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NONLINEAR SYSTEM IDENTIFICATION FOR 
DAMAGE DETECTION 

 
 

Charles R. Farrar,* Keith Worden,† Michael D. Todd,‡ Gyuhae Park,1 
Jonathonn Nichols,§ Douglas Adams,** Matthew T. Bement,1 and Kevin Farinholt1

ABSTRACT 
 This report has been developed based on information exchanges at a two-day 
workshop on nonlinear system identification for damage detection that was held July 
25–26, 2006, at Los Alamos National Laboratory. The workshop is the second in a 
series that was hosted by the LANL/UCSD Engineering Institute (EI). This Institute is 
an education- and research-focused collaboration between Los Alamos National 
Laboratory (LANL) and the University of California, San Diego (UCSD), Jacobs 
School of Engineering. The Institute’s research and education focus is to promote and 
further develop the multidisciplinary fields of structural health monitoring (SHM), 
damage prognosis and model validation and uncertainty quantification.  

 The process of implementing a damage detection strategy for aerospace, civil 
and mechanical engineering infrastructure is referred to as SHM. A statistical 
pattern recognition paradigm for SHM is first presented and the concept of 
nonlinear system identification is addressed with respect to the feature extraction 
portion of this paradigm. In many cases damage causes a structure that initially 
behaves in a predominantly linear manner to exhibit nonlinear response when 
subject to its operating environment. The formation of cracks that subsequently 
open and close under operating loads is an example of such damage. The damage 
detection process can be significantly enhanced if one takes advantage of these 
nonlinear effects when extracting damage-sensitive features from measured data. 
This report will provide examples from nonlinear dynamical systems theory and 
from nonlinear system identification techniques that are used for the feature 
extraction portion of the damage detection process. The report concludes by 
defining some future research needs and directions that are aimed at transitioning 
the concept of nonlinear system identification for damage detection from laboratory 
research to field-deployed engineering systems. 

 

 

                                                 
* The Engineering Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. 
† Department of Mechanical Engineering, University of Sheffield, Sheffield, UK. 
‡ Department of Structural Engineering, University of California, San Diego, La Jolla, CA 92093-0085. 
§ Code 5673, Naval Research Laboratory, Washington, D. C. 20375. 
** School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2031. 

 1



LA-14353-MS Nonlinear System Identification for Damage Detection 

1. INTRODUCTION 
 This report has been developed based on information exchanges at a two-day workshop 
on nonlinear system identification for damage detection that was held July 25–26, 2006, at 
Los Alamos National Laboratory. The workshop is the second in a series hosted by the 
LANL/UCSD Engineering Institute (EI). This Institute is an education- and research-focused 
collaboration between Los Alamos National Laboratory (LANL) and the University of 
California, San Diego (UCSD), Jacobs School of Engineering. The technical focus of this 
Institute is damage prognosis (DP), a multidisciplinary engineering science concerned with 
assessing the current condition and predicting the remaining life of aerospace, civil, and 
mechanical infrastructure. Structural Health Monitoring, which is the process of identifying 
damage in structures and tracking its evolution, is one of the technologies necessary to perform 
DP. Because DP relies on predictive models, model validation and uncertainty quantification is 
also a key technological component to the DP process.  

 
1.1 The Structural Health Monitoring Process 
 Structural health monitoring (SHM) is the process of detecting damage in structures. 
The goal of SHM is to improve the safety and reliability of aerospace, civil, and 
mechanical infrastructure by detecting damage before it reaches a critical state. To achieve 
this goal, technology is being developed to replace qualitative visual inspection and time-
based maintenance procedures with more quantifiable and automated damage assessment 
processes. These processes are implemented using both hardware and software with the 
intent of achieving more cost-effective condition-based maintenance. A more detailed 
general discussion of SHM can be found in [1]. 

 The authors believe that all approaches to SHM, as well as all traditional nondestructive 
evaluation procedures (e.g., ultrasonic inspection, acoustic emissions, active thermography) 
can be cast in the context of a statistical pattern recognition problem [2]. Solutions to this 
problem require four steps: (1) Operational evaluation, (2) Data acquisition, (3) Feature 
extraction, and (4) Statistical modeling for feature classification.  

 A necessary first step to developing a SHM capability is Operational Evaluation. This 
part of the SHM solution process attempts to answer four questions regarding the 
implementation of a SHM system: (1) What are the life safety and/or economic justifications 
for monitoring the structure? (2) How is damage defined for the system being monitored? 
(3) What are the operational and environmental conditions under which the system of 
interest functions? (4) What are the limitations on acquiring data in the operational 
environment? Operational evaluation defines, and to the greatest extent possible, quantifies 
the damage that is to be detected. It also defines the benefits to be gained from deployment 
of the SHM system. This process also begins to set limitations on what will be monitored 
and how to perform the monitoring as well as tailoring the monitoring to unique aspects of 
the system and unique features of the damage that is to be detected.  

 The data acquisition portion of the SHM process involves selecting the excitation 
methods; the sensor types, numbers, and locations; and the data acquisition/storage/ 
processing/transmittal hardware. The actual implementation of this portion of the SHM 
process will be application- specific. A fundamental premise regarding data acquisition and 
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sensing is that these systems do not measure damage. Rather, they measure the response of 
a system to its operational and environmental loading or the response to inputs from 
actuators embedded with the sensing system. Depending on the sensing technology 
deployed and the type of damage to be identified, the sensor readings may be more or less 
directly correlated to the presence and location of damage. Data interrogation procedures 
(feature extraction and statistical modeling for feature classification) are the necessary 
components of a SHM system that convert the sensor data into information about the 
structural condition. Furthermore, to achieve successful SHM, the data acquisition system 
will have to be developed in conjunction with these data interrogation procedures.  

 A damage-sensitive feature is some quantity extracted from the measured system 
response data that is correlated with the presence of damage in a structure. Ideally, a damage-
sensitive feature will change in some consistent manner with increasing damage level. 
Identifying features that can accurately distinguish a damaged structure from an undamaged 
one is the focus of most SHM technical literature [3, 4]. Fundamentally, the feature extraction 
process is based on fitting some model, either physics-based or data-based, to the measured 
system response data. The parameters of these models or the predictive errors associated with 
these models then become the damage-sensitive features. An alternate approach is to identify 
features that directly compare the sensor waveforms or spectra of these waveforms measured 
before and after damage. Many of the features identified for impedance-based and wave 
propagation-based SHM studies fall into this category [5, 6, 7, 8]. 

 The portion of the structural health monitoring process that has received the least 
attention in the technical literature is the development of statistical models to enhance the 
damage detection process. Statistical modeling for feature classification is concerned with 
the implementation of the algorithms that analyze the distributions of the extracted features 
in an effort to determine the damage state of the structure. The algorithms used in statistical 
model development usually fall into three general categories: (1) Group Classification, 
(2) Regression Analysis, and (3) Outlier Detection. The appropriate algorithm to use will 
depend on the ability to perform supervised or unsupervised learning. Here, supervised 
learning refers to the case where examples of data from damaged and undamaged structures 
are available. Unsupervised learning refers to the case where data are only available from the 
undamaged structure. The statistical models are typically used to answer a series of questions 
regarding the presence, location, type, and extent of damage.  

 Inherent in the data acquisition, feature extraction, and statistical modeling portions of 
the SHM process are data normalization, cleansing, fusion, and compression. As it applies 
to SHM, data normalization is the process of separating changes in sensor reading caused 
by damage from those caused by varying operational and environmental conditions [9]. 
Data cleansing is the process of selectively choosing data to pass on to, or reject from, the 
feature selection process. Data fusion is the process of combining information from 
multiple sensors in an effort to enhance the fidelity of the damage detection process. Data 
compression is the process of reducing the dimensionality of the data, or the feature 
extracted from the data, in an effort to facilitate efficient storage of information and to 
enhance the statistical quantification of these parameters. These four activities can be 
implemented in either hardware or software and usually a combination of the two 
approaches is used. 
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1.2 Annual Workshops 
 To further promote the development of DP, the EI is hosting a series of workshops 
that rotate their technical focus on an annual basis between (1.) Emerging sensing 
technologies; (2.) Data interrogation procedures; and (3.) Predictive modeling as these 
topics relate to DP. The results of the first workshop held in 2005, which focused on power 
harvesting for embedded structural health monitoring sensing systems, are summarized in 
a report that can be downloaded from www.lanl.gov/projects/ei [10]. Presentations, an 
attendee list, and the workshop agenda for this first workshop are also available at this 
Web address.  

 The 2006 workshop focus was on nonlinear system identification as it relates to the 
feature extraction portion for SHM. In many cases damage causes a structure that initially 
behaves in a predominantly linear manner to exhibit nonlinear response when subject to its 
operating environment. The formation of cracks that subsequently open and close under 
operating loads is an example of such damage. The damage detection process can be 
significantly enhanced if one takes advantage of these nonlinear effects when extracting 
damage-sensitive features from measured data. This report will summarize four discussion 
topics that were addressed in the workshop working groups. These topics are 

• Sources/Classification of Material/Component/System and Damage Nonlinearities 
in SHM (See Section 3 Below) 

• Nonlinearity versus Nonstationary Issues (See Section 5 below) 

• Taxonomy and Usage of Nonlinear Approaches in SHM (Detection, Transition, 
Interrogation) (See Sections 6–8 below) 

• Progress Barriers, Issues, and Outstanding SHM Requirements Demanding 
Nonlinear Methods (See Section 9 below) 

In addition, the workshop attendees thought that terms associated with the theme 
topic should be defined and Section 4 provides these definitions. By addressing these 
topics this report is intended to summarize the state-of-the-art in nonlinear system 
identification as it has been applied to SHM and concludes with a summary of future 
research needs and challenges to transitioning this technology from research to field-
deployed system applications. The summary will begin by first discussing commonly used 
damage-sensitive features and their limitations. 

 

2. COMMONLY USED DAMAGE FEATURES AND THEIR LIMITATIONS 
 The most common features that have been reported in the SHM literature, and that 
represent a significant amount of data condensation from the actual measured quantities, 
are resonant frequencies, mode shape vectors, and quantities derived from these 
parameters. These features are identified by fitting a physics-based model, specifically a 
lumped-parameter modal model, to measured kinematic response time histories, most often 
absolute acceleration, or spectra of these time histories. Well-developed experimental 
modal analysis procedures are applied to the measured response time histories or spectra to 
estimate the system’s modal properties [11,12]. The fitting process is done using data from 

 4

http://www.lanl.gov/projects/ei


Nonlinear System Identification for Damage Detection LA-14353-MS   

the structure in some initial and usually assumed undamaged condition, and then is 
repeated at periodic intervals or after some potentially damaging event that triggers the 
assessment process. Changes in the modal parameters are then used to indicate the 
presence and location of damage in either a forward or inverse manner [4]. 

 Another class of damage identification methods is based on features related to 
changes in mass, stiffness and damping matrix indices associated with physical models that 
have been correlated so that the model predicts, as closely as possible, experimentally 
determined modal properties. These methods solve for the updated matrices (or 
perturbations to the nominal model that produce the updated matrices) by forming a 
constrained optimization problem based on the structural equations of motion, the nominal 
model, and the identified modal properties [13,14]. Comparisons of the matrix indices that 
have been correlated with modal properties identified from the damaged structure to the 
original correlated matrix indices can provide an indication of the existence, location and 
extent of damage.  

 The features described above have several issues associated with them that have 
prevented their use in most “real-world” applications. First, most of these features involve 
fitting a linear physics-based model to the measured data from both the healthy and 
potentially damaged structure. Often these models do not have the fidelity to accurately 
represent boundary conditions and structural component connectivity, which are prime 
locations for damage accumulation. Also, this process does not take advantage of changes 
in the system response that are caused by nonlinear effects. As a result, nonlinear effects 
tend to be smeared through the linear model-fitting process. From a more practical 
perspective, real-world structures’ modal properties have been shown to be sensitive to 
changing environmental and operational conditions [15] and such sensitivity can lead to 
false indications of damage. Modal properties associated with lower-frequency global 
modes have been shown to be insensitive to local damage. In contrast at higher frequencies 
the modal properties are associated with local response. However, the practical limitations 
with the excitation and identification of the modal properties associated with these local 
modes, caused in part by high modal density and low participation factors, can make them 
difficult to identify. Finally, the inverse approaches to damage identification do not 
necessarily produce unique solutions and the degree of freedom mismatch between the 
numerical model and the measurement locations can severely limit the ability to accurately 
perform the required matrix updates. A more detailed discussion of these feature-extraction 
methods and their limitations can be found in [3, 4]. Based on these limitations and the 
observation that many damage scenarios cause a previously linear structure to exhibit 
nonlinear behavior, researchers have developed damage-sensitive features that take 
advantage of the nonlinear response exhibited by a damaged structure. 

 

3. TYPES OF DAMAGE THAT CAN PRODUCE NONLINEAR SYSTEM 
RESPONSE 

 There are many types of damage that can cause an initially linear structural system to 
respond to its operational and environmental loads in a nonlinear manner. One of the most 
common types of damage is cracks that subsequently open and close under operational loading. 
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This type of damage may include fatigue cracks that form around rivets in air frames, cracks that 
occur in brittle materials such as concrete and cracks that result from excessive deformation such 
as those found in moment resisting steel frame connections after the Northridge earthquake. It is 
reiterated that nonlinear response to operational and environmental loading will only be observed 
in these cracked structures if the loading causes the cracks to open and close while data are being 
acquired. Otherwise the crack simply results in a change in geometry of the structure and the 
structure will continue to respond as a linear system, but in a different configuration. In some 
cases it is difficult to produce cracks in a controlled manner that exhibit the same dynamic 
characteristics as the cracks that occur in the in situ structure. Figure 1 shows a “crack” being 
introduced into a bridge structure to simulate fatigue cracks that occur at the welds of cross-beam 
seats to the web of the main load carrying plate girder [16]. However, this crack, which was 
introduced with a torch, produces a cut in the plate girder web that was approximately 10 mm 
wide. This crack did not open and close under any subsequent loading and, therefore, did not 
exhibit the same dynamic characteristics as the type of crack it was intended to simulate. 

 

 

Figure 1. Torch cut that was used to simulate a fatigue 
crack in a plate girder. 

  

 

 Many of the common damage types observed in rotating machinery produce nonlinear 
responses to the harmonic excitation associated with the machine’s operational frequency. 
There are numerous detailed charts of characteristic faults for a variety of machines and 
machine elements (e.g., see the chart on pp.515–522 in [17]; or the charts on pp. 88–92 in 
[18, Vol.1]). Damage to bearing races, loose bearing and chipped gear teeth are examples 
of damage that can produce nonlinear response in rotating machinery. Commercially 
available software specifically designed for the isolation of faults based on vibration 
signatures is readily available. For example, an automated, expert diagnostic system is 
evaluated in [19]. 
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 Another common type of damage that results in nonlinear system response is that of 
loose connections. This damage can include debond of glued connects or other types of 
chemical debond such as that between concrete and reinforcing steel, loose bolts, and 
interference fits that loosen because of material deformation. This type of damage overlaps 
with cracks as cracks in welded connections can result in a loose connection. The 
associated rattling or impacting that results when these loose connections are subject to 
sufficient loading causes structures with loose connections to exhibit nonlinear dynamic 
response characteristics. In some cases, such as the insertion of the femoral component of 
an artificial hip (shown in Fig. 2), engineers are attempting to utilize the transition from 
nonlinear response to linear response as an indicator of a successful implant in a 
cementless procedure that utilizes an interference fit.   

 

 

Figure 2. The femoral component of an artificial hip being 
inserted into the femur of a cadaver with accelerometers 
monitoring the insertion process. 

  

 Another type of damage that can result in nonlinear dynamics response when these 
structures are subjected to dynamic loading, is delamination in bonded, layered materials 
such as fiber reinforced composite plates and shells. Often such delaminations are 
introduced by impact loading. Damage from this type of loading is difficult to detect 
because the delaminations often occur underneath the surface of the plate on the side 
opposite from the impact location and these locations may not be readily accessible for 
visual inspection. Delamination can be accompanied by matrix cracking and fiber breakage 
that add to the nonlinear dynamic response characteristics exhibited by the plate or shell if 
it is subsequently loaded to levels that cause the delamination to open and close. Figure 3 
shows a composite plate that was subject to a projectile impact. Although some surface 
damage is visible on the side of the plate opposite from the impact, an ultrasonic scan 
reveals more extensive delaminations that can not be seen by surface inspection. 

