Correcting Endogenous Stratification in Random Utility Models:

Application to the Marine Recreational Fishing

Statistics Survey in the SE United States

Paul Hindsley

Coastal Resource Managment
East Carolina University

Brad Gentner NMFS

Purpose of Study

Theoretical Background

 Review the theory of sampling with endogenous stratification (Manski & Lerman, 1977; Manski and McFadden, 1981; Cosslett 1981a; Cosslett 1981b; Cosslett 1993)

Empirical Implications

- 2. Assess the impact of an intercept sampling strategy on estimation procedures for site/mode/species choice of Saltwater Anglers in the Southeast US.
 - RDD Telephone Survey
 - Simple Random Sample of Coastal Saltwater Recreational Anglers
 - Intercept Survey
 - Potential Bias: Endogenous Stratification
 - More complete information than Telephone Survey
- 3. If necessary, identify methods to correct sampling bias

Estimation in Preliminary Stages

Behavioral and Econometric Model

Behavioral Model: Random Utility Model

$$\begin{split} P_{ni} &= \Pr(U_{ni} > U_{nj}, \forall j \neq i) \\ &= \Pr(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj}, \forall j \neq i) \\ &= \Pr(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj}, \forall j \neq i) \end{split}$$

Econometric Model: Conditional Logit

$$P_{ni} = \frac{e^{V_{ni}}}{\sum_{j} e^{V_{nj}}} = \frac{e^{x_{ni}\beta_i}}{\sum_{j} e^{x_{nj}\beta_j}}$$

• Welfare Measure $WTP_i = -\frac{\beta_{Attribute}}{\beta_{TravelCost}}$

The Choice Model

- Species/Mode/Site Choice a function of
 - Travel Costs & Opportunity Costs
 - Site Characteristics
 - Site Quality (Depicted by Catch Rate)
 - Angler Characteristics

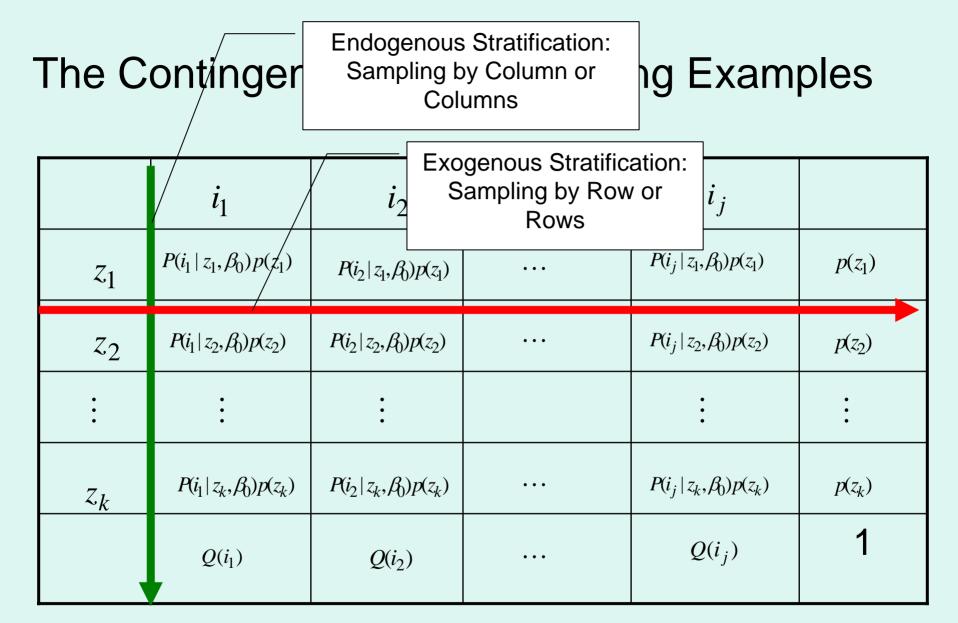
Sampling Recreational Fishermen

 Endogenous variables Site Choice Among All Potential Sites

$$i \in C$$

$$C = \{1, ..., M\}$$

Angler Characteristics, Site Characteristics, Travel Cost


Exogenous variables

$$z \in Z$$

$$Z = \{1, ..., K\}$$

Joint Density

$$f(i,z) \equiv P(i \mid z, \beta_0) p(z) \equiv q(z \mid i) Q(i) \quad [(i,z) \in C \times Z]$$

Sampling Space

Finite Space of Strata

$$A_b j CBZ$$

Random Sample

$$\mathbf{B} = \mathbf{1} \quad and \quad \mathbf{A}_1 = \mathbf{C} \mathbf{B} \mathbf{Z}$$

Exogenous Sample

$$A_b = CBZ_b$$

Endogenous Sample

$$A_b = C_b B Z$$

Consequences of Choice Based Samples for Estimation of Saltwater Angler **Preferences**

