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Abstract 

 

Technical efficiency, which measures how well a firm transforms inputs into outputs, 

gives fishery managers important information concerning the economic status of the 

fishing fleet, and how regulations may be impacting vessel profitability. Data 

envelopment analysis (DEA), and the stochastic production frontier (SPF) have emerged 

as preferred methods to estimate efficiency in fisheries. Although each of the approaches 

has strengths and weaknesses, DEA has often been criticized because it is “deterministic”  

and fails to account for noise in the data. This paper presents a method for examining the 

underlying statistical structure of DEA models using bootstrap methods, and readily 

available software. The approach is then applied to a case study of the U.S. mid-Atlantic 

sea scallop dredge fleet. Results show that the 95% confidence interval for technically 

efficient output is well above the maximum sustained yield (MSY) level of output. 

 

Short Title: Measuring Vessel Efficiency  
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Introduction 

Fishery managers need basic information on the economic status of the vessels 

they manage, and the potential for those vessels to harvest more fish than they desire. 

Two measures that will help in this assessment are the technically efficient output of a 

fleet, and vessel technical efficiency. Technically efficient output is the maximum 

amount of output given a specific bundle of inputs (Ray 2004), and has been widely 

studied dating back to the work of Koopmans (1951). Technical efficiency (TE), is a 

relative concept based on comparing actual output with a benchmark output. TE differs 

from economic efficiency which compares profit from an actual output-input bundle with 

the maximum profit available (Ray 2004). Because important data on input and output 

prices are not collected in many fisheries worldwide, researchers are often limited to a 

technical measure of efficiency, rather than one based on profit maximization. However, 

TE is a necessary condition for economic efficiency (Ray, 2004; Kirkley, Squires and 

Strand, 1998).1  Past studies which have measured TE for fishing vessels include work by 

Kirkley, Squires and Strand (1995, 1998), Weninger, (2001) and Kirkley et al. (2003). 

Similar to many other types of plants, fishing vessels can be characterized as 

having a multi-input, multi-output production technology, as they combine several inputs 

to produce a variety of outputs (fish species) during a fishing trip. However, measuring 

TE of fishing vessels poses several problems not typically found in other industries. First, 

vessels travel various distances from different ports to compete in the harvest of a mobile 

common resource. Second, the fishing process can be characterized as stochastic because 

vessels do not necessarily know the quantity of fish they will produce (land) once the 

decision is made to leave the dock and fish.2 After a trip starts, vessels are subject to 
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changing weather conditions, breakdowns, mechanical problems, and other adverse 

conditions which influence their production. Third, spatial and temporal variability in fish 

stocks can lead to different output mixes and quantities for similarly configured vessels. 

Certain species may not be present at a specific location during the time a vessel is 

present. A vessel which has the similar physical dimensions and horsepower fishing at 

the same location a week later, or in a slightly different location may harvest a slightly 

different species mix  

Data envelopment analysis (DEA) and stochastic production frontiers (SPF) have 

been used to estimate technical efficiency in fisheries (Weninger, 2001; Kirkley et al., 

2003; Kirkley, Morrison Paul and Squires, 2004; Kirkley , Squires and Strand, 1995, 

1998). Both techniques attempt to trace out a production frontier based on observed input 

and output levels for individual vessels, and a vessel’s TE is evaluated relative to the 

frontier. SPF has the advantage that deviations from the underlying frontier are not all 

attributed to inefficiency.  DEA is attractive because no functional form needs to be 

assumed and the models can often be constructed with minimal data. However, DEA is 

often criticized because it is  “deterministic”, that it does not  account for the stochastic 

nature of fisheries production, and thus, all noise is considered as inefficiency.  