 If one extends the concepts of structural health monitoring to manufacturing 
processes, then machine tool chatter is a phenomenon that can produce nonlinear dynamic 
response of the cutting tool. Chatter is the vibration that results during turning and facing 
operations. If not controlled, chatter can lead to poor surface finish and parts that will not 
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Figure 3. Upper left: high-speed projectile impacting the plate. Upper right: photo showing minimal 
surface damage where projectile impacted the plate. Lower left: more significant damage on the 
side opposite the impact. Lower right: ultrasonic scan showing more extensive delamination areas 
after four different impacts. 

  

meet their design tolerances. Poor surface finish, in turn, can lead to the premature 
formation of fatigue cracks. The onset of chatter can potentially be detected by the 
nonlinear dynamic response characteristics measured on the cutting tool. Figure 4 shows a 
piezoelectric sensor that has been mounted on a cutting tool for the purpose of monitoring 
chatter during facing and turning operations. 

 Finally, material nonlinearities associated with excessive deformation such as yielding 
of steel can cause a structure to respond to dynamic loading in a nonlinear manner. This 
type of damage is particularly difficult to detect because in most cases yielding does not 
alter the stiffness or mass distribution of a structure once the loading has been removed. 
Yielding is accompanied by permanent deformation and in some cases this permanent 
deformation can lead to nonlinear system response if it results in subsequent impacting 
with neighboring components when the structure is dynamically loaded.  
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Figure 4. Sensor mounted on a cutting tool to monitor chatter during facing and turning operations. 
 

  

4. MOTIVATION FOR EXPLORING NONLINEAR SYSTEM IDENTIFICATION 
METHODS FOR SHM AND DEFINITION OF TERMS  

 Research aimed at defining damage-sensitive features based on the concepts of nonlinear 
system identification is motivated by an examination of the two simple single-degree-of-
freedom (SDOF) systems shown in Figs. 5(a) and 5(b). Also shown in these figures are the 
force-displacement properties of their stiffness element. The response of the system on the left 
when subjected to a harmonic forcing function of amplitude F0 at a frequency of ω can be 
described by the solution to the second-order linear differential equation 
 

tFkxxcxm ω=++ cos0���  (1) 
 
where m is the system mass, c is the viscous damping coefficient and k is the spring stiffness. 
Note that for this case m, c and k do not vary with either time or position of the mass. 

 The solution to this system is readily obtained in closed form for the given forcing 
function and, in principle, can be obtained for an arbitrary forcing function, f(t), with a 
convolution integral. 

( ) ττ−= ∫
∞+

∞−

dtfthtx )()( , where  (2) 

h is the system’s impulse response function and for a SDOF system it is defined as 
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 Solution by means of a convolution integral implies that the principle of superposition 
applies. Also, there is a unique input/output relationship defined in the frequency domain 
by the system’s frequency response function (FRF), H(ω) 
 

( ) ( ) ( )ωω=ω FHX  ,   (5) 

 

( ) 2

1where H
m ic k

ω
ω ω

=
− + +

. (6) 

 
and X(ω) is the Fourier transform of the response and F(ω) is the Fourier transform of the 
input forcing function. The FRF is the Fourier transform of the impulse response function. 

  

 

(a) 

 

 

(b) 

 

                                                                   (c) 

Figure 5. Characteristics of linear and nonlinear systems. (a) shows a spring-mass system with a linear 
stiffness element, (b) shows a spring-mass system with a cubic stiffness element, and (c) illustrates 
difficulties posed for low-level, vibration-based damage detection methods when monitoring yielding of 
metallic structures. 

F 

x 
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 For systems made up of multiple interconnected SDOF systems, normal modes are 
defined and through proper coordinate transformation the response of the multi-degree of 
freedom (MDOF) system can be defined as the superposition of responses from a set of 
SDOF systems [20]. The MDOF system will also have a unique frequency-domain system 
input–output relationship defined by the FRF matrix as 
 

{ } ( )[ ] ( ){ }ωω=ω FHX )(   .  (7) 
  
 Also, the system will exhibit reciprocity meaning that if you excite at one location and 
measure the response at another location, that frequency response function will be the same 
as the one obtained by reversing that process. A structure exhibiting reciprocity is 
characterized by symmetric stiffness and FRF matrices. 

 The system in Fig. 5(b) corresponds to a Duffing oscillator. With this system the 
stiffness is not only a function of the mass’s displacement, but also has a stiffness term that 
is proportional to the cube of this displacement and the equation of motion becomes 
 

tFxkxxcxm ω=µ+++ cos0
3���   . (8) 

  
 This seemingly small perturbation to the system’s stiffness element brings about some 
significant changes to the system dynamics. First, a closed form solution is no longer 
available even for a harmonic input. Superposition no longer applies and the frequency 
response function no longer defines a general unique input/output relation in the frequency 
domain. Instead, the FRF is now a function of the system’s input. For MDOF systems 
normal modes are not defined, the system response can not be determined through modal 
superposition and reciprocity no longer applies. 

 From this example, one can infer that when damage causes an initially linear system to 
respond in a nonlinear manner, the new dynamic response characteristics exhibited by the 
now nonlinear system can be used as distinct indicators of damage. However, there are 
confounding factors that make identifying such changes a challenge. First, many systems 
exhibit nonlinear response characteristics in their undamaged state. In this case it is even 
more imperative that these characteristics are accurately quantified if changes in these 
nonlinear properties are to be used as indicators of damage. Second, as shown in the force–
displacement curve corresponding to the Duffing oscillator in Fig. 5(b), if the excitation is 
small, the system will exhibit linear characteristics as indicated by the blue stiffness line. 
Therefore, it may be difficult to identify the onset of nonlinear response characteristics 
without proper excitation. A similar situation arises with metallic structures as shown in 
Fig. 5(c). If damage is defined as yielding of the material, this damage can only be detected 
if measurements are made during the yielding process or if the measurements are sensitive to 
the permanent deformation in the material that results from the yielding process. The strain 
hardening characteristics of such materials make it difficult to detect damage with low-level 
vibration-based techniques because such damage does significantly alter the mass, stiffness 
or energy dissipation properties when load has been removed from the material. 
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 A final challenge is the somewhat obvious statement that there is no single general 
method to model and identify all types of nonlinearities. Different nonlinearities have 
different characteristics as indicated by the two types of nonlinearities shown in Figs. 5(b) 
and 5(c), one of which has continuous load-displacement characteristics and the other that 
has a discontinuous load-deformation relationship. The implication is that one needs some 
knowledge of the nonlinearity type that the damage will produce in order to effectively 
identify the onset of that nonlinearity and the associated damage. 

 With this motivation the methods of the nonlinear system identification and modeling that 
have been applied to SHM are next reviewed. To facilitate this review, several terms related to 
these methods will first be defined followed by a more detailed discussion that compares and 
contrasts the topics of nonlinear system response versus nonstationary system response.  

Deterministic dynamic system- A system that has no randomness. A deterministic system 
is one for which a mathematical expression can be defined that will describe its response at 
all times. 

Linear dynamics system - A system that obeys the principle of superposition 

Stochastic (random) dynamic system - A system where the future response can not be 
predicted from an explicit mathematical expression. 

Ergodic process - A process where the statistics of the sample realizations of that process 
are equal to the statistics of the realization of the entire process implying a stationary 
process (defined below) 

Casual system - A system where the current systems response and the system state is only 
a function of the current and past inputs to the system.  
 
5. A DISCUSSION OF NONLINEAR SYSTEM RESPONSE VERSUS NON-

STATIONARY SYSTEM RESPONSE  
 Most of the techniques that have been developed for the analysis of both linear and 
nonlinear systems pre-suppose that the acquired data are observations of a stationary 
random process. This assumption is useful to invoke because it can greatly simplify the 
estimation of quantities relevant to system identification. The difficulty, of course, is 
identifying when it is appropriate to treat the data as stationary. Additionally, the 
practitioner must also discern whether the data were produced by a linear or nonlinear 
system. Distinguishing among these categories (linear/nonlinear, stationary/nonstationary) 
is a challenging problem that does not admit a simple nonparametric (data driven) solution. 

 Before discussing some possible approaches, it is useful to define what is meant by a 
stationary random process. The definitions of linear and nonlinear processes have already 
been presented in an earlier section.    

 A strictly stationary random process is one in which the joint probability distribution of 
the measured data does not change in time. Let xk(n) be the kth sample record (time series) 
of a random process X , measured at discrete times tn = 1,2,…N. Strict stationarity implies 
  

))(),...,(),(())(),...,(),(( 2121 τττ +++= NkkkxNkkkx txtxtxptxtxtxp   (9) 
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where the function is the joint probability density function (pdf) associated with the 
N observations of the process. Equation 9 simply states that this function does not depend 
on time so long as the time differences between observations remain constant. The concept 
of weak stationarity is less demanding and requires that only the mean value and first joint 
moment of the data (as opposed to the entire pdf) remain unchanged by time shifting, i.e.  

pX ( )

 
E xk (t1)[ ]= E xk (t1 + τ )[ ]= µx

E xk (t1)xk (t2 )[ ]= E xk (t1 + τ )xk (t2 + τ )[ ]= Rxx (t2 − t1)
 (10) 

 
 Equation (10) states that the mean value does not depend on time while the 
autocovariance function for any two random variables, denoted Rxx, depends only on the 
relative time difference between the two observations. Continuing with higher and higher 
joint moments simply leads back to Eq. 9. The expected values associated with Eq. (10) 
are assumed to apply over the entire ensemble of k = 1…K records. However, in many 
cases the statistical properties may be estimated by averaging over time instead. The mean 
of the kth record can be estimated as 
 

 µ̂x (k) =
1
N

xk (tn )
n=1

N

∑  . (11) 

  
 If this quantity (as well as all other time-averaged properties) is expected to be the 
same for all sample functions k, the process is ergodic. From a practical standpoint the 
advantage to dealing with stationary, ergodic processes is that relevant statistics can be 
estimated with a single time record.  

 The above discussion concerns random processes only. For example, consider an 
ensemble of sine waves, xk(t)=Asin(ωt+θk) where θk is a random phase associated with a 
particular realization of xk(t), and θk is uniformly distributed between 0 and 2π. At any 
time, t, the distribution, p(x(t)), of these sine waves is given by 
 

 otherwiseAx
xA

txp 0,1))((
22

<
−π

=  . (12) 

  
Note, at each time, t, this distribution is not a function of time and, hence, the statistical 
moments will not be a function of time implying a stationary process. This time invariance 
of the distribution is shown in the left-hand side of Fig. 6. 

 However an ensemble of sine waves with no random phase will produce replicates 
of the same sine wave. The ensemble produced by this process is completely deterministic 
and is therefore non-stationary because at any time, t, the expected value is a function of t  
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Figure 6. The left side shows realizations of a sine function with a random phase and the associated 
pdfs corresponding to times t1 and t2 illustrating that the pdfs are time invariant and implying the 
signal is stationary. The right side shows realizations of a sine wave without the random phase 
where the pdfs vary with time indicating the signal is nonstationary. 

 

as shown in the right-hand side of Fig. 6. Stated another way, setting θk=0, the mean value  
of the ensemble at any time, t, is simply E[x(t)] = Asin(ωt) and is therefore time 
dependent. The same fixed phase sine-wave with additive, zero-mean, Gaussian noise, 
η(t) , is also nonstationary as 
 

 E[x(t)] = Asin(ωt) + E[η(t)] = Asin(ωt)  .  (13) 
  
 Some recently developed SHM techniques make use of a deterministic excitation 
however. For example, the theory underlying several attractor-based approaches to SHM 
suggest computing statistical “measures” from the data despite the fact that the data are 
non-stationary with respect to probability (there is no random component). How does one 
apply the definition of stationarity to deterministic systems?  
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 In the study of deterministic dynamical systems the language changes but the concept 
of stationarity still remains. Assume we have a dynamical system governed by 
 

mt xxftx ℜ∈= µ ))0(()(  (14) 
 
where f is a deterministic function depending on time and parameters µ. If E is a subset of 
points in , define the invariant measure mℜ ρ(E)  to satisfy [21]. 
 

ρ[ fµ
−t (E)] = ρ[E]   (15) 

 
 That is to say, application of the dynamics forward or backward in time does not change 
the measure. This property is similar to our previous discussion of stationarity where time 
shifting did not alter the probability measure. It turns out that probability is just one subset of 
measure theory, describing the behavior of collections of points in space [22]. Both 
deterministic and random processes may be treated under this framework. As a working 
definition, we may therefore term a stationary process to be one in which the measure of interest 
(probability or other) associated with collections of observations is not changing in time. 

 The difficulty in distinguishing nonlinearity from nonstationarity can now be described. 
Many of the tests for nonlinearity are based on the null hypothesis that the underlying system 
is a linear, causal, time invariant system i.e. that the dynamics are described by 
 

y(t) = h τ( )x t − τ( )
−∞

∞

∫ dτ  . (16) 

 
 The alternative hypothesis is usually taken to be that the data were produced by a 
nonlinear, time invariant system. However, these tests will also reject the null hypothesis 
for non-stationary, linear processes. The nonstationarity may come as a result of the 
properties of the input changing in time (x(t) is non-stationary) or because the system 
parameters are changing in time i.e. h(τ ) → h(t,τ ) . The latter situation is referred to as a 
linear time-varying system. In short, any test that is based on Eq. 16 as a null hypothesis 
may decide in favor of the alternative if the alternative is (1) a nonlinear process, (2) a 
linear process with non-stationary inputs, or (3) a time-varying linear process.  

 The method of surrogate data, for example, is one popular test for nonlinearity [23]. 
The practitioner creates randomized versions of the measured signal that preserve the 
autocorrelation function and probability distribution of the data. Under the null hypothesis 
of a linear, stationary response certain metrics computed from these randomized surrogates 
should be statistically indistinguishable from those computed from the original data.  

 Figure 7 shows the results of applying the method of surrogate data to several 
different types of system output. The discriminating feature used in this case was the mean 
nonlinear prediction error (NPE) obtained by using a nonlinear, data-driven model to 
forecast future values. The equations of motion for the system are given by 
 

)()( 22 tFxkxtkxcxm N =+ε+++ ���  (17) 
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Figure 7. A surrogate test applied to the response of a single degree of 
freedom system driven with stationary Gaussian excitation. The 
discriminating feature used was the mean nonlinear prediction error 
(NPE). Blue dots represent the surrogate NPE values, red crosses 
represent the NPE values obtained from the original data. 

 
 

where m = 1.0 kg, c = 3.0 N.s/m and k = 1000 N/m were fixed parameters and ε  and kN 
were the nonstationarity and nonlinearity parameters respectively. The excitation was 
taken as a stationary Gaussian random process with constant power spectral density 
Pf = 0.01N2/Hz. This system was numerically integrated, giving time series of N = 32768 
observations sampled at intervals of 0.01s. For ε = kN =0, the system is linear and the data 
and surrogates produce mean NPE values in the same range. As expected, when 
kN = 10000 N/m2, ε=0 the system is nonlinear, stationary and the data fall outside the linear 
surrogate bound. However, when k = 100N/m, ε = 0.025 N/m.s2, kN = 0 N/m2, the system is 
linear with a time-varying stiffness and, hence, is non-stationary. Based on the surrogate 
analysis the response still appears nonlinear despite the fact that it was produced by a 
linear system. 

 Other tests for nonlinearity will similarly have difficulty in making the distinction. 
Tests based on the coherence function [24] require the estimation of the coherence between 
input and output data. This estimation, as is usually performed, involves the assumption of 
ergodicity (hence stationarity). This assumption is also why the surrogate algorithm has 
difficulty. The algorithm requires estimates of the power spectral density function, which 
depend on stationary data. Other tests for nonlinearity involve adjusting the input 
amplitude and observing the scaling in the response amplitude. For a linear system, the 
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response should scale with the input because of superposition (Eq. 16 again) while for a 
nonlinear system this will not be the case. However, any nonstationarity will also cause 
this test to fail unless the same nonstationarity is observed for each input amplitude (an 
unlikely event). 

 In short, it is difficult to make the distinction (nonlinear/nonstationary) using 
approaches based on Eq. 16. However, if the practitioner is willing to invoke a more 
detailed understanding of the system under test the two phenomena can possibly be 
separated. For example, if one has the three models of Eq. 17 (obtained by setting various 
combinations of parameters equal to zero) the question of which model is best supported 
by the data can be answered via a number of approaches. Even if only the time-scales of 
the underlying system are known a priori, a simple test for some types of nonstationarity is 
available. A reverse-arrangement “trend” test can be performed for both mean and variance 
(or any other moment). Divide the time history into “M” blocks and compute the sample 
mean, variance, etc. of each block giving Di, i = 1…M. Summing up the total number of 
times Di > Dj (i = 1…N-1, j = i+1…N) gives a random variable A. If the M observations 
are independent, and of the same random variable, both the mean and variance of A are 
known and can be used to construct confidence intervals for this null hypothesis. 