• Sampling of Choices not Representative of Population $Cheises \frac{P(i\,|\,z,\beta_0)\,p(z)H(i)}{Q(i)}$

where
$$H(i) \neq Q(i)$$

$$Q(i) = \sum P(j | y, \beta_0) p(y)$$

 $Q(i) = \sum_{j} P(j | y, \beta_0) p(y)$ • Sampling of Anglet Characteristics not Representative of Population Characteristics

$$p(z_{sample}) \neq p(z_{pop})$$

Most Common Empirical Methods for Correcting for Endogenous Stratification

- CMLE (Manski and McFadden, 1981)
- WESMLE (Manski and Lerman, 1977)

$$\max_{\theta \in \Theta_0} \sum_{n=1}^{N} w(i_n) \ln P(i_n \mid z_n, \theta)$$

where
$$w(i) = \frac{Q(i)}{H(i)}$$

Data

- Marine Recreational Fishery Statistics Survey (MRFSS). Sampled September 2003 through the end of August 2004.
- Field intercept survey
 - Stratified by Site and Mode
 - Random sample of trips
- RDD telephone survey of coastal households
 - Random sample of coastal anglers
- Observations limited to those anglers on single day trips.

Preliminary Estimation

	RDD	Intercept			
Travel Cost	0266801	0166358			
	(.0022758)	(.0014447)			
Travel Time	7952985	8727553			
	(.0410839)	(.0228217)			
Intercept Points in	.660892	.990396			
Aggregate Site(In)	(.0462976)	(.0214	628)		
Big Game	.6437769	.650	Why the	Why the negative value?	
	(.0846256)	(.0370			
Small Game	.9696457	1.191	Misspecification from Species Aggregations?		
	(.0235405)	(.0105			
Bottom Fish	.4528924	.042	Low Sample Size? Flat Fish less than 3% of		
	(.0207658)	(.0153			
Flat Fish	0955117	.3994	sample		
	(.1133694)	(.038		-	
Observations	2398	122	P-Value – over 0.4		

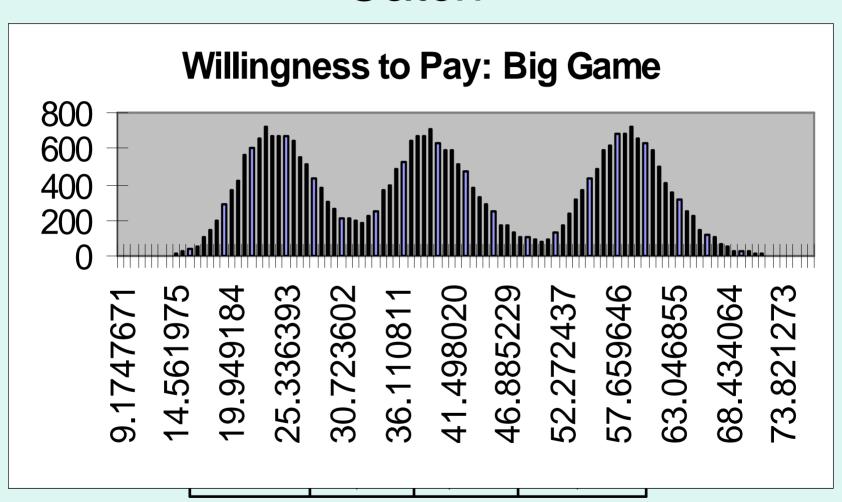
Significant Results in Bold.

Are these parameter estimates actually different?

 H_0 : The parameter estimates are the same.

$$-2(LL(\beta_c) - LL(\beta_u)) = -2(-44396.303 - (-44074.6685))$$
$$= 643.269$$

Critical Value: $\chi_6^2 = 22.46$


Reject H₀

Preliminary Estimation

	RDD	Intercept	WESMLE
Travel Cost	0266801	0166358	0147732
	(.0022758)	(.0014447)	(.0008789)
Travel Time	7952985	8727553	7849341
	(.0410839)	(.0228217)	(.0138737)
Intercept Points in	.660892	.990396	.8974661
Aggregate Site(In)	(.0462976)	(.0214628)	(.0139749)
Big Game	.6437769	.6569	.8645981
	(.0846256)	(.0370265)	(.0264782)
Small Game	.9696457	1.191289	1.344704
	(.0235405)	(.0105956)	(.0076813)
Bottom Fish	.4528924	.0422836	.0972897
	(.0207658)	(.0153152)	(.011185)
Flat Fish	0955117	.3994468	.433936
	(.1133694)	(.038837)	(.0314082)
Observations	2398	12260	12260

Significant Results in Bold.

Distribution of WTP for Big Game Catch

Conclusions

- Parameter estimates from RDD and Intercept are not the same.
- WESMLE does not correct Intercept WTP estimates in the direction of the RDD.
- Causes?
 - Differences in Representative Samples
 - Differences in exogenous characteristics

Extensions

Truncate Intercept Sample to Include Only Anglers from Coastal Counties.

Test for Differences Between Exogenous Characteristics Within Samples (Correct if necessary)

- Perform Non-Parametric Test between 2 Samples for Exogenous Variables
- If necessary, create a probability weight to correct for differences. Example: Inverse Probability Weighting (IPW) (Wooldridge, 2002)

Extensions

Apply estimation procedures when the quality variable is Expected Catch - a count model estimate of catch based on historic catch, site characteristics, and angler characteristics.

More detailed look at model specification

- Can the model specification be improved?
- Should different species aggregations be used?
- Will a Nested Logit improve estimation?
- Can we use models that incorporate heterogeneity?