Numerous studies have examined the statistical properties of both DEA and SPF 

estimators (Simar, 1996;  Korostelev, Simar and Tsybakov 1995; Banker, 1993; Park, 

Simar and Weiner, 2000; Reinhart,  Lovell, and Thijssen, 2000).  Simar and Wilson 

(1998, 2000a, 2000b) methodically studied statistical properties of DEA models, and 

developed bootstrap algorithms which can be used to examine the statistical properties of 

efficiency scores generated through DEA.  However, the methods of Simar and Wilson 
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have not previously been applied to any study of fishing vessel TE. Additionally, recent 

articles in the fisheries literature have characterized DEA estimates in an output oriented 

model as being biased upward (Tingley, Pascoe and Mardle, 2003), while the work by 

Simar and Wilson show they are biased downward.  It is therefore important in studies 

which use DEA models to correctly characterize the bias, adjust TE estimates based on 

the estimated bias, and present information to managers using confidence intervals, or 

other statistical measures.  

 This paper applies the bootstrap methods used by Simar and Wilson (1998) to 

estimate bias-corrected TE scores, and calculate confidence intervals around those scores, 

for 201 mid-Atlantic sea scallop dredge vessels. These are fairly large vessels which 

harvest sea scallops in a discrete area off the mid-Atlantic United States coastline. This 

study differs from past studies of scallop vessel TE conducted by Kirkley, Squires and 

Strand (1995, 1998), and Kirkley, Morrison-Paul and Squires (2004).  First, it captures 

the multi-output aspect of the technology by including additional species which are also 

caught by scallop dredge vessels, rather than measuring TE based on one output. 

Secondly, it uses data that are typically available to most researchers. The three studies 

mentioned above used extremely detailed data collected over a four year period, 

including data on resource abundance on a trip level basis. Next, this study includes all 

full-time scallop vessels landing scallops from the mid-Atlantic resource instead of a 

small sample of 10 vessels. Last, the analysis presented in this study are conditional on a 

completely different regulatory regime. In the previous Kirkley et al. studies, regulation 

of the fishery was output based (i.e. the number of allowable meats per pound was 
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restricted), and in the present study, there are limits on crew size, days at sea per vessel 

and gear. 

The next section describes the DEA model and the bootstrap methodology, and 

shows the bootstrap algorithm in a seven part procedure that should be easy to follow and 

implemented by other researchers. This is followed by a description of the data used to 

estimate efficiency for the mid-Atlantic scallop dredge fleet. Results are then presented, 

which is followed by a summary of the major points and conclusions. 

 

Data Envelopment Analysis (DEA) 

 DEA is a nonparametric mathematical programming technique originally 

developed by Charnes, Cooper and Rhodes (1978), which can be used to determine the 

boundary of a production frontier. The early work by Charnes, Cooper and Rhodes 

(1978) assessed TE using the concept of Farrell (1957), which radially contracted inputs, 

or expanded outputs along a ray from the origin. Work by Russell (1985) and Coelli 

(1996) used a DEA based measure of TE which was non-radial, and consistent with 

Koopmans (1957) definition of TE where the expansion of outputs or contraction of 

inputs need not be radial.  Kirkley et al. (2003) estimate and assess TE in the Malaysian 

purse seine fishery using DEA.  

Technical efficiency may  be assessed from either an input or output orientation, 

or from a non-orienting perspectivee (i.e. Pareto-Koopmans). Most assessments in the 

fisheries literature have used an output orientation, as this is more consistent with how a 

fishing vessel operates. That is, once the vessel owner or captain has made the decision to 

make a trip and decided on the time the vessel will spend at sea, the appropriate amount 
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of fuel, food, ice and water are purchased.  The vessel then tries to catch as much fish as 

possible during the trip.   