 As an example, consider again the system of Eq. 17 with k = 100, kN = 0, and varying 
levels of ε. The rate of increase is varied from ε = 0…0.0007 N/m.s2 giving seven different 
“levels” of nonstationarity. The simulated time series were divided into M = 25 
nonoverlapping blocks, each consisting of 1310 points (total time series length was 32768 
observations). The expected value of the random variable A (obtained by averaging over 10 
simulated responses), along with the associated 95% confidence intervals, is shown in Fig. 8 
for both mean and variance of the data blocks. As expected, the parametric variation in 
stiffness does not influence the mean value, but does eventually result in a detectable trend 
(nonstationarity) in sample variance. The advantage to this test is that it is straightforward 
and non-parametric. The difficulty is in choosing the number of segments “M”. This choice 
can only be made with some knowledge of the underlying time-scales of the process being 
observed. Additionally, this test will not capture an arbitrary type of nonstationarity. 

 In summary, nonlinearity and nonstationarity can be difficult to distinguish as both 
mechanisms will often cause rejections of the null hypothesis of a linear, time invariant 
system. While nonparametric tests for “trend” exist, they still require some knowledge of 
the system being observed. Nonlinearity and nonstationarity can only be definitively 
separated if well-defined models of both phenomena are available. 

 

6. NONLINEAR INDICATOR FUNCTIONS  
 Nonlinear indicator functions are functions used to identify changes in the measured 
system response that are indicative of the onset of nonlinear system response. In some 
cases these indictors are based on the assumption that the undamaged system will exhibit 
linear response. Also, as previously mentioned changes in system response resulting from 
other system changes as well as operational and environmental variability may cause 
changes in these indicators. 
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Figure 8. Trend tests applied to the system described by Eq. 17. 

 

6.1 Basic Signal Statistics  
 Many basic signal statistics can be used as damaged-sensitive features. Examples of 
such statistics for an n-point discrete time series obtained from a sensor reading, xi , are 
summarized in Table 1. Note that all of the features in Table 1 reduce the n-dimensional 
time series into a feature of unit dimension. For illustration purposes these statistics have 
been applied to acceleration-time histories recorded with Sensor 1 on a concrete column 
that was subjected to dynamic excitations with an electrodynamic shaker after various 
levels of damage had been introduced by quasi-static cyclic load tests as summarized in 
Appendix A. In the subsequent plots Damage Level 0 corresponds to the undamaged 
column. Damage Level 1 corresponds to a lateral displacement applied to the top of the 
column that caused incipient yield of the reinforcement and occurs after the concrete 
cracks. Damage Level 2 corresponds to a lateral displacement of the top of the column that 
is 2.5 times the lateral displacement that caused incipient yield. Damage Level 3 
corresponds to a lateral displacement of the top of the column that is 7.0 times the lateral 
displacement that caused incipient yield. 

 The crest factor and K-factor listed in Table 1 are used to diagnose deviations from 
sinusoidal response. Data acquired from a 4 degree of freedom (DOF) model building 
subjected to sinusoidal base excitations are used to illustrate this feature. This structure and 
the testing procedures are summarized in Appendix B. All acceleration time histories from 
the concrete column and the 4 DOF system used to generate the plots below as well as 
detailed test summaries can be downloaded from www.lanl.gov/projects/ei. 
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 Table 1. Signal Statistics that are Used as Damage 
Sensitive Features 
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 The first statistic discussed is the peak amplitude of the measured response. In cases 
where damage causes a reduction in stiffness and the input to the system is stationary, the 
peak amplitude of response will typically increase. This feature is plotted as a function of 
damage level for the concrete column tests in Fig. 9. The drop in peak amplitude 
associated with the final damage case is attributed to not maintaining the same input 
amplitude as the input was applied in an open-loop manner without feedback control.  

 There are many other basic statistics that can also be used to identify when changes in 
the system response that are indicative of damage have occurred as discussed below.  

 The mean and root-mean-square measure the central tendency of the data because these 
values typically fall in the central range of the time series amplitudes. To illustrate the shift in 
the mean value caused by damage, consider the cantilever beam shown in Fig. 10 (a). A 
through hole is drilled in the free end of the beam, and that end is connected to the Labworks 
ET-132 shaker with a 10-32 thread stinger. A strain gage was mounted 6 mm (1/4 in) from the 
aluminum clamp at the fixed end of the beam as shown in Fig. 10 (b). The beam was tested 
before and after it was plastically deformed. The plastic bending deformation was introduced 
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Figure 9. Peak amplitude of acceleration response measures at Sensor 1 (see 
Appendix A) on the concrete column tests plotted as a function of damage level. 

  

near the strain gage, which resulted in 1253 µε of static strain. Band-limited random noise with 
frequency content between 0.2 to 200 Hz was used as the dynamic excitation. Time and 
frequency domain data were captured for these random excitations. Figure 10 (c) shows the 
FRF that relates the conditioned strain-gage signal to the excitation voltage supplied to the 
shaker’s amplifier. Each FRF is averaged from 10 separate measurements using a Hanning 
window. Figure 10 (c) illustrates that the deformation causes a shift in the resonant frequencies 
of the beam, increasing the first mode from 28 Hz to 30.5 Hz, and the second mode from 
81 Hz to 84 Hz. The strain time histories from the random excitations are shown in Fig. 10 (d) 
where the DC offset in the strain readings is very clear as is evident in the distinct shift in the 
mean value of the signal, and this shift corresponds to the static plastic strain. This shift in the 
mean value will not be evident in an accelerometer reading because piezoelectric sensors do 
not measure DC response. 

 Note the mean value is sensitive to outliers, so a few extreme data points can 
significantly influence this feature. As illustrated in Fig. 10, a shift in the mean value is a 
feature that can detect the permanent offset caused by yielding as depicted in Fig. 6 so long 
as the sensor can respond to static loads (e.g., an electric resistance strain gage). 

 The mean-squared values and root-mean-square values are shown for the various 
concrete column damage levels in Fig. 11. Here one can see that these values increase with 
increased damage level. There is a significant increase between the incipient damage case 
and the subsequent damage case. 
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Figure 10. (a) Cantilever beam with shaker attached to the free end, (b) strain gage used to measure 
the beam’s dynamic response, (c) frequency response functions from the undamaged and plastically 
deformed beam, and (d) strain-time histories from the undamaged and plastically deformed beam 
showing the offset in the mean values caused by the plastic deformation. 

 

 The standard deviation measures the dispersion about the mean of the time-series 
amplitudes. For a fixed level of excitation, damage that reduces the stiffness of the system 
will, in general, cause an increase in the standard deviation of the measured kinematic 
response quantities such as acceleration or strain. Figure 12 shows the change in the standard 
deviation of the acceleration response obtained from the concrete column tests as a function 
of increasing damage levels where the standard deviation is seen to increase with increasing 
damage levels. As with the other statistics, this series of tests shows that there is a significant 
increase in the standard deviation when the structure goes from the incipient damage level to 
the next higher damage level. 
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Figure 11. The mean squared values (left) and the root mean square values (right) for acceleration 
response measures at Sensor 1 (see Appendix A) on the concrete column tests plotted as a function 
of damage level. 

 

 

 

Figure 12. Standard deviation for acceleration 
response measured at Sensor 1 (see 
Appendix A) on the concrete column tests 
plotted as a function of damage level. 

   

 

 The skewness is another measure of the central tendency of a random variable. Any 
symmetric distribution such as normal distribution will have a skewness value equal to 
zero. The skewness is sensitive to an asymmetry being introduced into an initially 
symmetric system such as the interference that produces the nonlinear response in the 
4 DOF system. Figure 13 shows the change in skewness for the 4 DOF system summarized 
in Appendix B when an impact nonlinearity is designed such that impacts occur when 
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relative deformations between the top two floors exceed a threshold value in one direction 
only. Therefore, this nonlinearity introduces an asymmetry into an originally symmetric 
structure. In Figure 13 the red lines correspond to a normal distribution fit to the measured 
acceleration amplitudes of the third floor (mass 4). The blue line corresponds to an 
approximation of the density function obtained with a kernel density estimator. When the 
system is linear, the kernel density estimate of the distribution function is nearly identical 
to the normal distribution that was fit to the data. In these cases the skewness value is close 
to zero as would be expected for a symmetric distribution. At the low excitation applied to 
the system with the nonlinearity, the estimated distribution function appears to overlay the 
normal distribution that was fit to the data, but the skewness value has increased by more 
than an order of magnitude. When the high the higher level excitation is applied to the 
nonlinear system the estimated density function shows significant difference from the 
normal distribution and the skewness value increased by more than two orders of 
magnitude compared to the comparable value obtained from the linear system. 

 

Linear System, Amplitude 0.5 v RMS 

Skewness = -0.0020 

 

Impact Nonlinearity, Amplitude 0.5 v RMS 

Skewness = - 0.0449 

 

 

Linear System, Amplitude 2.0 v rms 

Skewness = 0.0055 

Impact Nonlinearity, Amplitude 2.0 v rms 

Skewness = - 0.8850 

Figure 13. The change in skewness between the linear and symmetric 4 DOF system (see Appendix B) 
and the same system when an asymmetric impact nonlinearity is present for two different levels of 
excitation. 
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 The kurtosis measures the peaked nature of the measured-response distribution. This 
value is plotted for the various concrete column damage levels in Fig. 14. For a normally 
distributed response the kurtosis will have a value of 3.  

 

   

 

Figure 14. The kurtosis calculated for 
acceleration response measures at Sensor 1 
(see Appendix A) on the concrete column tests 
plotted as a function of damage level. 

 

 

 The crest factor and K-factor are often used to assess the deviation from sinusoidal 
response in rotating machinery. For linear systems responding to a harmonic input this 
feature has a theoretical value of 1.414. Table 2 summarizes the crest and K-factors obtained 
from a force transducer at the base (mass 1) and accelerometers at each floor (masses 1-4) of 
the 4 DOF system summarized in Appendix B when the structure was subjected to 53 Hz 
and 70 Hz sinusoidal inputs at different amplitude levels. In Table 2 it can be seen that both 
the K-factor and the crest factor show a deviation from the expected values at the locations 
most influenced by the impacting. The crest factors obtained from sensor readings at the 
other locations show little change. The K-factor shows a significant change at all locations, 
but the changes are most pronounced at the locations closest to the impact location. 

 
6.2  Coherence Function  
 The coherence function is a spectrum and is usually used with random or impulse 
excitation. It can provide a quick visual inspection of the quality of an FRF and, in many cases, 
is a rapid indicator of the presence of nonlinearity in specific frequency bands or resonance 
regions. It is arguably the most often-used test of nonlinearity, by virtue of the fact that almost 
all commercial spectrum analyzers come with software that calculates this quantity.  
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Table 2. Crest Factor and K-Factor for the 4 DOF System Subjected to Harmonic Inputs 

 Crest Factor 

Sensor 53 Hz Excitation 70 Hz Excitation 
 No Bumper With Bumper No Bumper With Bumper 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Ch1 1.45 1.44 1.47 1.48 1.43 1.43 1.43 1.43 

Ch2 1.42 1.42 1.42 1.42 1.44 1.44 1.41 1.41 

Ch3 1.43 1.43 1.87 1.82 1.44 1.43 1.39 1.38 

Ch4 1.42 1.42 1.03 1.02 1.43 1.42 1.32 1.32 

Input 1.43 1.44 1.43 1.43 1.43 1.44 1.43 1.42 

 K Factor 

Sensor 53 Hz Excitation 70 Hz Excitation 

 No Bumper With Bumper No Bumper With Bumper 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Ch1 2.68 2.82 0.00367 0.00369 0.824 0.737 0.270 0.267 

Ch2 2.32 2.43 0.352 0.349 3.80 3.31 0.206 0.206 

Ch3 2.12 2.23 0.0379 0.0354 2.96 2.55 0.0365 0.0373 

Ch4 2.28 2.38 0.0627 0.0603 0.518 0.446 0.00729 0.00714 

Input 821 792 2280 2270 1170 1210 1730 1720 

Ch 1-4 are accelerometers mounted on each mass, Input is the force transducer mounted between the bottom mass 
and shaker.  
Test 1 corresponds to a 0.5 v rms input amplitude. Test 2 corresponds to a 2.0 v rms input amplitude. 
Bumper is located between mass 4 and mass 3 (Ch 4 and Ch 3) 

    

 Before discussing nonlinearity, the coherence function will be derived for linear 
systems subject to measurement noise on the output. Such systems have time-domain 
equations of motion, 
 

)()]([)( tmtfStx +=   (18) 
 
where S is an operator that is a function of elastic, inertial and energy dissipation 
characteristics of the structure and m(t) is the measurement noise. In the frequency domain 
a little algebra produces the coherence function γ2(ω) [24], 
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where H(ω) is the frequency response function, Sff(ω) is the power spectrum of the input, 
Sxx(ω) is the power spectrum of the response and Smm(ω) is the power spectrum of the noise. 

 This quantity is the fraction of the output power, which can be linearly correlated with 
the input. Now, as and )(2 ωγ )(/)( ωω xxmm SS  are both positive quantities, it follows that 

 with  only if 10 2 ≤≤ γ 12 =γ 0)(/)( =ωω xxmm SS , implying that there is no measurement 
noise. The coherence function therefore detects if there is noise in the output measurement. 
In fact, it can be shown that  if there is noise anywhere in the measurement process 
[24]. If the coherence is plotted as a function of ω, any departures from unity will be 
readily identifiable. Note that all these quantities in the second term in Eq. 19 are readily 
computed by commercial spectrum analyzers designed to estimate 

12 <γ

)(ωH , which is why 
coherence functions are so readily available in standard instrumentation. 

 Because the coherence function determines the extent of the output power linearly 
correlated with the input, it also detects nonlinearity. Consider the data from a SDOF 
system with a cubic stiffness; if the level of excitation is low, the response x will be small 
and x3 will be negligible in comparison. In this regime, the system will effectively behave 
as a linear system and the coherence function for input and output will be near unity as 
shown in Figure 15 As the excitation is increased, the nonlinear terms will begin to play a 
part, and the coherence will drop as shown in Figure 16. This type of situation will occur 
for all polynomial nonlinearities and systems exhibiting piecewise-linear stiffness like 
those induced by a breathing crack [25]. However, if one considers Coulomb friction, the 
opposite occurs. At high excitation, the friction breaks out (that is, stick response gives 
way to slip response) and a nominally linear response will be obtained and hence 
coherence values closer to unity will result. 

 It is important to stress again that in order to use the coherence function for detecting 
nonlinearity and hence damage, it is necessary to realize that a reduction in the level of 
coherence can be caused by a range of problems, such as noise on the output and/or input 
signals that may in turn be caused by incorrect gain settings on amplifiers, leakage, and 
extraneous sources of unmeasured input to the system. Such obvious causes should be 
checked before structural nonlinearity and hence damage is suspected as the cause of loss 
of coherence. 

 

6.3  Linearity and Reciprocity Checks  
 One method to demonstrate that a structure is responding in a nonlinear manner is to 
excite the structure at two different levels and show that that the response does not scale 
linearly by the ratio of the excitations levels. A common approach to visualize this 
property is to overlay the frequency response functions (FRFs) from the excitations at the 
two different levels. For linear systems the two FRFs obtained with the different excitation 
levels should overlay because the response spectrum is normalized by the input spectrum. 
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Figure 15. The coherence function for a cubic nonlinear oscillator 
under a low level of excitation. 
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Figure 16. The coherence function for a cubic nonlinear oscillator 
under a high level of excitation. 
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 Figure 17 shows an overlay of the input impulse power spectral density functions 
from a linearity check performed on a bridge structure summarized in [15] and the 
corresponding driving point FRFs. In this case the two impact tests where the power 
spectral density amplitudes were different by a factor of about five were performed within 
2 hrs of each other and no changes were introduced to the structure’s condition within this 
time period. Ideally, a linearity check should be performed over the expected range of 
operating loads, but this linearity test was limited to what could be obtained using the 
instrumented hammer. These plots highlight a difficulty with interpreting data from a 
linearity check. Between 7 and 25 Hz the structure exhibits linear characteristics when 
excited at the levels shown in this figure. However, above 30 Hz there is a noticeable 
difference in the two measurements suggesting the possibility that nonlinearities were 
excited in this frequency range or that signal-to-noise ratios were poor, thus providing the 
appearance of nonlinear response. This frequency range also corresponds to lower 
coherence in the lower-excitation level measurement as shown in Fig. 18. The coherence 
was observed to improve for the higher magnitude input suggesting that possibly the lower 
signal-to-noise ratio in the low-amplitude measurements might be causing the linearity test 
discrepancies shown in Fig. 17. Therefore, in addition to the FRF overlaying one would 
also like to see the corresponding coherence functions overlay as well to have confidence 
that the structure’s response scales linearly with increasing amplitude. 

