraphs 330 and 331. If the basic visibility is 1 mile, enter table 10 with aircraft approach category being considered. Read across the table to determine minimum visibility for the appropriate light system.
STEP 4. \quad Establish ceiling values in 100-foot increments in accordance with paragraph 310.
This page retyped in Change 18 to improve readability.

Figure 2-6. ILS Critical Areas

\square	Localizer Critical Area
	Glidepath Critical Area
\square	Obstacle Critical Area

NOTES: 1. Location of hold lines when operations are permitted on a 400-foot parallel taxiway. 2. Or to the end of the runway, whichever is greater.
2.14

CATEGORY I ILS ANTENNA MAST LIMITATIONS FOR OBSTACLE CLEARANCE

The FAA Advisory Circular 150/5200-13, Airport Design, runway OFZ is applicable to airplane design group 1-6 aircraft. Category I glide slope antennas must not penetrate the runway OFZ.