To formally introduce the concepts behind DEA and frontier models, the activities 

of a firm are defined by a production set defined as Ρ ≡ {(x , y) | x can produce y}, which 

contains feasible combinations of inputs (x) and outputs (y). The set can further be 

described in terms of output feasibility sets, or input requirement sets (output or input 

correspondence). This discussion will be limited to the output correspondence Y(x), 

which gives the feasible level of outputs for a given level of input.3 The Farrell efficiency 

boundary of P is a subset of Y(x) and is defined by :  

y x y y y x y y x∂ λ λ( ) { | ( ), ( ) }= ∈ ∉ ∀ > 1 .                                           (1) 

Firms which are technically efficient operate along the frontier, while those that are not 

technically efficient operate in the interior of Ρ.  The Shephard (1970) output distance, 

DO(x,y), function gives a normalized measure of the distance from point (x,y) to the 

frontier, holding input and the direction of the output vector fixed.  It is defined as: 

D x y x yO ( , ) inf{ |( , ) }.≡ > ∈−θ θ0 1 Ρ                                                                                      

(2) 

The value of DO(x ,y) ≤ 1 for all  ( , )x y P∈ .  If DO(x ,y) =1 then the point (x ,y) lies on 

the boundary of Ρ, while values less than one means the point is considered inefficient.   

 Estimation of the Shephard output distance function is accomplished through 

linear programming techniques.  The model adopted here is described in Färe, Grosskopf 

and Lovell (1994), and calculates the inverse of the Shephard output distance function, 

and is provided below: 
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where: 

θ = efficiency measure (θ ≥ 1). 

yjm = quantity of output m produced by firm j 

xjn = quantity of input n used by firm j; and 

zj  = weight assigned to firm j. 

Equation 7 imposes variable returns to scale on the underlying technology. Constant 

returns to scale can be imposed by eliminating equation 7, and non-increasing returns to 

scale may be imposed by changing to an inequality sign (≤) in equation 7. 

Theta (θ), is calculated by running the linear programming problem once for each 

firm in the sample. Firms which are technically efficient will have a value of one, while 

inefficient firms will have a value greater than one. A value greater than one shows how 

much each output should be expanded for the firm to be considered technically efficient.  

For example, a value of 1.1 means the firm would need to expand all outputs 10%, given 

its input bundle, to be considered efficient.   
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 The true production frontier, Farrell efficiency measure and the Shephard output 

distance function are all unknown. Estimates of the Farrell efficiency measure and the 

Shephard output distance function can be calculated using observed, or actual, input-

output combinations. These estimates will yield information on the input-output pairs that 

are considered efficient given the observed data. Although this information may appear to 

be deterministic when compared to the stochastic production frontier (SPF), past studies 

have examined the statistical properties of the DEA estimators. Banker (1993) proved 

weak consistency of the DEA estimator for the single input, single output case.  Gijbels et 

al. (1999) derived the asymptotic sampling distribution for the single input, single output 

model, along with the asymptotic bias and variance.  However, in the multi-input, multi-

output case which typifies fishing vessels, the bootstrap seems to be the only way to 

investigate the sampling distribution of the DEA estimators (Simar and Wilson, 2000(a)).   

 The “smoothed bootstrap” approach of Simar and Wilson (1998) is used in this 

study, and the theoretical underpinnings can be found in the extensive work by Simar and 

Wilson (1998, 1999, 2000(a), 2000(b)).  The key assumption behind this approach is that 

the known bootstrap distribution will mimic the original unknown distribution, if the 

known data generating process (DGP) is a consistent estimator of the unknown DGP.  

The bootstrap process will therefore generate values that mimic the distributions which 

would be generated from the unobserved and unknown DGP (Simar and Wilson 1998, 

2000(a), 2000(b)).  Because DEA estimates a production frontier boundary, generating 

bootstrap samples is not straightforward.4  The “smoothed” bootstrap is based on the 

DEA estimators themselves by drawing with replacement from the original estimates of 

theta, and then applies the reflection method proposed by Silverman (1986).   
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The steps in this procedure are quite simple to implement: 