 Figures 19–22 show similar results for measurements made at each mass in the 4 DOF 
system (see Appendix B) when excited with different amplitude band-limited (20–200 Hz) 
random base inputs. These figures show the cases when the system is linear and when an 
impact nonlinearity is present between floors two and three (masses 3 and 4). These figures 
also show the corresponding coherence functions. For the linear case the FRF magnitudes 
overlay across the entire spectrum. With an exception for the drop in coherence associated 
with 60 Hz electric noise in the low amplitude tests, the coherence functions for the two 
linear systems also overlay. 

 

 

 

Figure 17. Results of a linearity check performed on bridge structure that shows different portions of the 
FRF are more sensitive to the nonlinear system response. 
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Figure 18.  The coherence functions corresponding to the linearity tests shown in Fig. 17. 
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Figure 19. The linearity test FRF magnitudes and corresponding coherence functions for 
the base (mass 1) of the 4 DOF structure in a linear condition (left) and when an impact 
nonlinearity is present (right) between floors 2 and 3 (masses 3 and 4). 
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Figure 20. The linearity test FRF magnitudes and corresponding coherence functions 
for the first floor (mass 2) of the 4 DOF structure in a linear condition (left) and when an 
impact nonlinearity is present (right) between floors 2 and 3 (masses 3 and 4). 
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Figure 21. The linearity test FRF magnitudes and corresponding coherence functions for 
the second floor (mass 3) of the 4 DOF structure in a linear condition (left) and when an 
impact nonlinearity is present (right) between floors 2 and 3 (masses 3 and 4). 
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Figure 22. The linearity test FRF magnitudes and corresponding coherence functions for 
the third floor (mass 4) of the 4 DOF structure in a linear condition (left) and when an 
impact nonlinearity is present (right) between floors 2 and 3 (masses 3 and 4). 

 

 When the impact nonlinearity is present, there are significant distortions in the FRFs 
when compared to the corresponding linear cases. Also, there is considerable change in these 
FRFs and corresponding coherence functions associated with the impacting system as a 
function of excitation level, particularly in the higher frequency portions of the spectra.   

 Reciprocity checks are also performed to assess the linearity of a system’s response. A 
structure is said to exhibit reciprocity when the measured FRF formed from an input at 
location j and a response at location i corresponds directly with the measured FRF formed 
from an input at location i and response at location j. Figure 23 shows the FRF magnitudes 
for an impact applied at one point on a bridge deck (see [15]) and a response measured at 
one of the most distant measurement points on that same deck. Also shown in this figure is 
the FRF magnitude for an impact applied at pt. B and a response measured at Point A. 
Coherence plots corresponding to the reciprocity results are also shown in Figure 23. 
Because the data acquisition system channels were moved from one point to another (i.e., 
the input measurement channel is the same for inputs at both locations as shown in 
Fig. 24), these figures show the reciprocity of the entire measurement system, including 
the structure and the data acquisition system.  
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Figure 23. The FRFs and corresponding coherence functions measured during a 
reciprocity test on the Alamosa Canyon Bridge (see [15]). Measurements were 
conducted using the procedure depicted in Fig. 24. 
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Figure 24. In this case, which corresponds to the measurement procedure used to obtain 
the reciprocity data in Fig. 23, one simply reverses the input and response measurement 
points. The input and response sensors remain connected to their original data acquisition 
channel. This approach measures the reciprocity of the structure and the data 
acquisition system. 

 
 

  

 

Figure 25. Alternatively, one can reverse the input and response measurement points 
while keeping the input and response sensors connected to data acquisition channels 
associated with the measurement point. This measurement procedure gives a measure of 
the reciprocity of the only structure. 
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 Alternatively, one can keep the data acquisition channel associated with a particular 
location as depicted in Fig. 25. A plot of the FRF magnitudes when the accelerometers at 
points. A and B have been switched is shown in Fig. 26 along with the corresponding 
coherence functions. By switching the accelerometers the reciprocity being measured is 
that of the structure alone. From Figs. 23 and 26 it is evident that the structure itself is 
exhibiting reciprocity in the all portions of the spectrum where there is good coherence. 
Also, when Fig. 23 is compared to Fig. 26, it is evident that the noise in the measurement 
electronics of the data acquisition system is contributing to the loss of reciprocity, 
particularly near the third natural frequency at 11.5 Hz. 
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Figure 26. The FRFs and corresponding coherence functions measured 
during a reciprocity test on the Alamosa Canyon Bridge (see [15]). 
Measurements were conducted using the procedure depicted in Fig. 25. 
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Figures 27–30 show reciprocity check from the 4 DOF system when an impact 
excitation was applied at the first floor (mass 2) and acceleration response measurements 
were made at the base (mass 1) each of the floors (masses 2-4) (see Appendix B). The 
testing procedure used corresponds to that shown in Fig. 24. In these figures the FRF 
magnitude and corresponding coherence functions are shown for the cases when the 
structure is in a linear configuration and for the case where the excitation excites the 
impact nonlinearity. In these cases the linear structure exhibits reciprocity over all portions 
of the spectrum where consistent coherence between the two measurements was obtained. 
When the nonlinearity is excited, there are again considerable distortions of the FRFs as 
compared to those obtained from the linear system and the structure no longer exhibits 
reciprocity as indicated by the FRFs that do not overlay. 
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Figure 27. The FRFs and corresponding coherence functions measured during a reciprocity 
tests on the 4 DOF system without nonlinearity (left) and with an impact nonlinearity (right) 
(see Appendix B). Measurements were conducted using the procedure depicted in Fig. 24. 
Measurement locations were on the base (mass 1) and first floor (mass 2). 
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Figure 28. The FRFs and corresponding coherence functions measured during 
reciprocity tests on the 4 DOF system without nonlinearity (left) and with an impact 
nonlinearity (right) (see Appendix B). Measurements were conducted using the 
procedure depicted in Fig. 24. Measurement locations were on either end of the 
first floor (mass 2). 
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Figure 29. The FRFs and corresponding coherence functions measured during reciprocity 
tests on the 4 DOF system without nonlinearity (left) and with an impact nonlinearity (right) 
(see Appendix B). Measurements were conducted using the procedure depicted in Fig. 24. 
Measurement locations were on the first floor (mass 2) and second floor (mass 3). 
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Figure 30. The FRFs and corresponding coherence functions measured during reciprocity 
tests on the 4 DOF system without nonlinearity (left) and with an impact nonlinearity (right) 
(see Appendix B). Measurements were conducted using the procedure depicted in Fig. 24. 
Measurement locations were on the first floor (mass 2) and third floor (mass 4). 

 

6.4  Harmonic Distortion 
 Harmonic or waveform distortion is one of the clearest indicators of the presence of 
nonlinearity. Such distortions are the primary damage sensitive feature used to diagnose 
the condition of rotating machinery [17,26], which is the primary SHM application that has 
made the transition from research to practice. If the excitation to a linear system is a 
monoharmonic signal, i.e. a sine or cosine wave of frequency ω , the response will be 
monoharmonic at the same frequency (after any transients have died out) [24]. In addition, 
the response of a linear system to some initial disturbance (displacement or velocity 
impulse) can be represented by a sum of decaying sinusoids after transients have died out 
as described by the well-known convolution integral [20]. 

 It is not always true to say that a sine wave input to a nonlinear system will not 
produce a sine wave output. However, this is usually the case and this is the basis of a 
simple and powerful test for nonlinearity as sine wave inputs are simple signals to generate 
in practice. The form of the distortion is due to the appearance of higher harmonics in the 
response. Similar higher harmonics are observed in the response of nonlinear systems 
excited by an initial displacement or by an initial velocity impulse. 
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 Distortion can be easily detected by observing the input and output time response 
signals. Fig. 31 shows an example of harmonic distortion where a sinusoidal acceleration 
response signal is altered by, in this case, a cubic nonlinearity. 
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Figure 31. Evidence of distortion in time 
histories as a result of nonlinearity. 

 

  In Figure 31 the output response from a nonlinear system is shown in terms of the 
displacement, velocity and acceleration. The reason that the acceleration is more distorted 
compared with the corresponding velocity or displacement is easily explained. Let 
f(t) = sin (ωt) be the input to the nonlinear system. The output, x(t), will generally (at least 
for weak nonlinear systems) be represented as a Fourier series composed of harmonics 
written as, 
                                 

…)3sin()2sin()sin()( 332211 φ+ω+φ+ω+φ+ω= tAtAtAtx   ,  (20) 

                                 
and the corresponding acceleration, ( )tx�� , is, 
                                 

…�� )3sin(9)2sin(4)sin()( 33
2

22
2

11
2 φ+ωω−φ+ωω−φ+ωω−= tAtAtAtx   (21) 

Thus the nth output acceleration term is weighted by the factor  compared to the fundamental.  2n
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 Harmonic generation can also be seen in systems subjected to nonsinusoidal inputs. 
Figure 32 shows the Wigner-Ville time-frequency transform applied to free-vibration 
response data measured at the free end of both uncracked and cracked cantilever beams 
subject to an initial displacement [27]. The crack is located at the midspan and penetrates 
half the thickness of the beam. The time-frequency plots in Fig. 32 show the generation of 
resonant frequency harmonics in the freely vibrating, cracked cantilever beam as well as 
the change in stiffness state as the crack opens and closes. A comparison of the two plots 
in Fig. 32 clearly shows that the presence of nonlinearity adds considerable complexity to 
the frequency response characteristics of the system and measures of this complexity 
relative to the undamaged system response can be used to infer the presence of damage. 

 

  
Figure 32. Wigner-Ville transforms of the free-vibration acceleration-time histories measured on an 
uncracked cantilever beam (left) and a cracked cantilever beam (right) subjected to an initial displacement. 

                                 
 
 Another illustration of harmonic distortion can be seen in data obtained from the 
4 DOF system when the system is subjected to a 53 Hz harmonic base excitation. In one 
case the system is in a linear configuration and in the other case the excitation excited an 
impact nonlinearity (see Appendix B). Figure 33 shows a portion of input time histories 
and corresponding power spectra for the inputs from the two tests. This figure shows that 
the input remained constant between the two tests. Figures 34 though 37 show a portion of 
the input time histories and corresponding power spectra (normalized to a peak value of 1) 
from each floor for both the linear and nonlinear cases. The response measurements show 
increasing distortion from a harmonic response with increasing distortion from sensors 
closer to the impact location. Also, harmonics of the driving frequency are visible in the 
power spectra of the measurements made at the base (mass 1) and each of the floors 
(masses 2–4) when the impact nonlinearity is present. These harmonics are accompanied 
by significant drop in the amplitude of response even though Fig. 33 shows that the base 
excitation remained consistent in each test. 
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Figure 33. Harmonic base input signals (53 Hz) used to drive the 4 DOF system in its 
linear and nonlinear configuration. 

 

0.5 0.55 0.6 0.65 0.7
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Time Response 53 Hz, no bumper, ch1

Time (second)

M
ag

ni
tu

de

0.5 0.55 0.6 0.65 0.7
-0.1

-0.05

0

0.05

0.1
Time Response 53 Hz, with bumper, ch1

Time (second)

M
ag

ni
tu

de

0 20 40 60 80 100 120 140 160 180
0

0.005

0.01

0.015

0.02

0.025

0.03
normalized Power spectrum 53 Hz, no bumper, ch1

Frequency (Hz)

M
ag

ni
tu

de

0 20 40 60 80 100 120 140 160 180
0

0.005

0.01

0.015

0.02

0.025

0.03
normalized Power Spectrum 53 Hz, with bumper, Ch1

Frequency (Hz)

M
ag

ni
tu

de

Figure 34. Base (mass 1) response to a 53 Hz harmonic base input signal used to drive 
the 4 DOF (see Appendix B) system in its linear and nonlinear configuration (impact 
between floors 2 and 3 [masses 3 and 4]). Peak Amplitudes in the spectra have been 
scaled to 1 and a peak amplitude of only 0.03 v2 has been plotted to better show the 
harmonics that were generated. 
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Figure 35. First floor (mass 2) response to a 53 Hz harmonic base input signal used 
to drive the 4 DOF (see Appendix B) system in its linear and nonlinear 
configuration (impact between floors 2 and 3 [masses 3 and 4]). Peak Amplitudes 
in the spectra have been scaled to 1 to better show the harmonics that  
were generated. 
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Figure 36. Second floor (mass 2) response to a 53 Hz harmonic base input 
signal used to drive the 4 DOF (see Appendix B) system in its linear and 
nonlinear configuration (impact between floors 2 and 3 [masses 3 and 4]). 
Peak Amplitudes in the spectra have been scaled to 1 to better show the 
harmonics that were generated. 
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Figure 37. Third floor (mass 3) response to a 53 Hz harmonic base input signal used to 
drive the 4 DOF (see Appendix B) system in its linear and nonlinear configuration (impact 
between floors 2 and 3 [masses 3 and 4]). Peak Amplitudes in the spectra have been 
scaled to 1 to better show the harmonics that were generated. 

 
 In general, if the system inputs are nonsinusoidal waveforms, such as band-limited 
random signals, waveform distortion is difficult to detect and alternate features are 
required such as those that can be obtained from the coherence function or the probability 
density function. 
 

6.5  Frequency Response Function Distortions  
 As previously discussed, damage can be inferred from the loss of amplitude 
invariance of any number of measured quantities when it is assumed that the system 
responds in a predominantly linear manner when in its undamaged state. One of the most 
fundamental constructs for modal analysis is the FRF; this takes a specific form for linear 
MDOF systems and departures from this form as the excitation level changes can yield 
information about the type of nonlinearity present in the system. The study of FRF 
distortion was the subject of some of the earliest attempts to reconcile nonlinearity with 
modal analysis [12].  

 Before discussing FRF distortion, recall the principal definitions of the FRF; first for a 
stepped-sine test. If a signal Fsin(ωt) is input to a linear system, it will result in a response 
Xsin(ωt+φ); the FRF - a function of ω  - is defined by,  

)()()( ωφω=ω ie
F
XH    . (22) 
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 This quantity is very straightforward to obtain experimentally. Over a range of 
frequencies, sinusoids Fsin(ωt) are injected sequentially into the system of interest. At 
each frequency, the time histories of the input and response signals are recorded after 
transients have died out and Fourier transformed. The ratio of the (complex) response 
spectrum to the input spectrum yields the FRF value at the frequency of interest. In the 
case of a linear system, the FRF in Eq. 22 summarizes the input/output process in its 
entirety and does not depend on the amplitude of excitation F. In such a situation, the FRF 
is referred to as pure.  

 In the case of a nonlinear system, it is well-known that sinusoidal forcing generates 
response components at frequencies other than the excitation frequency. In particular, the 
distribution of energy amongst these frequencies depends on the level of excitation F, so 
the measurement process described above will also lead to a quantity which depends on F. 
However, because the process is simple, it is often carried out experimentally in an 
unadulterated fashion for nonlinear systems. The FRF resulting from such a test is referred 
to as composite and denoted by ( )s ωΛ . Strictly speaking, Λs(ω, F) is more appropriate, but 
the amplitude argument will always be clear from in this context. In the control literature, 

( )s ωΛ  is often called a describing function.  

 The form of the composite FRF also depends on the type of excitation used. If white 
noise of constant power spectral density  is used and the FRF is obtained by taking the 
ratio of the cross- and auto-spectral densities (S

P
XF, SFF) for a linear system,  

 

)(
)()(

ω
ω

=ω
FF

XF

S
SH    , (23) 

 
and it is a textbook matter to show that this quantity is identical to the FRF from stepped-
sine testing. If however, the same approach is used for a nonlinear system, another 
composite FRF is obtained,  
 

)(
)(),(

ω
ω

=ωΛ
FF

XF
r S

SP    , (24) 

 
and the function r ( )PωΛ ,  is distinct from the Λs(ω, F) obtained from a stepped-sine test. 
The object of this section is to outline some ways of computing FRFs, in the hope that the 
analysis can be used to identify nonlinearities that are indicative of damage.  
 The first calculation will illustrate a well-known means of approximating s ( )ωΛ  - the 
analytical analogue of the stepped-sine test - the method of harmonic balance [28]. A 
nonlinear system is needed and without a doubt the most commonly referenced SDOF 
nonlinear system is given by Duffing’s equation,  
 

)(3
3 tfxkkxxcxm =+++ ���    . (25) 

and this will be adopted for the analysis here.  
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 Harmonic balance simply assumes that the response to a sinusoidal excitation is a sinusoid 
at the same frequency. The trial solution Xsin(ωt) is substituted in the equation of motion,  
 

)sin(3
3 φ−ω=+++ tFxkkxxcxm ���    . (26) 

 
 To simplify matters the phase has been transferred onto the input to allow Y to be 
taken as real. The substitution yields,  
 

)sin()sin()sin()cos()sin( 3
3

2 φ−ω=ω+ω+ωω+ωω− tFtXktkXtXctXm    , (27) 

 
or, after a little elementary trigonometry,  

φω−φω
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2

tFtF
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 Equating the coefficients of sin( )tω  and cos( )tω  (the fundamental components) 
yields the equations,  

φ=++ω− cos
4
3 3

3
2 FXkkXXm , and (29)

cωX = -Fsinφ    . (30) 
 
 The required gain and phase follow routinely,  
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and these can be combined into the complex FRF,  
 

ω+ω−+
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22
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At a fixed level of excitation, the FRF has natural frequency, 
  

m

Xkk
n

2
34

3
+

=ω    , (34) 

 
so it depends on X and hence, indirectly on F. If 3 , the natural frequency increases 
with F; such a system is referred to as hardening. If 

0k >
3 0k <  the system is softening; the 

natural frequency decreases with increasing F.  

