Comparing Environmental Professional and Watermen Knowledge and Values about Environment and Pollution

Michael Paolisso
Department of Anthropology
University of Maryland, College Park
June 2, 2005

Cultural Anthropological Research on Chesapeake Bay

- Department of Anthropology, UMCP began with cultural analysis of *Pfiesteria piscicida* (1997-1998);
- Cultural Models of Pollution and Environment (Farmers, Watermen, and Environmental Professionals); (1999-2003);
- Using Collaborative Learning, Cultural Models and Dialogue to Advance Co-Management Planning of the Chesapeake Bay Blue Crab Fishery (2001-2003)

Anthropological Research (cont'd)

- Gender and Soft Crab Fishery (2002-2003);
- Heritage and Tourism (Center for Heritage Resource Studies) <u>www.heritage.umd.edu</u>;
- Introduction of Crassostrea ariakensis into Chesapeake Bay (2002-2003);
- Chesapeake Bay Environmentalism;
- Website: www.bsos.umd.edu/anth/chesapeake

Culture, Cognition, and Cultural Models

- Culture: "whatever it is one has to know or believe to operate in a manner acceptable to its members." (e.g., workplace exchange; resource managers' culture)
- Cognitive anthropology: focus on the way knowledge is used in ordinary life and how that knowledge is organized in thought
- Culture is partially "in the mind"

- Mental schemas: abstract mental objects with default values or open slots that can be filled in with particulars
 - Birds, commercial transaction, leisure...or "good workboat," "good research," or "good management" or "anthropologist," "watermen," "scientists," and "resource manager"
- Cultural models: a number of connected schemas, implicit, and shared. Cultural models help you reason about complex situations. (e.g. good workshop)
- Stated beliefs and values are good evidence of underlying schemas and cultural models.

Data Collection Techniques for Cultural Models

- Free Listing: Defining a Cultural Domain (e.g., *Pfiesteria*)
- Triadic Comparison (e.g., Pfiesteria)
- Text Analysis (interview, natural discourse, published (e.g, blue crab management model)
- Agreement Questionnaires (e.g. Consensus Analysis)

Cultural Consensus Analysis

- Formally states: agreement reflects shared knowledge;
- Allows for estimation of individual knowledge levels (cultural competence)
- Uses factor analysis
- If consensus, strong loading on first factor
 (3:1 ratio with second factor)

Chesapeake Environmental Agreement Data

- Sample: 74 environmental professionals, 102 watermen, and 45 farmers;
- Methods: intensive qualitative interviews to develop agreement survey.
- Asked same 66 agreement questions to each group;
- Respondents rated their degree of agree or disagree with the statement;
- Themes: nature, pollution, science, regs., collaborations; responsibility; religion;

Agreement Survey

The water and land resources of the Chesapeake Bay region have steadily declined in abundance over time.

654321StronglyAgreeSomewhatSomewhatDisagreeStronglyAgreeAgreeDisagreeDisagree

Changes in natural cycles of productivity alone could lead to more plentiful harvests of natural resources.

654321StronglyAgreeSomewhatSomewhatDisagreeDisagreeAgreeDisagreeDisagree

Watermen and Environmental Professionals Combined

• EIGENVALUES

•	FACTOR VALUE	PERCENT	CUM %	RATIO
•				
•	1: 27.252	61.1	61.1	2.536
•	2: 10.747	24.1	85.2	1.627
•	3: 6.606	14.8	100.0	
•	=========	==== ===	========	=== =====
<u>,</u>	44.605 1	00.0		

- Note: Variables correlated with underlying factors is their "factor loading. "Factor loadings" squared = individual variance; sum of squared factor loadings = eigenvalue.
- Analysis: No consensus: It would be better if the first factor accounted for more than 3 times the variance of the second.

Environmental Professionals

• EIGENVALUES

 Analysis: Consensus: first factor more than 3 times the second factor.

Environmental Professional Cultural Competence

- Estimated Knowledge of each EP Respondent
- 0
- KNOWLEDGE
- 0.64
- 2 0.38
- 3 0.34
- 4 0.40
- 5 0.39
- 6 0.52
- 7 0.49
- 8 0.61
- 9 0.43
- 10 0.40
- 11 0.43
- 12 0.52

Watermen

• EIGENVALUES

Note: Consensus: first factor more than 3 times the second factor.
 Estimated knowledge values valid.

Watermen and Environmental Professional Comparisons of Agreement and Disagreement

Inter-Group Agreement

- The water and land resources of Chesapeake Bay region have steadily declined in abundance over time. (w = 76%; ep = 87%)
- Much of the decline in the Bay's marine resources is due to the effects of declining water quality. (w = 79%; ep = 81%)
- Environmentalists, natural resource managers and scientists are needed to protect against polluting the land and water. (w = 87%; ep = 100%)
- Farmer and watermen experienced-based knowledge of nature needs to integrate scientific environmental knowledge. (w =93%; ep =96%)
- The knowledge of people whose livelihood directly depends on working the land and water is essential to scientific knowledge of the environment. (w = 96%; ep = 93%)

Inter-group Agreement (cont'd)

- In studying the changes in natural resources we must integrate farmer and watermen knowledge with that of scientists. (w= 92%; ep =95%)
- In the absence of scientific findings, we need to be cautious and take action to protect natural resources. (w =77%; ep =99%)
- Regulations are needed to control the temptation of some to overharvest.
 (w = 79%; ep = 99%)
- Most watermen and farmers are sincerely concerned about protecting natural resources and not polluting. (w =93%; ep =88%)
- Collaborative research among scientists, farmers and watermen creates new environmental knowledge, and promotes sharing of environmental values and attitudes. (w = 91%; ep = 100%)
- Watermen and farm communities are an important part of the Chesapeake Bay region's heritage. (w =100%; ep=100%)

Inter-group Disagreement

- Unpredictability is nature's own way of ensuring that natural resources are not overharvested. (w =86%; ep = 15%)
- Changes in natural cycles of productivity alone could lead to more plentiful harvests of natural resources. (w = 85%; ep = 45%)
- Periods of reduced harvests (crop, fish, crab and oysters) are due primarily to natural cycles. (w = 88%; ep = 16%)
- Large industries pollute the Bay more than farmers and watermen. (w = 96%; ep = 30%)
- Farmers and watermen are targeted more for regulations than development because farmers and watermen are easier to control. (w =94%; ep = 34%)
- Scientists should study the effects of pollution rather than try to predict changes in the availability of natural resources. (w = 94%; ep = 26%)

Inter-Group Disagreement (cont'd)

- Most government regulations are unnecessary because the economics of the market already accomplish much of what regulations aim to achieve. (w =81%; ep =3%)
- Regulations are used too often protect the environment. (w =88%; ep =15%)
- Watermen are stewards of the water. (w = 94%; ep = 58%)
- The purpose of natural resources is to support humans. (w = 74%; ep = 20%)
- Belief in God and religion promotes stewardship of nature. (w =92%; ep =40%))
- God and Nature are the best resource managers of natural resources. (w =95%; ep =23%)

Concluding Remarks

- Culture as consensus = systematic study of environmental knowledge
- Environmental knowledge = beliefs and values
- Consensus data help construct cultural models
- Reinforce qualitative data
- Important tool for environmental education and partnership building
- Helps make culture an environmental variable comparable to biological/ecological/health factors