1. Solve the original DEA model and obtain scores . $ .... $θ θ1 n

2. Let  θB1 …. θBn be a sample generated from . $ .... $θ θ1 n

3. Smooth the sampled values using the following formula:5   

{ }~* * * * *θ θ ε θ ε θ ε θ εi Bi h i if Bi h i or Bi h i if Bi h i= + + ≥ − − + <1 2 1                            (8)                             

4. Obtain the final value θ* by adjusting the smoothed sample value using the following 

formula:6   
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5. Adjust the original outputs using the ratio . $ / *θ θi i

6. Resolve the original DEA model using the adjusted outputs to obtain ~*θk . 

7. Repeat steps 2-6 B times to provide for B sets of estimates; i.e. each firm will have B 

estimates of theta.  For this analysis, 1000 samples were generated for each vessel. 

In equation 8, h is a smoothing parameter, and ε is a randomly drawn error term.   

The most difficult step in the procedure above is to find an appropriate value of “h”. This 

study maximizes a likelihood cross-reference function using methods developed by Ferris 

and Voelker (2000).7  An alternative procedure would be to use the “normal reference 

rule”, which calculates h as follows:  
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                                                        (12) 

where p equals the number of inputs, q the number of outputs and N the number of 

observations in the sample.    

Once the number of desired samples is generated, the bias of the original estimate 

of theta is calculated as follows: 

bias k B kb k
b

B
$ $* $θ θ= − −

=
∑1

1
                                                                                              (13) 

A bias corrected estimator of the true value of θ(x,y),  can then be computed using the 

following formula (Simar and Wilson 2000b): 

$*θk

$* $θ θ θk k bias k= −                                                                                                             (14) 

= − −
=
∑2 1

1
* $ *θk B kb

b

B
$θ                                                                                               (15) 

Ray (2004) points out that because the bootstrap procedure is using pseudo-data, 

the interpretation of results in terms of TE for any individual sample should be 

interpreted cautiously because the actual input-output bundle may lie above the frontier 

for any single sample. However, confidence intervals for the outputs based on all samples 

can be constructed quite easily. Since we do not know the true distribution, we try to 

select aα , bα  such that Pr( ~* $ )− ≤ − ≤ − = −b k k aα θ θ α α1  . Finding aα , bα  is carried out 

by sorting the values (~* $)θ θkb − in ascending order and then deleting the (α/2 x 100) 

percent of the elements from both ends of the sorted list.  Then, -bα and -aα are set equal 

to the endpoint values of the sorted list, with aα ≤ bα.  The bootstrap approximation of the 
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confidence interval is given by the interval  (Simar and Wilson, 

1999, 2000b).  Unless , the original value of 

$ * $ *θ α θ θ αk a k b+ ≤ ≤ +

aα
* = 0 $θk will fall outside the confidence 

interval, since $θk is a downward biased estimator of θ.  

The methods outlined above are easily performed using routines developed in 

GAMS (Ferris and Voelker, 2000).8  The bootstrap routine was constructed and run on a 

computer with the Red Hat Linux operating system, and took approximately 7 minutes to 

generate 1,000 samples and solve the DEA model for each sample. 9   

 

Data 

 Data were obtained from logbooks on vessels which used a scallop dredge to 

harvest sea scallops in the mid-Atlantic region during the year 2003. Only vessels which 

were full-time scallop vessels (as indicated by their permit category) were included in the 

sample. Inputs used in the analysis were total dredge width in inches, gross registered 

tonnage, horsepower, vessel length, days at sea and crew size. Outputs were landings in 

weights of scallop meats, monkfish and summer flounder, although monkfish and 

summer flounder are both bycatch species. 