 This approximation reproduces experimental results which show that the natural 
frequency changes with amplitude. Further, the actual form of the FRF can depart 
substantially from the linear form. For given F and ω, X is obtained by solving the 
(essentially) cubic Eq. 29. As complex roots occur in conjugate pairs, Eq. 29 will either have 
one or three real solutions. The effect of this observation is well-known, but remains striking.  

 At low levels of excitation, the FRF is a barely distorted version of that for the 
underlying linear system as the  term dominates for X <<1. A unique response amplitude 
(a single real root of Eq. 29 is obtained for all 

k
ω . As F increases, the FRF becomes more 

distorted and departs from the linear form, but a unique response is still obtained for all ω . 
This continues until F reaches a critical value Fcrit where the FRF has a vertical tangent. 
Beyond this point a range of ω  values, [ low high ]ω ω, , is obtained over which there are three 
real solutions for the response. This is a bifurcation point of the parameter F. As the test or 
simulation steps past the point lowω , two new responses become possible and persist until 

highω  is reached and two solutions disappear. The graph of the response is shown in Fig. 38.  

 The relevant experimental circumstances for this analysis occur during a stepped-sine 
or a sine-dwell test. Consider an upward sweep. A unique response exists up to lowω ω= . 
However, beyond this point, the response stays on branch x(1) essentially by continuity. 
This condition persists until, at frequency highω , x(1) ceases to exist and the only solution is 
x(3), a jump to this solution occurs giving a discontinuity in the FRF. Beyond highω  the 
solution stays on the continuation of x(3), which is the unique solution in this range. The 
amplitude follows path ABD  in Figure 38. The type of FRF obtained from such a test is 
shown in Fig. 39. The downward sweep is similarly described and follows path DCA .  
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Figure 38. Possible response amplitudes for Duffing oscillator under 
high level excitation. 

 

 

 

 
 

Figure 39. Composite FRF Λs for Duffing oscillator at high 
excitation (upward sweep).  
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 If 3 , the resonance peak moves to higher frequencies and the jumps occur on the 
right-hand side of the peak as described above. If 3

0k >
0k < , the jumps occur on the left of the 

peak and the resonance shifts downward in frequency. These discontinuities are frequently 
observed in experimental FRFs. All this is fairly well-known; however, despite the fact 
that this was one of the first calculations carried out for a nonlinear system, it retains its 
predictive power and harmonic balance, and its more modern variants are indispensable 
tools in the analysis of nonlinear systems.  

 

6.6 Probability Density Function 
 When a linear system is subject to a random input whose amplitudes are described by a 
Gaussian distribution, the response amplitudes will also have a Gaussian distribution [29]. 
Also, it is known that a Gaussian distribution has well defined properties such as skewness,  
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and the normalized kurtosis, 
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  , (36) 

 
where E designates the expectation operator, µ is the sample mean for an acceleration 
response, and σ is the sample variance. x��

 When the input is known to be Gaussian in nature, deviations of the acceleration 
response statistics can result when nonlinearities associated with damage are present. As an 
example, an estimate of the acceleration response pdf obtained with a kernel density 
estimator from an 8 DOF system is shown in Fig. 40(a) along with skewness and kurtosis 
values. This response corresponds to the end mass and the excitation is applied to the mass at 
the opposite end [30, 31]. The estimated pdf is plotted over the Gaussian distribution that has 
been fit to these same data. For this undamaged condition the small deviations in the pdf and 
the associated statistics from those anticipated for a Gaussian input are attributed to an open-
loop control system on the shaker that does not allow for a true Gaussian signal to be input to 
the system. Figure 40(b) shows a similar plot and similar statistics when the same eight DOF 
system is modified such that impacting occurs between the two end masses located at the 
opposite end from the shaker. This impacting produces an asymmetry in the response that 
manifests itself as a more than 500% change in the skewness value as well as a more 
significant deviation in the pdf from the normal condition.  

 If baseline statistics are available from the undamaged system, examination of the pdf 
and the associated statistics can be an indicator of nonlinearities associated with damage. 
These statistics are used extensively as low-dimension features to diagnose damage to 
roller bearings [32]. 
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Figure 40. The 8 DOF system (top) and (a) The pdf of the acceleration response measured on the end 
mass of the system in its undamaged condition overlaid with a Gaussian distribution fit to these same 
data. (b) a similar pdf obtained when the end two masses impact. 
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6.7  Correlation Tests 
 There are two simple correlation tests that can signal nonlinearity by analyzing 
measured time data. If records of both input f and output x are available, it can be shown 
that the correlation function, , defined as )(2 k

xf ′φ

[ ])(')()( 2
2 kixifEk
xf

+=φ ′  (37) 

where E designates the expectation operator. 
xf ′φ 2 vanishes for all discrete time delays, k, if 

and only if the system is linear [33]. The apostrophe signifies that the mean has been 
removed from the output signal.  

 If only sampled outputs are available, it can be shown that under certain conditions 
[34], the correlation function defined as, 

])(')('[)( 2
'' 2 ixkixEkxx +=φ  (38)

 

is zero for all  if and only if the system is linear. In practice, these functions will never be 
identically zero; however, confidence intervals for a near-zero result can be calculated. As 
an example, acceleration data were obtained from single degree of freedom system with an 
offset bilinear stiffness whose force-deformation plot is shown in Fig. 41. The system was 
subjected to a random excitation. The correlation functions for the response at both low 
and high excitation are shown in Fig. 42. The dashed lines are the 95% confidence limits 
for a zero result based on a linear system with the initial stiffness. The function in Fig. 42b 
indicates that the data from the high-excitation test arises from a nonlinear system. The 
low-excitation test did not excite the nonlinearity and the corresponding function (Fig. 42a) 
shows that only approximately five percent of the points are outliers as would be expected. 

k

 

 

 
 

Figure 41. Offset bilinear stiffness system. 
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Figure 42. Correlation functions for a (a) linear system and (b) nonlinear system. 

 

 that Eq. 38 as it stands only detects even nonlinearity such as quadratic stiffness. 
e, to identify odd nonlinearity, the input signal should contain a D.C. offset. This 
e output signal and adds an even component to the nonlinear terms.  

rther restriction on Eq. 38 is that it cannot detect odd damping nonlinearity as it is 
ble to generate a D.C.. offset in the velocity to add an odd component to the 
ity. There are implications for damage detection here as the occurrence of 
n a structure may result in the appearance of a friction nonlinearity when the 
llows two surfaces to slide over each other.  

Holder Exponent 
rtson, et al. [35] have used the Holder exponent as another damage-sensitive feature. 
ure identifies nonlinearities associated with discontinuities introduced into the 
response data as a result of certain types of damage such as cracks opening and 
 [35] a procedure for capturing the time varying nature of the Holder exponent has 
loped based on wavelet transforms. This procedure has been successfully applied to 
se parts in a harmonically excited mechanical system as described below.  
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 The Holder Exponent, also known as the Lipschitz Exponent [36], is a tool that 
provides information about the regularity of a signal. In essence, the regularity identifies to 
what order the signal is differentiable. For instance, if a signal f(t) is differentiable at t = 0, 
it has a Holder Exponent of 1 or greater. If the signal is discontinuous but bounded in the 
neighborhood of t = 0, such as a step function, then the Holder Exponent is 0. The Dirac 
Delta function then has a Holder Exponent of -1 because it is unbounded at t = 0. From 
these examples, one can see that there is a relationship between the Holder Exponent of a 
function and its derivatives and primitives. Taking the derivative of a function decreases its 
regularity by 1 and integrating increases it by 1. For SHM applications the assumption is 
that a linear system will have a continuous response to random, transient or steady state 
excitation. When a nonlinearity is introduced such as a crack opening and closing, the 
response signals will have discrete portions that are discontinuous and the Holder exponent 
will identify such discontinuities.  

 The Holder regularity is defined as follows. Assume that a signal f (t) can be 
approximated locally at  by a polynomial of the form [0t 37]: 

 

α

α
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n
n

−+−=

−+−++−+=
, (39) 

 

where Pn is a polynomial of order n and C is a coefficient. The term associated with the 
exponent α  can be thought of as the residual that remains after fitting a polynomial of 
order n to the signal, or as the part of the signal that does not fit into an n+1 term 
approximation [37]. The local regularity of a function at t0 can then be characterized by 
this “Holder” exponent:  

α
00 )()( ttCttPtf n −≤−−  (40)

 A higher value of α indicates a better regularity or a smoother function. In order to 
detect singularities, a transform is needed that ignores the polynomial part of the signal. A 
wavelet transform that has n-vanishing moments is able to ignore polynomials up to order n: 

 

0)( =∫
∞

∞−

dtttnψ    . (41) 

 
 Transformation of Eq. 40 using a wavelet with at least n vanishing moments then 
provides a method for extracting the values of the Holder exponent in time: 

 

αCssuWf ≤),(    . (42) 
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 The wavelet transform of the polynomial is zero and so what remains is a relationship 
between the wavelet transform of f(t) and the error between the polynomial and f(t), which 
relates to the regularity of the function. When a complex wavelet such as the Morlet 
wavelet is used, the resulting coefficients are also complex. Therefore, the magnitude of 
the modulus of the wavelet transform must be used to find the Holder exponent. As 
detailed below, the exponent α can be calculated at a specific time point by finding the 
slope of the log of the modulus at that time versus the log of the scale vector s. 

 For the SHM applications, singularities are defined as points in the sensor time history 
that are discontinuous. As discussed above, bounded discontinuities have a Holder exponent 
of 0. Therefore, measuring the regularity of the signal in time can be used to detect these 
singularities. The Holder exponent can pertain to the global regularity of a function, or it can 
be found locally. A common method for finding its value is through the use of the Fourier 
transform [36]. The asymptotic decay of a signal’s frequency spectrum relates directly to the 
uniform Holder regularity. However, the Fourier transform approach only provides a 
measure of the minimum global regularity of the function, and cannot be used to find the 
regularity at a particular point in time. Wavelets, on the other hand, are well localized in time 
and can therefore provide an estimate of the Holder regularity both over time intervals and at 
specific time points. The wavelet method for estimating the Holder exponent is similar to 
that of the Fourier transform. The wavelet provides a time-frequency map called the 
scalogram. By examining the decay of this map at specific points in time across all scales 
(frequencies), the point-wise Holder regularity of the signal can be determined.  

 It is logical therefore to wonder if a short-time Fourier transform (STFT) can be used 
to extract a time-varying Holder exponent function as well. In fact, any time-frequency 
transform can be used for Holder exponent extraction, but certain characteristics of the 
wavelet transform make it particularly well adapted for this application. Specifically, these 
characteristics are: the decay of the wavelet basis functions in the frequency domain, which 
is associated with the number of vanishing moments, and the variability of the bandwidth 
of the wavelet transform in time and frequency. The order of the wavelet limits the degree 
of regularity that can be measured in a function. Therefore, wavelets can be tuned to the 
signals that are being analyzed. Also, the variability of the time and frequency bandwidths 
provides a finer time resolution at the higher frequencies than the STFT, which can be 
helpful in detecting the point in time when sudden changes occur in a signal. 

 The easiest way to identify a discontinuity in a signal is by looking for a distinct 
downward jump in the regularity (Holder exponent) versus time plot. As previously 
mentioned a discontinuous point should have a Holder Exponent value of zero, but 
resolution limitations of the wavelet transform will result in slightly different values. So, 
identifying time points where the Holder Exponent dips from positive values towards zero, 
or below, will identify when the discontinuities in the signal occur. A procedure for 
identifying the discontinuities will be presented in the following sections. 
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 The steps for calculating the Holder exponent in time are as follows. First, take the 
wavelet transform of the given signal and take the absolute value of the resulting 
coefficients to obtain the wavelet transform modulus: 
 

dt
s
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 Arrange the coefficients in a two-dimensional time-scale matrix. One dimension of 
the time-scale matrix (u) represents a different time point in the signal, and the other 
dimension denotes a different frequency scale (s). Take the first column, which represents 
the frequency spectrum of the signal at the first time point, and plot the log of it versus the 
log of the scales, s, at which the wavelet transform was calculated. This can be shown 
mathematically by taking the log of each side of Equation 43:  

 

)log()log(),(log sCsuWf α+=    . (44) 
 

 Ignoring the offset due to the coefficient C, the slope m of a straight line fit to the 
spectrum is then the decay of the wavelet modulus across its scales. Negating the slope 
will give the decay versus the frequencies of the transform rather than the scales, due to the 
inverse relationship between scale and frequency. The Holder exponent α is then simply 
the slope m. This is the Holder exponent for the first time point in the signal. To find the 
Holder exponent at all time points, repeat this process for each time point of the wavelet 
modulus matrix. 

 

α==
)log(

),(log
s

suWf
m  (45) 

 
 The following example shows the application of the Holder exponent to data from a 
mechanical system with a loose part that was subjected to a harmonic base excitation. A 
schematic of the test structure is shown in Fig. 43. The non-symmetric bumpers cause the 
structure to exhibit a rattle during one portion of the excitation. Figure 44 shows the 
response of the structure as measured by accelerometers mounted on the outer structure in 
the in-axis and off-axis directions. The rattle produced by these impacts is evident in the 
sensor measurements that are off-axis from the excitation. The short oscillations of 
increased magnitude in these measurements are indicative of the rattle. These same 
oscillations are not readily apparent in the in-axis data, particularly if one does not have the 
off-axis measurements for reference.  
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Figure 43. Schematic diagram of the test structure that had 
a loose internal part. 

 

 

 

 
 
Figure 44. Acceleration response of the test structure as measured in the in-axis and off-axis 
directions by accelerometers mounted on the outer structure. 

 

 

 In Figure 45 the Fourier transform of the first quarter (1024 points) of the in-axis 
response, which contains no rattle, is compared to the Fourier transform of the second 
quarter of this same signal, which does contain a rattle. Examination of the two frequency 
spectra reveals that the presence of the rattle in the second set of data is not discernable 
using a Fourier transform. In Figure 46, the wavelet and STFT transforms of each of the 
signals is given. Lines of high magnitude coefficients are visible in these plots.  
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Figure 45. A comparison of the Fourier transforms of the signal with (second 
quarter of signal) and without (first quarter of signal) the rattle present. 

 

 

 

Figure 46. Transforms of test structure response: (a) wavelet transform and (b) short term 
Fourier Transform.  
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 Extraction of the Holder exponent was then performed using the wavelet transform for 
the in-axis data, as shown in Figure 47. When compared to Fig. 44, which is plotted on the 
same time scale, the singularities associated with the rattle are clearly visible in this plot at 
each time they occur during the oscillatory cycles. For this example, the number of scales 
was 64, and a Morlet wavelet, 16, was used. The larger width wavelet helped to smooth the 
Holder exponent function in time, bringing out the more significant changes.  

 

 
Figure 47. The Holder exponent extracted from the wavelet modulus for the in-axis 
acceleration data. 

 

 
6.9 Linear Time Series Prediction Errors 
 A general approach to feature extraction for systems that exhibit the transition to 
nonlinear response characteristics as a result of damage is to first fit a linear model to the 
data obtained from the undamaged structure that is assumed to be responding in a linear 
manner. This model is then used to predict the measured system response and a residual 
error is calculated at each time step, which is the difference between the measured and 
predicted response. This same model is then used to predict the response from data 
obtained in the potentially damaged state. The assumption is that this linear model will no 
longer accurately predict the response of the damaged system that is exhibiting nonlinear 
response and there will be a significant increase in the residual errors associated with this 
latter prediction. This approach can also signal damage even if the damage does not cause 
nonlinear response. In this case the procedure does not detect nonlinearity, but rather a 
deviation from the baseline linear model.  

