Unclassified

Introduction to Structural Health Monitoring and Feature Extraction

Charles R. Farrar Michael D. Todd

Presented at Engineering Institute Workshop July 25th, 2006

Unclassified

Structural Health Monitoring

Motivation for Structural Health Monitoring

- Move from time-based maintenance to condition-based maintenance
- Combat asset readiness
- New business models
 - Manufacturers of large capital investment hardware can charge by the amount of life used instead of a time-based lease.

The potential for economic and life-safety benefits coupled with need to integrate diverse technologies makes Structural Health Monitoring a **Grand Challenge** problem for aerospace, civil and mechanical engineers in the 21st century

Definition of "Damage"

- Damage is defined as changes to the material and/or geometric properties of a structural that adversely affect its performance.
- All materials used in engineering systems have some inherent initial flaws.
- Under environmental and operational loading flaws will grow and coalesce to produce component level failure.
- Further loading causes systemlevel failure.
- Must consider the length and time scales associated with damage evolution.

Classifying Damage Identification Methods

• Damage Identification

- Microscopic flaw/damage identification
 - Used to develop material failure models
- Incipient, macroscopic, material/component level damage
 - Non-destructive evaluation (local, off-line inspection)
 - Wave-propagation-based **structural health monitoring** (more global, on-line)
- Component damage/failure system level damage
 - Structural health monitoring
 - Condition monitoring (applied to rotating machinery)
 - Health and usage monitoring systems (HUMS, Rotor craft)
 - Statistical process control (monitors system processes where damage can be one cause of loss of process control)
- Damage Prognosis
 - Adds prediction of remaining life capability to SHM

Unclassified

Structural Monitoring \neq SHM

Unclassified

SHM is a Problem in Pattern Recognition

The Structural Health Monitoring Process

1. Operational evaluation

Defines the damage to be detected and begins to answer questions regarding implementation issues for a structural health monitoring system.

2. Data acquisition

Defines the sensing hardware and the data to be used in the feature extraction process.

3. Feature extraction

The process of identifying damage-related information from measured data.

4. Statistical model development for

feature discrimination

Classifies feature distributions into damaged or undamaged category.

• Data Cleansing

- Data Normalization
- Data Fusion
- Data Compression

(implemented by software and/or hardware)

Introduction to Features

- What is a Feature?
 - A feature is some characteristic of the measured response that is extracted via signal processing, parameter estimation or some other signal inspection technique
 - Feature extraction transforms "data" into "information"
 - It is desirable to have examples of the features from both damaged and undamaged structures
- Primary Characteristics of features
 - Sensitivity Feature should ideally be very sensitive to damage and completely insensitive to everything else (rarely occurs)
 - Dimensionality Want the feature to have the lowest dimension possible
 - Computational Requirements Features should be computable with minimal assumptions and CPU cycles
- Want to use the simplest feature possible that can distinguish between the damaged and undamaged system

₹L Jacobs | Engineering

Feature Extraction

- Approaches to identifying damage-sensitive features.
 - Past experience
 - Component and system testing
 - Numerical analysis to simulate damaged system response
- Features types.
 - Absolute (derived from single data source, e.g. modal frequency)
 - Relative (derived from multiple data sources, e.g. mode shape)
- Damage sensitive features fall into three categories.
 - Waveform or image comparison
 - Model parameters
 - Residual errors between measured and predicted response.

Feature Extraction

- Want many samples of low-dimension feature vectors.
- The need for low-dimension feature vectors often necessitates some form of information condensation (e.g. compression of accel.-time histories into modal properties).
- Apply data fusion techniques to extract features from multiple and possibly heterogeneous sources (estimation mode shapes).
- Quantify feature's sensitivity to damage.
- Ideally, the features should change monotonically with damage level.
- Identify and quantify sources of feature variability.
- Incorporate feedback from data acquisition and statistical model development portions of the process.

Data Normalization

 $9{:}15 \hspace{.1in} 11{:}30 \hspace{.1in} 13{:}12 \hspace{.1in} 15{:}13 \hspace{.1in} 17{:}52 \hspace{.1in} 20{:}09 \hspace{.1in} 21{:}20 \hspace{.1in} 23{:}29 \hspace{.1in} 1{:}21 \hspace{.1in} 3{:}19 \hspace{.1in} 5{:}19 \hspace{.1in} 7{:}03 \hspace{.1in} 9{:}22$

Features are Used to Answer the Following:

1 Is the system damaged?

- Group classification problem for supervised learning
- Identification of outliers for unsupervised learning

2 Where is the damage located?

- Group classification or regression analysis problem for supervised learning
- Identification of outliers for unsupervised learning

3 What type of damage is present?

- Can only be answered in a supervised learning mode
- Group classification

4 What is the extent of damage?

- Can only be answered in a supervised learning mode
- Group classification or regression analysis

5 What is the remaining useful life of the structure? (Prognosis)

- Can only be answered in a supervised learning mode
- Regression analysis