The mean dredge width for the vessels was 326 inches.  Although dredge width 

for a single dredge is restricted to 180 inches in the regulations, some vessels towed two 

dredges (Table 1).  Vessels were on average 160 gross registered tons, 83 feet in length, 

had engine horsepower of 844, spent 94 days at sea, and had a crew of 7.  Vessels 

averaged 165,503 pounds of scallops (meat weight), and had by-catch of monkfish (4,035 

pounds) and summer flounder (377 pounds).10  Regulations limited the vessels to a 

maximum crew of seven, and 120 days of fishing time. However, the log books used for 
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this analysis include steaming time in the calculation of days at sea, which in some cases 

did not count against a vessel’s allocation of fishing time. This is reflected in the 

maximum time spent fishing shown in Table 1.  

 

Results 

 Initial DEA model results for the 201 vessels, gave an average uncorrected TE 

score of 1.16, while the bootstrap model generated an average bias corrected score of 

1.22.  The minimum uncorrected score was 1.0 and the maximum was 1.95, while the 

minimum bias corrected score was 1.03  and the maximum was 2.04 (Table 2). Further 

analysis showed the original scores had a mean bias -0.06, which was expected.11  The 

average score of 1.22 was much lower than a recent study by Kirkley, Morrison-Paul and 

Squires (2004) which had an average TE score using DEA of 1.57.12  However, the 

results in the two studies are not comparable, since the Kirkley study was based on a 

limited sample of 10 vessels and only had a single output, and as stated previously, 

represented a time period where the resource was managed through output controls, and 

not the current suite of input controls. 

Technically efficient output for the vessels used in this study is calculated by 

multiplying the TE score returned from the DEA model by the vessel’s base output.  

Summing over all vessels will yield the technically efficient output for the fleet. The TE 

output confidence interval is calculated in a similar manner. Based on the original DEA 

scores, the TE scallop output for the fleet was 37.7 million pounds.  However, the 95% 

confidence interval based on the bootstrap model  yielded an estimate of TE output 

between 37.9 and 42.2million pounds of scallops.  Additionally, the technically efficient 
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output for monkfish was between 0.9 and 1.04 million pounds, and for summer flounder 

it was between .08 and .09 million pounds.   

Focusing on the scallop resource, the most recent assessment showed that MSY 

for the mid-Atlantic resource is approximately 30.4 million pounds (Applegate, personal 

communication).13 Results indicate that the fleet has the capability to harvest between 7.5 

and 11.8 million pounds (24.7 and 38.8 percent) more than the MSY level. The 

confidence intervals also showed that technically efficient output was between 4.6 and 

8.9 million pounds (14  and 27 percent) greater then the observed output. It must be 

remembered that the estimates of technically efficient output  are conditional on the 

current state of the resource, the current state of technology,  and the regulations in place. 

In this specific model, no impacts of decline in abundance which may occur over a year 

are included. Since data on scallop abundance are collected once a year, the biological 

models would not support analysis of changing resource abundance within a year. 

Current regulations limiting dredge size, crew size and total days fishing in a year also 

constrain the technically efficient output. If regulations restricting the crew size to seven 

were lifted, allowable days at sea increased, or maximum dredge size increased, the 

technically efficient output would likely be higher. This analysis should cause concern 

for managers.  First, there is a large amount of technical inefficiency (mean bias corrected 

score equals 1.2227), meaning vessels are not as profitable as possible.  Second, vessels 

could harvest between 24.7 and 38.8 percent more scallops than the MSY level with the 

same input use.   

One critical step in constructing the bootstrap model was the selection of a 

smoothing parameter “h”.  Simar and Wilson (2000b) found that confidence interval 
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results were not particularly sensitive to the smoothing parameter chosen. For this group 

of vessels, a cross-reference function returned a smoothing parameter of 0.030.  In order 

to see how the confidence intervals changed with different values of the smoothing 

parameter, the value of  h was both increased and decreased by 50%.  To conserve space, 

results for the 40 of the 201 vessels are shown in Table 3, and indicate that increasing or 

decreasing the smoothing parameter by 50% in either direction only slightly alters the 

confidence intervals.  This is consistent with the results found by Simar and Wilson 

(2000b).  An alternative to using the cross-reference function would have been to 

estimate the smoothing parameter using the “normal reference rule”, which would have 

resulted in a value of 0.54.  This is 18 times the value obtained using the cross-reference 

function, and the resulting confidence intervals are quite different (Table 3).  For 

example, observation 56 has a lower bound of 1.6523 using the normal reference rule 

smoothing parameter of 0.544, which is outside the 95% confidence interval upper bound 

of 1.5697 using a parameter value of 0.030 obtained through the cross-reference function.    