 In theory, this approach can be taken with either physics-based models such as finite 
element models or with data-driven models such as time-series models. The time series 
models are relatively simple to fit to measured response data and the application of one 
such model to damage detection in a system that exhibits nonlinear response in its 
damaged state is illustrated below.   

 A nth order autoregressive (AR) time-series model is defined as 
 

iji

n

j
ji xax ε+= −

=
∑ )(ˆ

1
 , (46) 

where i  is the estimate of the ix̂ th time series value, n is the model order, xi-j = jth previous 
measured time series values, aj are the AR coefficients and εi is assumed to be an 
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unobservable random error with zero mean and constant variance. If i denotes the 
estimated acceleration measurement from the fitted AR model, then the residual at time i is 

x̂

 
iii xx ˆ−=ε .  (47) 

 
 If the fitted model accurately represents the measured signal, the residuals should be 
nearly uncorrelated. Note that for a fitted nth order model residuals cannot be computed for 
i < n. From a pattern recognition perspective, the residuals can be thought of as features 
derived from the measured time histories. This feature is of dimension one and many 
estimates of this feature are obtained from a typical time series. 

 A key to employing this method is to determine the appropriate model order. A higher 
order model may end up fitting the noise in the data and, hence will not generalize to other 
data sets. On the other hand, if one selects a low order model it will not necessarily capture 
the underlying physical system response. There are a variety of techniques for choosing the 
model order, such as Akaike's information criterion or a partial autocorrelation function, 
which is a plot of the magnitude of the last coefficient as a function of model order, often 
employed to help decide the appropriate model order. A summary of these techniques can 
be found in most textbooks on time series analysis [38]. In the example below a fifth-order 
AR model (AR(5)) is applied to the 8192 point acceleration time series data from Sensor 1 
on the concrete column tests described in Appendix A. This model has the form: 
 
                              xi = a1xi-1 + a2xi-2 + a3xi-3 + a4xi-4 + a5xi-5 + εi  .  (48) 
 
 Typical time series lead to an over determined set of equations that must be solved to 
obtain estimates of the AR coefficients. For a 8192 point time series the coefficients ai are 
solved for by applying the pseudoinverse technique to the following equation to obtain a 
least square solution for the AR coefficients: 
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 To compare the residual errors obtained from data measured on the undamaged 
structure with similar quantities obtained from the structure in its various states of damage, 
an X-bar control chart is developed using the time history acceleration measurements taken 
before the column was damaged (Test 6), denoted as damage level 0. An AR(5) model is 
fit to these data. Figure 48 shows plots of the original signal and an overlay of the signal 
generated with AR model. From these plots one can qualitatively observe that the AR 
model developed from the undamaged data appears to do a pretty good job of predicting 
these data. Figure 49 shows a histogram of the residual errors from this fit and a Gaussian 
distribution that was fit to these data. One indication that the AR model is accurately 
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predicting the time series is indicated by a Gaussian-distributed residual error. Figure 49(a) 
shows that these residual errors are normally distributed. Depending on the type of 
nonlinearity introduced by the damage, the distribution of residual errors obtained when 
the AR model developed for the undamaged case is used to predict data from the damage 
case may or may not be Gaussian.  

 

 
Data Point 

 
Data Point 

Figure 48. A comparison of the measured acceleration time history and the time series generated by 
the AR model for the column in its undamaged state. 

 

 

 

 

(a) 

 

(b) 

Figure 49. (a) is a histogram of the AR model residual errors for the undamaged case and a Gaussian 
distribution fit to these same residual errors. (b) is the same plot for the mean of groups of four  
residual errors. 
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 Next, an X-bar control chart is constructed based on the residuals from this fitted 
model using subgroups of size 4. As mentioned previously, there are 8192 acceleration 
measurements. Residuals can be computed for acceleration measurements 6-8192. For 
convenience, the last 3 residuals are discarded which leaves 8184 residuals. Subgroups of 
size 4 are constructed by placing the residuals for observations 6-9 in the first group, 10-13 
in the second group and so on. This process produces 2046 subgroups of residuals each of 
size 4. Prior to computing subgroup means and variances, the 8184 residuals, from damage 
level 0, are normalized by subtracting the mean, µε , and dividing by the standard 
deviation, σε, of the entire ensemble. The residuals from the incipient damage level 
(Test 7) where the column was deformed to a point where the rebar first yields and two 
subsequent damage levels ( 2.5 and 7 times the deformation that caused incipient yielding, 
tests 9 and 11) are also adjusted by subtracting µε and dividing by σε from the damage level 
0 data. The histogram of the mean values of these subgroups for the undamaged case is 
shown in Fig. 49 (b).  

 The centerline of the chart is the sample mean of the charted values. This centerline is 
the sample mean of the residuals from observations 6-8189, and, after the normalization 
just described, is 0. The sample variance of each subgroup is determined and these 
variances are then averaged to give a pooled estimate of variance. A simple average is 
appropriate because each subgroup is of size 4. The square root of the pooled variance, sp, 
is used as an estimate of the population standard deviation. Control limits are drawn at 

nsz pa /0 2/± where n=4 and za represents the α quantile of the standard normal 
distribution. For this examples, α was chosen to be 0.01. A more detailed description of the 
x-bar control chart development can be found in [39]. The X-bar control charts for the 
undamaged case and for the three damage cases are plotted in Fig. 50. 

 Note that the upper and lower control limits are determined only with data from the 
undamaged column and then the control chart was subsequently used to identify outliers in 
the feature vectors from the other tests. In Figure 50 the three plots corresponding to Test 7, 
9 and 11 all show a statistically significant number of features that are outside the control 
limits. In this case the features are the mean of the 4-point data blocks extracted from the 
residual error time series. The 3σ confidence intervals used imply that approximately 1% of 
the data (or approx. 20 points for these 2046 point series) can be expected to fall outside the 
control limits under normal conditions. For the undamaged case 13 points fall outside the 
confidence limits. For plots associated with each of the damage cases, the number of points 
falling outside the control limits is significantly greater than 20. 

 The strongest indication of damage, as identified by the number of points outside the 
control limits, is associated with the incipient damage case (Test 7). Fewer outliers, 
compared to the other damage levels, were detected for damage levels corresponding to 
Tests 9 and 11. Although not rigorously verified, it is speculated that this trend in damage 
indication is related to yielding of the rebar. The first damage level corresponds to 
incipient yielding of the rebar. Because of strain compatibility, this incipient yielding is 
accompanied by cracking of the concrete. The shaker, which was driven with the same 
input voltage level during each test, is most likely to cause a non-linear response associated  
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(a) 

 
(b) 

 

 (c) 

 

 (d) 

Figure 50. The X-bar control plot of the mean of the residual error groups for (a) data from the 
undamaged structure, (b) data from the incipient damage level, (c) data from structure that was 
deformed to 2.5 times the incipient damage level, and (d) data from the structure when it was deformed 
to 7 times the incipient damage level. 

 

 

with the cracks opening and closing at this first damage level. At the higher damage levels,  
the rebar has yielded significantly. When load was removed from the column, this yielding 
tended to hold the cracks in an open configuration during the subsequent dynamic tests. 
The excitation provided by the shaker, which was maintained at a consistent amplitude, 
could not excite the nonlinearities associated with cracks opening and closing to the same 
degree when the rebar had yielded significantly. 
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6.10  Nonlinear Auto-Regressive Moving Average with Exogenous Inputs Models  
 In the previous section a linear time series model was fit to measured system data, and 
then that model was used to predict system response when damage was present. The 
underlying assumption was that if the damage caused a nonlinearity, the model would not 
predict data from the damaged system well, which would manifest itself as an increase in 
the residual errors between the measured and predicted responses. In this section a method 
is described to predict the time series with a nonlinear model. This approach has the 
advantage over the previous linear approach in that it can be better applied to a system that 
responds in a nonlinear manner in its initial undamaged state. The parameters of the model 
as well as the residual error can be used as damage sensitive features. In application of this 
approach to damage detection, one must assure that the model accurately represents the 
response of the system over the entire range of input. If this process is not done, damage 
could be inferred when in reality the model does not accurately predict the response to 
some new loading scenario. 

Suppose one is interested in the previously defined SDOF linear system,  

)(tfkxxcxm =++ ��� . (50)

 
 This equation of motion can be converted by a process of discrete approximation to 
the discrete-time form,  
 

112211 −−− ++= iiii fbxaxax  , (51) 

 
where 1 , 2  and  are constants and functions of the original constants , ,  and the 
sampling interval  where the  are the sampling instants. In a more general form, 

a a 1b m c k
1it t t+∆ = − i it

),,( 121 −−−= iiii fxxFx . (52)

 
Equation 52 represents an Auto-Regressive with eXogenous inputs(ARX) model. The 
advantage of adopting this model form is that only the two states x and f need be measured 
in order to estimate all the model parameters 1a , 2a  and 1  in Eq. 51 and thus identify the 
system. It is a simple matter to show that a general MDOF linear system has a discrete-
time representation,  
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or,  
 

),;,( 11 fy niiniii ffxxFx −−−−= ……  . (54) 

 61



LA-14353-MS Nonlinear System Identification for Damage Detection 

As before, all parameters  can be estimated using measurements of the x 
and f data only.  

fx
nn

bbaa …… 11 ;

 The extension to nonlinear systems is straightforward. Consider the Duffing oscillator 
represented by,  

)(3
3 tfxkkxxcxm =+++ ��� . (55)

One can pass to the discrete-time representation,  

3
1112211 −−−− +++= iiiii cxfbxaxax . (56)

 The model defined by Eq. 56 is now termed a Nonlinear ARX (NARX) model. The 
regression function  is now nonlinear; it contains a cubic term. If all 
terms of order three or less were included in the model structure i.e. ( )  etc. a 
much more general model would be obtained,  
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where the superscript above F denotes the highest order product terms which would be 
sufficiently general to represent the behavior of any dynamical systems with nonlinearities 
up to third order i.e. containing terms of the form , etc.  xxx 23 , ��

 The most general polynomial NARX model (including products of order ) is 
denoted by,  
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 It has been proved by Leontaritis and Billings [40, 41] under very mild assumptions 
that any input/output process has a representation by a model of this form. If the system 
nonlinearities are polynomial in nature, this model will represent the system well for all 
levels of excitation. If the system nonlinearities are not polynomial, they can be 
approximated arbitrarily accurately by polynomials over a given range of their arguments 
(Weierstrass approximation theorem [42]). This means that the system can be accurately 
modeled by taking the order p  high enough. However, the model would be input-
sensitive as the polynomial approximation required would depend on the data. This 
problem can be removed by including non-polynomial terms in the NARX model as 
described in Billings and Chen [

n

43]. The NARX model can even be cast as a Neural 
Network [44].  
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 The preceding analysis unrealistically assumes that the measured data is free of noise. 
As shown below, if the system is nonlinear the noise process can be very complex; 
multiplicative noise terms with the input and output are not uncommon, but can be easily 
accommodated in the discrete-time models [40, 41, 45, 46].   

 Suppose the measured output has the form,  
 

)()()( ttxtx c ζ+=  ,  (59) 

 
where xc(t) is the “clean” output from the system. If the underlying system is the Duffing 
oscillator of Eq. 55, the equation satisfied by the measured data is now,  
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and the corresponding discrete-time equation will contain terms of the form 

 etc. Note that even simple additive noise on the output introduces cross-
product terms if the system is nonlinear. Although these terms all correspond to 
unmeasurable states, they must be included in the model. If they are ignored the parameter 
estimates will generally be biased. The system model described by Eq. 58 is therefore 
extended again by the addition of a noise model and takes the form,  
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This type of model is referred to as Nonlinear Auto-Regressive Moving-Average with 
eXogenous inputs (NARMAX). The NARMAX model was introduced in Leontaritis and 
Billings [40,41].  

 Finally, the term ‘moving-average’ requires some explanation. Generally, for a linear 
system a moving-average model for the noise process takes the form,  
 

1 1 2 2i i i ie c e c e …ζ − −= + + +  , (62) 

 
implying that the system noise is assumed to be the result of passing a zero-mean white 
noise sequence {  through a digital filter with coefficients }ie 1 2c c …, , . The terminology 
comes from the literature of time series analysis. Equation 48 requires a generalization of 
this concept to the nonlinear case. This generalization is incorporated in the NARMAX 
model that takes the final general form, 

iniiniinii
n

i eeeffxxFx
exy

p += −−−−−− );,;,( 111
)( ……… . (63)

 In this form the noise sequence or residual sequence i  is now zero-mean white noise. 
This allows the model to accommodate a wide class of possibly nonlinear noise terms.  

e
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 The input and output variables fi and xi are usually physical quantities like force and 
displacement response, respectively. An interesting alternative approach to this was 
followed by Thouverez and Jezequel [47], who fitted a NARMAX model using modal 
coordinates.  

 Having obtained a NARMAX model for a system, the next stage in the identification 
procedure is to determine if the structure is correct and the parameter estimates are 
unbiased. It is important to know if the model has successfully captured the system 
dynamics so that it will provide good predictions of the system output for different input 
excitations, or if it has simply fitted the model to the data; in this case it will be of little use 
because it will only be applicable to one data set. Three basic tests of the validity of a 
model have been established by Billings et al. [48], and they are described below in 
increasing order of stringency. In the following,  denotes a measured output while  
denotes an output value predicted by the model.  

iy ˆ iy

 For the NARMAX representation of a system given by Eq. 63, the one-step-ahead 
prediction of xi is made using measured values for all past inputs and outputs. Estimates of 
the residuals are obtained from the expression iii xxe ˆˆ −= , that is,  

 
)ˆˆ;,;,(ˆ 111

)(
efy

p
niiniinii

n
i eeffxxFx −−−−−−= ………    . (64) 

 
The one-step-ahead series can then be compared to the measured outputs. Good agreement 
is clearly a necessary condition for model validity.  

 If the inputs, fi, are the only measured quantities used to generate the model output, 
then Eq. 63 takes on the form 
 

)00;,;ˆ,ˆ(ˆ 11
)( ………

fy

p
niinii

n
i ffxxFx −−−−=    . (65) 

 

The zeroes are present because the prediction errors will not generally be available when 
one is using the model to predict output. In order to avoid a misleading transient at the start 
of the record for , the first nx̂ x values of the measured output are used to start the 
recursion. As above, the estimated outputs must be compared with the measured outputs, 
with good agreement a necessary condition for accepting the model. It is clear that this test 
is stronger than the previous one; in fact the one-step-ahead predictions can be excellent in 
some cases when the model predicted output shows complete disagreement with the 
measured data.  

 These represent the most stringent of the validity checks [49]. The correlation 
function ( )uv kφ  for two sequences of data  and  is defined by,  iu iv

1

1( )
N k

uv i i k i i k
i

E u v u v
N k

φ
−

+ +
=

= ≈
− ∑    . (66) 
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For a linear system the necessary conditions for model validity are,  
 

0( )ee kkφ δ=    , (67) 
 
and,  
 

kkfe ∀=φ 0)(    . (68) 
 
 The first of these conditions is true only if the residual sequence  is a white noise 
sequence. It is essentially a test of the adequacy of the noise model whose job it is to 
reduce the residuals to white noise. If the noise model is correct, the system parameters 
should be free from bias. The second of the conditions above states that the residual signal 
is uncorrelated with the input sequence f

ie

i i.e. the model has completely captured the 
component of the measured output that is correlated with the input. Another way of stating 
this requirement is that the residuals should be unpredictable from the input.  

 In the case of a nonlinear system it is sometimes possible to satisfy the requirements 
above even if the model is invalid. An exhaustive test of the fitness of a nonlinear model 
requires the evaluation of three additional correlation functions [49]. The extra conditions are,  
 

00)()( ≥∀=φ kkefe    , (69) 
 

kk
ef

∀=φ 0)('2  , and (70) 
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The dash which accompanies f2 above indicates that the mean has been removed. 
Normalized estimates of all the correlation functions above are usually obtained so that 
confidence limits for a null result can be added.  
 
6.11 Hilbert Transform  
 The Hilbert transform (HI) can be used to diagnose nonlinearity on the basis of 
measured FRF data. If the structure is assumed to respond in a linear manner in its 
undamaged state, then this diagnosis of nonlinearity can be used as a damage indicator. To 
begin, the map on a FRF ( )G ω  is,  
 

1 ([ ( )] ( ) GH G G d
i

ω ω )
π ω

∞

−∞

Ω
= = − Ω

Ω −∫�    . (72) 

 
  This mapping reduces to the identity on the FRFs of linear systems. Suppose ( )G ω  is 
decomposed so,  

( ) ( ) ( )G G Gω ω ω+ −= +    , (73) 
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where ( )G ω+  (respectively ( )G ω− ) has poles only in the upper (respectively lower) half 
of the complex ω -plane. Then,  
 

[ ( )] (H G G )ω ω± ±= ±    . (74) 
 
 The HT distortion is,  
 

( ) [ ( )] ( ) 2 ( )G H G G Gω ω ω −∆ = − = − ω    . (75) 
 
 A major problem in using the Hilbert transform occurs when non-baseband or band-
limited data are employed. The Hilbert transform can be recast in a slightly different form 
to that described above,  
 

2 20

2 (( ) GG dω )
π ω

∞ ℑ Ω Ω
ℜ = − Ω

Ω −∫�    ,  and  2 20

2 (( ) GG d )ωω
π ω

∞ ℜ Ω
ℑ = Ω

Ω −∫�  . (76) 

 
If zoomed data from ( )min maxω ω,  is measured, data is missing from the intervals (0 )minω,  
and ( )maxω ,∞ .  

 The problem is usually overcome by adding correction terms to the Hilbert transform 
[50]. An alternative approach to the Hilbert Transform exploits the pole-zero form of the 
FRF. A general FRF may be expanded into a rational polynomial representation,  
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=    . (77) 

 
 Once the rational polynomial model, , is established, it can be converted into a 
pole-zero form,  
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 Long division and partial-fraction analysis produce the decomposition [51],  
 

1 1
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i i
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Once this decomposition is established, the Hilbert transform follows.  
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 Consider the Duffing oscillator,  
 

)sin(1051000020 39 tFxxxx ω=×+++ ���    . (80) 
 
Data were generated from 0 to 38.4 Hz. The data were then truncated by removing data 
above and below the range 9.25-32.95 Hz.  

  Figure 51 shows the Hilbert transforms of the FRF calculated by the rational 
polynomial method on the truncated data and by a standard numerical method that used the 
full range of the data. An important thing to note in Fig. 51 is the departure from the 
normal circular appearance of the appropriately scaled Nyquist plot – this is the Hilbert 
transform distortion. The pole-zero decomposition method can also be used to compute 
analytical expressions for the Hilbert transform [52].  

 

 

Figure 51. Comparison of Hilbert Transforms from 
rational polynomial approach and standard integral. 

 
 

 The Hilbert transform has also been used as a direct method of nonparametric 
identification. The FREEVIB and FORCEVIB approaches espoused in Feldman [53,54], 
can be used to construct the nonlinear damping or stiffness curves for a large class of 
nonlinear systems. The method works by extracting the instantaneous phase and frequency 
curves from experimental data. Alternative approaches have been constructed to yield the 
same information, in particular the Wigner-Ville approach [51], the method based on the 
Gabor transform in [55] and the wavelet approach of Staszewski [56]. All of these approaches 
except FORCEVIB extract the information from the free decay response of the systems.   
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6.12  Frequency Domain ARX Models 
 Frequency domain autoregressive exogenous (ARX) input models, based on discrete 
frequency models developed in [57] and applied in [58,59], take the form 
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where k, r, s, (pr/qr)k, and (ps/qs)k are contained in the set of real integers,

iℜ , k is a simple 
frequency counter (i.e. ω = k∆ω), X(k) is the response, F(k) is the input, and B(k) and 
Ar,s(k) are complex frequency coefficients. The first term on the right-hand side of Eq. 81, 
the exogenous (X) component, accounts for the nominal linear dynamics and the second 
term, the auto-regressive (AR) component, accounts for the nonlinear frequency 
correlations. The rational number arguments, (pr/qr)k, are used to represent different 
harmonics of the excitation frequency. Equation 81 indicates that the harmonic response of 
a nonlinear system at each frequency is correlated with both the input and response at 
potentially all the harmonics of the input frequency. This multidimensional correlation is 
due to nonlinear feedback in the system. 

 The linear forms of the functions fr,s(.) indicate in what frequency ranges the nonlinear 
correlations exist, but may not describe all of the nonlinear dependencies of the response 
on the input. On the other hand, when the fr,s(.) are nonlinear functions of the harmonics of 
the spectrum, X(k), then the model can more fully describe different types of nonlinear 
behavior. In summary, the fr,s(.) determine the degree to which the frequency domain ARX 
model is able to describe the behavior of the nonlinear system. 

 These models use frequency spectra of measured signals and spectra are easier to 
obtain from signals with broad frequency content; therefore, experimental application of 
this technique is suited to broad-band inputs (e.g., random). 

 Equation 81 can be written as, 
 
                                                              X(k) = D p      , (82) 
 
where p are the exogenous and auto-regressive coefficients and D contains the input and 
the terms fr,s(.). The optimum set of ARX coefficients, the ones that minimize the sum of 
the squared error, e(k).e(k), is given by the pseudo-inverse solution, p� , to the over-
determined Eq. (82): 
 

)()()(ˆ 1 kXDDDkXDp TT −+ ==    ,  (83) 
 
where D+ is the pseudo-inverse of D and DT is the transpose. 
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 The order of the nonlinear ARX model is determined by the number of auto-
regressive (AR) terms that are included in the function fr,s(.), on one side of the frequency 
of interest, ωk. Two forms of the ARX model are used here: 
 
1st Order, Linear: 
 

∑
≠−=

−+=
1

01

)()()()()(
j

j jkXkAkFKBKX    , (84) 

 
where only correlations with one frequency above and one frequency below the input 
frequency are considered. 
 
1st Order, Nonlinear: 
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where correlations with the cubic sub- and superharmonics are considered. 

 The changes in the auto-regressive coefficients (related to nonlinear behavior) can be 
used as indicators of damage, as damage often causes changes in the linear/nonlinear 
behavior of a structural system. A number of other indicators can be used that signify the 
onset and progression of damage in a system. The indicators used here are ( )jA k , the auto-
regressive coefficients, and 
 

1 d

un

j

j

A
A−    , (86) 

  
where ‘d’ indicates damaged and ‘un’ indicates undamaged. This function indicates the 
change in the nonlinear correlations compared to the undamaged case. 

 Damage was introduced in the suspension system of the automobile by loosening the 
bolt connecting the steering knuckle to the control arm, through a ball joint as shown in 
Fig. 52, from an initial torque of 400 in-lb to 250 in-lb, 100 in-lb and finally removing the 
bolt completely. Self-loosening is often a problem in bolted joints, especially in joints 
under cyclic transverse loading [60]. This type of damage has great importance in 
automotive applications because the fasteners generally represent the largest single cause 
of warranty claims faced by automobile manufacturers [61]. 

 The models were applied using random input data with a Gaussian distribution for 
various input amplitudes ranging from 0.5 mm to 6.0 mm RMS displacements of the wheel 
pan (i.e., tire patch of the car).  

 

 69

 



LA-14353-MS Nonlinear System Identification for Damage Detection 

 

Figure 52. Bolt damage location. 
 
 
 

 

Figure 53. 1-Mag(A1d(k)/ A1un(k)) for 1st order linear model (vertical 
direction); 250 lb-in torque (– – –), 100 lb-in torque (⋅⋅⋅⋅) and no bolt (–.–.–). 

 

 

 First, the 1st order, linear model in Eq. 84 was applied to the data from points that had 
the damage location in their path, and the damage features were estimated. Figure 53 
shows the estimated damage feature defined by Eq. 86 for the vertical motion data. 
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 Figure 53 shows the feature defined by Eq. 86 for A1(k). Any nonzero value shows a 
change in the auto-regressive coefficients and is an indicator of change in nonlinearity. 
There is an obvious change in the 40–55 Hz range where the 100 lb-in torque case exhibits 
more nonlinear correlation than the other cases. It can be seen that the 250 lb-in torque 
case does not introduce any significant changes in the nonlinear correlations, and the 
undamaged case and the case with no bolt have very similar behavior. The coefficients A-

1(k) show the same trends.  

 Figure 54 shows a typical self-loosening sequence of a bolted joint caused by 
transverse cyclic loading [60]. The symbol P represents the clamping force, P0 represents 
the initial clamping force or preload, and θ is the rotation angle of the nut against the bolt. 
This figure is relevant as the loading on the ball joint bolt in the suspension system of the 
vehicle under investigation is primarily transverse. Two distinct stages can be identified in 
the figure. During the first stage, there is very little relative motion between the nut and the 
bolt. The later stage is characterized by backing-off of the nut and rapid loosening of the 
clamping force with relative motion between the bolt and the joint. The second of the two 
loose bolt conditions (100 lb-in torque) that is simulated in the experiments belongs to the 
second stage. These stages of bolt loosening suggest that there is a critical value of the 
preload at the junction of the two stages seen in Fig. 54 where relative motion occurs at the 
joint and nonlinear correlations increase. The indicators discussed show that as the bolt is 
loosened, the nonlinearity in the path between x2 and x3 increases, due to the increased 
friction between the bolt and the ball joint caused by relative motion [62, 63], showed that 

 
Figure 54. Self-loosening sequence of a bolted joint due to transverse cyclic loading; 
percentage preload loss (–––), nut rotation (degrees) (⋅⋅⋅⋅). 
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loosening and relative motion can occur in the presence of vibration). This friction force is 
governed by the equation for friction between surfaces in contact, 
 

fF Nµ=      , (87) 

 
where, µ is the coefficient of friction (static or kinetic) and N is the normal load between 
the joint threads. When the bolt is completely loosened or actually removed from the joint, 
the normal load goes to zero as there is no contact load and this source of friction force is 
no longer active. This condition results in the nonlinearity in the path between the two 
measurement locations returning to the original undamaged level.  

 The increase in friction caused by the relative motion between the bolt and the joined 
components results in an increase in the nonlinear frequency correlations seen in Figure 53. On the 
other hand, the removal of the source of increased friction (namely, the bolt) results in the nonlinear 
correlations returning to the undamaged levels. This behavior is similar to the behavior observed in 
the restoring forces. The intermediate damage cases have different characteristics from the 
undamaged case and the most severe case (no bolt) behaves similar to the undamaged case.  

 The lateral direction data exhibits the same pattern, but to a lesser extent than the 
vertical direction, as shown in Fig. 55, which is on the same scale as the vertical case. The 
longitudinal direction indicator (Fig. 56) shows the least change. In fact, it is almost 
insignificant compared to the other two cases. The cause of this result is that the bolt axis  
is in the longitudinal direction. Loosening of the bolt causes motion about the longitudinal 
axis (motion along the longitudinal axis is restricted because the bolt still applies some 
clamping force); hence, the vertical and lateral directions show greater changes in 
nonlinear correlations. So, the axis of the bolt can also be identified.  

 As explained earlier, the output only formulation of the nonlinear ARX models allows the 
damage to be located due to increasing sensitivity to changes in local dynamics. To verify this, 
the 1st order linear model was applied to data from locations that did not have the damage in their 
path. Figure 57 shows the estimated indicator defined by Eq. 86 for the data from points on the 
control arm and the sway bar. It is clear that there are no significant changes in the nonlinear 
correlations in the path between these two points. Hence, the damage has been located. 

 A 1st order nonlinear model was also applied to the data. A cubic form of the 
nonlinear model (Eq. (85)) was chosen as opposed to a quadratic form because the 
Coulomb friction nonlinearity changes with the loosening of the joint as discussed earlier. 
This discontinuous nonlinearity can be approximated with odd polynomial functions (i.e., 
x3, x5, etc.). In addition, symmetric nonlinearities result in odd response harmonics. It was 
observed that although there were significant quadratic harmonic correlations, they did not 
show any significant changes with damage because the damage primarily affects Coulomb 
friction. The same trends as before were observed (Fig. 58), with the nonlinear correlations 
increasing for the 100 lb-in case and decreasing when the bolt is removed. In fact, the 
100 lb-in torque case shifts the nonlinear correlation with the third superharmonic 
(Fig. 58(b)) of the input excitation at about 7.5 Hz to 8 Hz. The auto-regressive coefficients 
also show an interesting result. The superharmonic frequency correlations are much 
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Figure 55. 1-Mag(A1d(k)/ A1un(k)) for 1st order linear model (lateral 
direction); 250 lb-in torque (– – –), 100 lb-in torque (⋅⋅⋅⋅) and no bolt (–.–.– ). 

 

 

Figure 56. 1-Mag(A1d(k)/ A1un(k)) for 1st order linear model (longitudinal 
direction); 250 lb-in torque (– – –), 100 lb-in torque (⋅⋅⋅⋅) and no bolt (–.–.–). 
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Figure 57. 1-Mag(A1d(k)/ A1un(k)) for 1st order linear model applied to points with no 
damage in their path (vertical direction); 250 lb-in torque (– – –), 100 lb-in torque 
(⋅⋅⋅⋅) and no bolt (–.–.–). 

 

stronger than the sub-harmonic correlations. This result suggests that the nonlinear 
feedback caused by the third superharmonic of the forced response of the system (which is 
symptomatic of nonlinear behavior) is much greater than the subharmonic. In the nonlinear 
model it is assumed that the nonlinearity is cubic in nature, hence, if the forcing function is 
harmonic (e.g., cos(ωt)) the cube of the function gives frequency components at one and 
three times the forcing frequency. 
 

 ( )( ) ( ) ( ttt ω+ω=ω 3cos
4
1cos

4
3cos 3 ) (88) 

 
Equation (88) shows that there are no submultiple components. The superharmonic 
correlations interact with the forced response components at other excitation frequencies to 
produce sub-harmonic correlations via frequency combinations. The resulting subharmonic 
correlations are weaker in this case. The response of the system is primarily forced because 
the data was collected for a broad-band input after the system had reached steady-state., i.e. 
the system transients had died out. A more detailed discussion of higher order spectra can 
be found in [64]. 
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Figure 58. Auto-regressive coefficients A-1(k) (sub-harmonic) and A1(k) (superharmonic) 
for 1st order nonlinear model; Coefficients for undamaged case, 400 lb-in (–––), and 
damaged cases, 250 lb-in (– – –), 100 lb-in (⋅⋅⋅⋅) and no bolt (–.–.–). 

 

6.13  Higher Order Spectra 
 The bispectrum, also called the third-order spectrum, is the first of the so-called 
higher-order spectra, which are used to analyze non-linear systems or linear systems 
subjected to non-Gaussian inputs. The bispectrum decomposes the skewness or third-order 
moment of a signal and is useful for studying asymmetric nonlinearities. These are 
nonlinear stiffness or damping characteristics that contain even-order polynomials in their 
mathematical descriptions. The bispectrum [65] can be defined as, 
  

( ) ( ) ( ) (* *
1 2 1 2 1 2,xxx )E f f X f X f X f f= +        , (89) 

 
where E is the mathematical expectation operator, X( ) are the Fourier transform of the 
signal and * indicated the complex conjugate.Unlike the power spectrum, which presents 
the contribution of each frequency component individually, the bispectrum is a function of 
two distinct frequencies f1 and f2 and analyzes the interactions between the frequencies at 
f1, f2 and f1+f2. The bispectrum of a signal composed of two sinusoids of different 
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frequencies, p1 and p2, will contain eight triple products. If one frequency is twice the 
other, this will lead to a non-zero bispectrum at (p1,p1)in the (f1,f2) plane. Thus the 
bispectra of signals from systems with symmetric nonlinearites (which lead to quadratic 
frequency coupling) will be non-zero and will change as the nonlinearity changes. The 
magnitude of the bispectrum is utilized in the example below to illustrate damage detection 
based on this indicator. 

 A MTS® 810 Material Test System was used to perform tension-tension fatigue tests 
on the front stabilizer bar link of an automobile. A picture of the experimental setup is 
shown in Fig. 59. A fixture was designed to hold the link in the grips of the fatigue 
machine and two single axis accelerometers with nominal sensitivity of 1000 mV/g were 
attached to the two ends of the link to measure axial acceleration as shown in Fig. 60. An 
initial tensile load was applied to the link and then the link was subjected to a cyclic load at 
5 Hz, which can be thought of as a durability cycle. Sine sweep and random input 
characterization tests were run intermittently to estimate and track the nonlinear load and 
damage indicators. The test parameters are given in Table 3. 

  

 

 
 

Figure 59. Fatigue test setup. 
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Figure 60. Fixture for placing link under test in fatigue machine grips. 
Accelerometers attached to the ends of stabilizer bar link. 

 

Table 3. Parameters for Sine Sweep and Random Inputs; Link 1 

Input Type Amplitude (mm) Frequency Content 
(Hz) 

Sampling 
Frequency (Hz) 

Test Length 
(sec) 

Sine Sweep 0.05 0-15 2000 100 

Random 0.05 rms 0-30 2000 100 

 
The front stabilizer bar link was subjected to an initial tensile load of 5500 N. Blocks 

of 2500 cycles of a 0.10-mm amplitude cyclic load at a frequency of 5 Hz were used to 
fatigue test the links. This displacement corresponded to a cyclic load range of about 
8000 N. The cyclic loading led to the appearance of a circumferential crack at the lower 
weld location (input side) as shown in Fig. 61. Sine sweep and random tests were 
conducted between the cyclic loading blocks and the load and damage indicators were 
estimated. 