Simar and Wilson (2000b) note that the normal reference rule will result in a correct 

choice of bandwidth when the underlying data are normally distributed and have been 

pre-whitened to have unit variance and zero covariance, which is not the case in this 

study.  It is apparent for these vessels, care must be taken in choosing the appropriate 

smoothing parameter.   

 

Summary and Conclusions 

DEA has become a popular method for evaluating technical efficiency in many 

industries, including fisheries, worldwide. It is easily able to handle the multi-input, 
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multi-output technology that characterizes most fishing vessels, without imposing a 

restrictive form of technology. However, DEA has also been criticized for being 

“deterministic”, and lacking any statistical foundation.  The bootstrapping technique 

presented here is one method for constructing a stochastic DEA model, and is easily 

implemented using the GAMS language on  standard PC’s, as well as other platforms.  

Confidence intervals of efficient output and technical efficiency can be developed giving 

managers more information than simple point estimates. The methods can be used for any 

model where outputs (inputs) are radially expanded (contracted), such as the graph 

efficiency measure, or with directional vectors. Because DEA models are boundary 

problems, the bootstrapping methods chosen are more complex than simply drawing 

samples from the observed input and output combinations. Caution must be used in the 

selection of a smoothing parameter “h”,  as the wrong choice of h can substantially 

influence results.  Algorithms already developed can yield an appropriate value for h 

which is likely to lead to a better estimation than using a simple approach such as the 

normal reference rule.   

The bootstrapped DEA model was used to examine the TE of 201 mid-Atlantic 

scallop dredge vessels operating in 2003. Findings show that there was substantial 

technical inefficiency in the fleet, and managers should be concerned because the vessels 

have the potential to harvest far more than the MSY level of output, with no change in 

input levels. Because other types of vessels (notably trawl vessels) also harvest scallops, 

the fact that one gear type has the ability to substantially exceed the MSY leads to the 

conclusion that there are problems managing this resource in terms of exceeding the total 

allowable catch.  From the perspective of economic efficiency, technical inefficiency in 
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the fleet means that the vessels are not as profitable as they could be if they were 

operating in a technically efficient manner. 

While results presented in this paper are in terms of the technically efficient  

output, the bootstrap methods can generate additional information for decision makers. 

For example, in models with discretionary and non-discretionary inputs,  95% confidence 

intervals for non-discretionary input usage can be estimated. When there are a large 

number of observations which are deemed efficient with an uncorrected score of 1.0, 

using the bias corrected mean or median TE score may give a different ranking of 

observations in terms of TE.  Confidence intervals for the shadow prices of the various 

inputs could also be constructed. Presented results need to be based on the questions 

being posed.  There will likely be a trade-off , at some point, between the volume of 

information generated, and the usefulness of the information to managers.  
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Table 1 

Selected Vessel Statistics for Mid-Atlantic Scallop Dredge Vessels 

 

      

Number of Vessels 201     
      
Vessel Stats Min Mean Max S.D.  
      
Inputs      
      
Dredge Width (inches) 126 326 360 40.5  
   
Gross Tonnage 46 160 258 33.6  
   
Horsepower 365 844 1550 268.3  
   
Length (feet) 60 83 118 9.9  
   
Days at Sea 17 94 161 34.3  
   
Crew 5 7 7 0.2  
      
Outputs      
      
Scallops (pounds, meat  weight) 37644 165503 331533 65299  
   
Monkfish (pounds) 0 4035 22000 4531  
   
Summer Flounder (pounds) 0 377 7088 924  

 

 20



Table 2 

Technical Efficiency Scores Based on the DEA Bootstrap Routine 

 
 
     
 Minimum Mean  Max  
     
Uncorrected Score 1.0000 1.1646 1.9539  
   
Lower C.I. 1.0032 1.1698 1.9622  
   
Bias Corrected Score 1.0287 1.2227 2.0397  
   
Upper C.I. 1.0507 1.3077 2.1372  
   
Bias -0.1329 -0.0581 -0.0158  
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 Table 3 

Comparison of confidence intervals given differing smoothing parameters (h) 

Obs. h= 0.015  h= 0.030  h= 0.045  h= 0.544 
            

3 1.0018 1.3920  1.0033 1.4037  1.0068 1.3938  1.1026 1.3729
       

6 1.0018 1.3811  1.0043 1.4126  1.0075 1.4002  1.1021 1.3593
       

9 1.0188 1.1349  1.0216 1.1385  1.0249 1.1434  1.1196 1.2328
       

10 1.0019 1.0773  1.0045 1.0841  1.0068 1.0927  1.1014 1.1903
       

20 1.0021 1.1470  1.0050 1.1583  1.0067 1.1618  1.099 1.246
       

22 1.2367 1.2946  1.2401 1.3024  1.2439 1.3110  1.3589 1.4398
       

27 1.1076 1.1923  1.1110 1.2033  1.1136 1.2109  1.2163 1.3188
       

29 1.0662 1.1470  1.0686 1.1553  1.0721 1.1586  1.1732 1.2687
       

32 1.4670 1.7664  1.4702 1.7657  1.4756 1.7727  1.6089 1.8388
       

33 1.2989 1.3886  1.3020 1.3981  1.3066 1.4048  1.4275 1.5326
       

38 1.3816 1.4698  1.3855 1.4872  1.3896 1.4955  1.5169 1.6349
       

49 1.2189 1.3140  1.2215 1.3227  1.2257 1.3324  1.3388 1.4594
       

52 1.2785 1.3563  1.2819 1.3628  1.2872 1.3711  1.4057 1.5046
       

55 1.0025 1.4085  1.0042 1.4191  1.0077 1.3899  1.0994 1.37
       

56 1.5071 1.5553  1.5118 1.5697  1.5160 1.5790  1.6523 1.7393
       

63 1.0016 1.1097  1.0045 1.1148  1.0071 1.1241  1.1038 1.2204
       

66 1.0013 1.3818  1.0043 1.3865  1.0080 1.3797  1.1006 1.3625
       

67 1.3306 1.4209  1.3351 1.4261  1.3387 1.4345  1.4626 1.5686
       

69 1.0017 1.4197  1.0045 1.3763  1.0082 1.4154  1.1031 1.365
       

74 1.4898 1.5694  1.4930 1.5805  1.4978 1.5892  1.6371 1.745
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78 1.0016 1.2267  1.0045 1.2288  1.0073 1.2356  1.1042 1.2948
       

80 1.0021 1.3881  1.0046 1.3734  1.0072 1.4259  1.1022 1.3649
       

86 1.1640 1.3421  1.1664 1.3431  1.1697 1.3439  1.2812 1.4297
       

91 1.0120 1.0434  1.0138 1.0507  1.0170 1.0573  1.1104 1.1634
       

93 1.0016 1.1848  1.0050 1.1896  1.0090 1.1956  1.0996 1.2699
       

99 1.1213 1.1996  1.1240 1.2083  1.1288 1.2129  1.2347 1.3267
       

100 1.0019 1.1203  1.0042 1.1180  1.0079 1.1292  1.1012 1.21
       

101 1.0658 1.1424  1.0678 1.1475  1.0717 1.1565  1.1712 1.2573
       

108 1.2918 1.3477  1.2931 1.3553  1.2980 1.3624  1.4174 1.4975
       

112 1.1076 1.1781  1.1099 1.1810  1.1137 1.1911  1.2179 1.3038
       

113 1.0024 1.0794  1.0061 1.0887  1.0070 1.0944  1.1016 1.1926
       

119 1.2703 1.3337  1.2732 1.3438  1.2770 1.3500  1.395 1.4816
       

124 1.1412 1.2344  1.1445 1.2323  1.1472 1.2446  1.2532 1.3562
       

130 1.5015 1.5951  1.5054 1.6054  1.5103 1.6165  1.6533 1.7679
       

131 1.0024 1.1146  1.0042 1.1205  1.0076 1.1254  1.1031 1.2198
       

136 1.0019 1.0566  1.0041 1.0628  1.0069 1.0698  1.1001 1.1671
       

140 1.5960 1.6784  1.5988 1.6895  1.6041 1.6984  1.7537 1.8609
       

148 1.2977 1.3428  1.3006 1.3532  1.3058 1.3597  1.421 1.4926
       

150 1.1235 1.2061  1.1263 1.2169  1.1300 1.2209  1.2357 1.3291
       

157 1.4266 1.4608  1.4299 1.4698  1.4351 1.4792  1.5637 1.6289
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1 Even when there are data available on output and input prices, vessels still do not have 

to pay for their most important input, the fish they harvest. This leads to the well 

published outcome where vessels owners engage in capital stuffing, or expanded use of 

unregulated inputs, which leads to increasing technical inefficiency. 

2 The Surf Clam Fishery may be an exception because it is managed through individual 

transferable quotas (ITQ’s), and many vessels are owned by processors who want a 

specified amount of product landed per trip. 

3 Typically, assumptions are made regarding Ρ, with the two most usual being convexity, 

and free disposability of both inputs and outputs (see Shephard (1970) and Färe (1988)).  

However, some studies have dropped the assumption of convexity, resulting in the free-

disposal hull problem (FDH).   

4 A simple bootstrap would consist of sampling the pairs (x ,y) with replacement from the 

original pairs. However, this approach generates inconsistent estimates of the efficiency 

scores. (Simar and Wilson 2000a).   

5 The input oriented model would would have the following adjustment: 
 
~* * * *θ θ ε θ ε θ εi Bi h i if Bi h i or Bi h i otherwise= + + ≤ − −1 2  

 
6 Since the bootstrap sequence is generated using a kernel estimator, it must be adjusted 

so that the variance of the final bootstrap sequence is asymptotically correct (Simar and 

Wilson 1998).  

7 This study uses MATLAB programs developed by Meta Voelker to calculate h. 
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8 Currently, these routines utilize four GAMS routines and a C program to calculate 

confidence intervals.  The GAMS routines require a DEA module, which is available free 

from GAMS Development Corporation, and the CPLEX solver. Additional  routines 

written in PERL are also available to calculate confidence intervals. All GAMS, PERL 

and C programs are available from the author upon request. 

9 Simar and Wilson report that their bootstrap routine written in Fortran took nearly 47 

minutes on a SUN Sparcstation 20.  The PERL routines used to generate the biases and 

confidence intervals required another 5 minutes of CPU time.  

10 Pounds were estimated by the Captain 

11 Simar and Wilson (1998) show using an input oriented model that the DEA estimate is 

upwardly biased. Since this paper uses an output oriented model, results will be biased 

downward.    

12 Interestingly, the results were close to those from the SPF model where the average TE 

score was 1.19.   

13 A fishing year for the Scallop fleet starts on March 1. An anonymous reviewer 

questioned using MSY as a management target rather than MEY.  Currently, no estimates 

of MEY exist for the mid-Atlantic resource, primarily due to a lack of cost data needed to 

estimate MEY.  Additionally, National Standard One of the Sustainable Fisheries Act 

requires using MSY to determine whether overfishing is occurring. 
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