The bispectrum of the response acceleration of the top end of the link was generated as 
the circumferential fatigue crack appeared and grew to failure. Figure 62 shows the 
magnitude of the bispectrum for the undamaged case. It is large at the lower frequencies, 
which can be anticipated from the power spectrum of the acceleration signal in Fig. 63. 
Figure 64 shows the progressive change in the magnitude of the bispectrum as the crack 
appears and progresses in the link. The lighter portions of the plots show areas where there 
has been an increase in nonlinear coupling. As the crack appears and grows, peaks  
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(A)(A)

 

(B)(B) (C)(C)

(D)(D)

 

 
(E)(E)

 
Figure 61. Appearance and progressive growth of circumferential crack to failure in stabilizer bar link under 
tension-tension fatigue loading; (a) – (e). 
 

suggesting localization of energy occurs signifying increased quadratic coupling in  
frequency. It is apparent that the nonlinear coupling increases continually as the crack  
progresses. Finally, just before failure, there is significant nonlinear coupling around 
10 Hz. This coupling is evident from the large peaks around 10 Hz along the two 
frequency axes in Fig. 64(e). The peaks signify strong quadratic coupling between 
response components around 10 Hz and 1.25 Hz, respectively. The spread of the peaks 
suggests that the coupling is actually in a band around the afore-mentioned frequencies. 
The conclusion is that as the crack appears and grows there is increased quadratic coupling 
signified by localized concentration of energy in the bispectra and the approach of failure 
is signified by the appearance of large coupling around 10 Hz. Hence, the bispectra 
qualitatively captures the increase in nonlinear frequency correlations with damage.  
In order to quantify the nonlinear changes an index was developed by summing the 
magnitude of the bispectra in the higher frequency range (above 5 Hz), which shows clear 
nonlinear change (Fig. 64). The index is shown in Fig. 65. There is a clear increasing trend 
in nonlinear content as the crack grows with a sharp jump as failure approaches. See  
Reference [66] for a more detailed description of the bispectrum and its application to 
damage detection in systems that exhibit nonlinear response. 
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Figure 62. Bispectrum of undamaged acceleration response of 
stabilizer link top; lighter portions have higher magnitude. 
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Figure 63. Power spectrum of undamaged acceleration 
response of stabilizer link top. 
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Figure 64. Change in magnitude of bispectrum of stabilizer bar link response with the progress 
of fatigue crack: (a) initial crack, (b) progression 1, (c) progression 2, (d) progression 3, (e) just 
before failure. 
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Figure 65. Index based on magnitude of response 
bispectrum showing progressive increase in nonlinear 
frequency coupling with growth of fatigue crack. 

 
 
 
6.14  Nonlinear Acoustics Methods 
 Other approaches that capture the nonlinearity caused by structural damage are 
nonlinear acoustic methods.Damaged materials exhibit a nonlinear response because of 
wave distortion caused by the irregularities of the damage. This nonlinear response can 
manifest itself as the generation of harmonics or sum and difference (modulated) 
frequencies. The premise of the method is the same as those described in the previous 
sections, but the frequency ranges used in these nonlinear acoustics methods span up to 
tens of MHz, typically used in the wave propagation regime. 

 Typical signal processing methods employed by these techniques are the “harmonic 
distortion” and “frequency modulation” methods. Krohn et al. [67] described the 
phenomena of generating higher harmonics caused by nonlinear damage. In brief, the 
tangential movement of a crack causes hysteretic energy dissipation, resulting in distortion 
of sinusoidal waves in a symmetrical manner. This dissipation will produce strong odd 
harmonics. On the other hand, upon the application of a perpendicular load, the measured 
frequency will have components of a sinusoidal part (excitation) and a square signal with a 
time-dependent load duty cycle (side clapping). This clapping nonlinearity, resulting in a 
(sin ω)/ω decay, generates even harmonics. These types of nonlinearity are highly 
localized in the vicinity of the defects, so that the imaging methods utilizing a scanning 
laser vibro-meter can easily identify the location of damage [67]. As described in the 
previous section, the harmonic distortion methods have been widely used in structural 
damage identification, in particular, in the rotating machinery.  
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 Another interesting approach based on nonlinear acoustics is the “frequency modulation” 
method described in Donskoy and Sutin [68], Zaitsev et al. [69], and Ballad et al. [70]. The idea is 
to instrument a structure, for example, with two sinusoidal excitation sources of the frequencies of 
fh and fl . When the response time history is converted to a spectrum, if the system is linear, the 
spectrum contains a single line at fh as shown in Fig.  66(a). If the system is nonlinear, the 
nonlinearity will result in the appearance of sidebands at the frequencies lh as shown in Fig. 
66(b). The appearance of the sidebands are the indicator of nonlinearity and, hence, damage. An 
index of damage extent can then be formed by recording the height of the sidebands [

ff ±

71] or the 
spread of the sidebands [72]. In order to efficiently excite the nonlinearity, the low-frequency 
excitation, fl, can come from ambient excitation, operation frequency such as pumps, or an impact 
excitation. Some researchers utilize the two different types of actuators, piezoelectric stack and 
patch actuators, for low and high frequency excitations, respectively [72]. The frequency 
modulation method has its application in fatigue damage accumulation monitoring [73, 74, 75], 
and an excellent review of this methods can be found in Donskoy [76].  

 

  

 
Figure 66. (a) Response to excitation at high frequency fk, (b) Response to simultaneous 
excitations at high fh, and low fl, frequencies. 

 Although the nonlinear acoustic methods are much more sensitive to small defects than 
linear-based methods, there are some limitations. For instance, the level of the “background” 
nonlinearities, such as those caused by material nonlinearity, joints, or structural contacts, must 
be well understood and quantified in order to distinguish them from the nonlinearities caused 
by structural damage. The calibration of modulated frequencies is also important to achieve the 
repeatable measurement as it is obviously dependent on the magnitude of the low-frequency 
excitation. Furthermore, most modern instrumentation generate the harmonics, therefore, the 
method requires higher-cost data acquisition equipment. These issues must be addressed 
before nonlinear acoustics methods can be reliably used in industrial practice.  
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7. APPLICATIONS OF NONLINEAR DYNAMICS SYSTEMS THEORY  
 The main concept of this report is that, if a given type of damage converts a linear 
system into a nonlinear system, then any observed manifestations of nonlinearity serve to 
indicate that damage is present. This section discusses one of the most dramatic 
manifestations of nonlinearity, namely chaos. It is well-known that, under certain 
conditions of forcing, many nonlinear systems can be driven into a chaotic regime. Here a 
chaotic regime is defined as one where there is sensitive dependence on initial conditions. 
Over the years, the dynamical systems community has derived many indicators of chaotic 
behavior like fractal attractor dimensions and Lyapunov exponents [77]. As only nonlinear 
systems can behave chaotically, any feature that detects chaos, necessarily detects 
nonlinearity and might potentially be put to service in detecting damage. The aim of this 
section is to illustrate the use of such features. It will be shown that these features are 
suboptimal for damage detection as they do not produce an indicator that monotonically 
increases with the damage extent. The latter part of the section illustrates a feature 
motivated by chaotic dynamics that does have this desired property. 

Consider a simply supported beam. In its undamaged state an assumption that the beam 
can be modeled as a linear system is quite adequate, but consider what happens when a 
crack is introduced halfway along its length, as shown in Fig. 67. 
 

 

Figure 67. A cracked beam under positive and negative deflections. 

 

  

 When the beam sags, the effects of the crack are negligible because the two faces of 
the crack come together and the beam behaves as though the crack was not there. When the 
beam hogs however, the presence of the damage must affect the beam because the crack 
opens and the effective cross-sectional area of the beam is reduced. Under these 
circumstances, an appropriate model of the beam would perhaps be that shown in Fig. 68, 
which has the general equation of motion 
 

)(tfkxxcxm =++ ���    ,  (90) 
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 When the displacement x of the mass m is positive, the stiffness of the system κ  is 
reduced by a factor α . The two stiffnesses produce an overall restoring force  that is 
bilinear. This type of model can be applied to a number of mechanical systems in which 
moving parts make contact with each other at intermittent points in time. 
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Figure 68. Single Degree-of-Freedom bilinear system. 

 

 Various studies both theoretical and experimental [77, 78, 79, 80, 81, 82, 83] have 
shown that bilinear oscillators are capable of a variety of responses to a sinusoidal force. 
As well as regular harmonic motions, the system can display sub-harmonic motions and in 
certain circumstances the system can also exhibit chaotic behavior. This response has even 
been evident in the experimental studies, for example [78].  

 The question of importance for damage detection purposes is whether the induced 
bilinearity from a crack can be used to signify the presence of the fault. More specifically, 
can one or more features be extracted from the recorded dynamics that detect the crack 
with a degree of statistical confidence? Further, can a feature be obtained that shows the 
severity of the damage. One might argue that the feature should at least grow 
monotonically with the damage extent. Examples of features proposed in the past have 
been the correlation dimension of the attractor (from embedding) and the highest 
Lyapunov exponent. The use of such features is discussed in the next section. 

 

7.1 Modeling a Cracked Beam as a Bilinear System 
 The single-degree-of-freedom system shown in Fig. 68 was used to model a simply-
supported aluminum beam, 0.8-m long, 50-mm wide and 10-mm thick. Different levels of 
damage were given to the system by varying the value of the stiffness ratio coefficient α . 
Putting the bilinear system into the context of a cracked beam made it possible to explore the 
types of behavior that could be expected from such a beam as the damage level was increased. 
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 A density of 2700=ρ kgm  and a Young’s modulus of E= 70 GPa were assumed as 
material properties. Using elementary theory of elasticity the undamaged stiffness of the beam 
was found to be 

3−

27346== kκ Nm . With a mass of m = 0.6 kg, the undamaged beam had a 
natural frequency of 

1−

214=nω rad/s, which corresponds to 34Hz. A damping constant of 
Nsm  was used, which corresponds to 1% of critical damping. A sinusoidal force 

with an amplitude of 10N was applied to the system so that
6.2=c 1−

)sin(10)( ttf ω= . As the system is 
homogeneous the amplitude of the force merely scales the output of the system. 

 A numerical algorithm based on a fourth-order Runge-Kutta integration scheme was 
used to integrate the equation of motion and calculate the dynamics response of the beam. 
The key to the success of the algorithm was its ability to detect each point in time when the 
displacement of the system crossed 0=x . This capability means that the algorithm knows 
exactly when to change the value of κ . 

 Examples of the phase portraits obtained from the algorithm, after transient motions have 
decayed, are given in Fig. 69. They show the displacement-velocity trajectories of the system in 
response to three different forcing frequencies, but for the same value of the stiffness reduction 
factor, 6.0=α . In each case the system has settled onto a periodic motion or attractor.  

 Forcing the system at the undamaged natural frequency, 214=ω rad/s, resulted in a 
harmonic motion, but for 384=ω rad/s and 561=ω rad/s subharmonic motions of period 
2 and period 3 (i.e. twice and three times the forcing frequency) are found. This 
subharmonic generation manifests itself in the time-series as a distortion from the 
sinusoidal form which would be expected from a linear system. 

 As the forcing frequency is increased from 214=ω rad/s to 384=ω rad/s, at some 
point there must be a qualitative change in the topology of the attractor for the period of 
the motion to change. The point at which such a change occurs is a bifurcation. 
Bifurcations only occur in nonlinear systems.  

 If the response of the system is sampled at the forcing frequency and the resulting 
points are plotted in the phase plane, one obtains the Poincare map of the response. A 
moment’s thought shows that the map associated with a period 1 motion will be a single 
point, a period 2 motion will produce two points, etc. If a system is chaotic, the Poincare 
map is usually much more complicated than this, and considered as a point set in the phase 
plane will actually have a fractal (non-integer) dimension.This point set can loosely be 
called the chaotic attractor of the system. A bifurcation diagram is obtained by varying a 
system parameter and plotting against this, a one-dimensional projection of the Poincare 
map associated with each value of the parameter. The bifurcation diagram in Fig. 70, is 
obtained by varying the forcing frequency and plotting the displacement values from the 
associated Poincare maps.  
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Figure 69. Phase portraits of periodic motions for α = 0.6. 
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Figure 70. Bifurcation diagram for a = 0.2. 

 

 The diagram in Fig. 70 is easy to read. If there is only one point on a given vertical 
line (value of frequency) the system exhibits a period 1 motion at that frequency. If there 
are n points at a given frequency this is characteristic of a period n motion.  

 Figure 70 is the bifurcation diagram for 2.0=α . There are many regions of sub-
harmonic motion. From 79≈ω rad/s to 83≈ω rad/s there is a region where the period 
appears to be very high. In fact, it is infinite and this is characteristic of chaotic motions 
that do not repeat even if the excitation is periodic. All the period n motions are indicators 
of nonlinearity. However, only in the limited chaotic regions will features like chaotic 
attractor dimension show nontrivial behavior (i.e. fractional dimension). 

 The simulations show the limitations of parameters like attractor dimension for the 
detection and quantification of damage. Certainly if the undamaged system is linear, the 
presence of a fractional attractor dimension would indicate nonlinearity and thus damage. 
However, such parameters will not be reliable. The simulations show that chaotic response is 
not present at all frequencies. Similar runs have shown that fixing the frequency and varying 
the stiffness ratio produces the same pattern of movement between subharmonic responses 
with isolated regions of chaos. This result means that dimension parameters will not vary 
montonically with the damage extent. The same will be true of any detectors of chaos such 
as a Lyapunov exponent. The next section investigates a recently proposed feature motivated 
by chaos theory that does appear to have the required monotonic property. 
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7.2  Chaotic Interrogation of a Damaged Beam 
 The use of a chaotic signal to excite a dynamical system presents some interesting 
features. The structure can be thought of as a filter acting on the signal. Any changes to the 
system resulting from damage alter the way in which the signal is filtered. The benefits of 
using a chaotic excitation of the system relate to the way attractor stability (in the 
Lyapunov sense) and geometry (dimension) interact, and this is discussed in detail in [84]. 

 

7.2.1  Local Attractor Variance 
 The effects of the damage are evident when the attractors of the input and the output 
are compared. The average local attractor variance ratio (ALAVR) is a simple means of 
achieving this comparison. It is designed to analyze the geometry changes at a local level. 

 In many real situations it is only (practically) possible to obtain a single phase-space 
variable from a system. This limitation is not a problem because this variable will still be affected 
by all of the relevant dynamical variables, and will therefore contain a relatively complete 
historical record of the system's dynamics. The ALAVR can be calculated as long as a time 
series of the input signal f(n) and a time series of one output variable x(n) can be obtained. To 
achieve a correspondence between the input and output attractors, the two time series must be 
obtained over the same period of time and using the same sampling frequency such that, 
 

))(,),3(),2(),1(()( Nffffnf …=  , and  (92) 
 

 ))(),3(),2(),1(()( Nxxxxnx …=   .  (93) 
 
 From these time series input and output attractors can be reconstructed by projecting 
the time series into a pseudo-phase space. In each dimension of this space the time series 
are delayed by some number of time steps τ  and a geometric structure is created that 
recaptures the dynamics of the system. The reconstructed attractor is usually topologically 
equivalent to the actual attractor of the system. The dimensionality of the pseudo-phase 
space required to fully capture the dynamics is not known in advance, but as the ALAVR 
is designed to merely detect simple geometric changes, a two-dimensional space is 
adequate. The coordinates of the two reconstructed attractors are then 
 

))(),(()( τ+= nfnfnf   , (94) 

 
))(),(()( τ+= nxnxnx  , (95) 

 
for τ−= Nn ,,3,2,1 … .  

 The local geometry of the attractors is analyzed by first selecting, at random, a point 
on the reconstructed forcing attractor )(if . The Euclidean distance from this point to the 
other points on the attractor is calculated and the coordinates of the points nearest to )(if  
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are extracted from the attractor to form a subset of points ),( jif , (where j ) 
that express the local geometry of the forcing attractor around the chosen point. There are 
some subtleties to this process that are explained in [84]. 

Nj …,3,2,1=

 The points with the same indices i and j are then extracted from the response attractor 
to give another subset of points ),( jix  that contains the local geometry of the 
corresponding region on the response attractor. 

 The variance of the coordinates in each set of points 2
),( jifσ  and 2

),( jixσ  is used to 
describe the geometry of each set of points, which means the ratio of the two variances R(i) 
can be used to describe the degree to which the local geometry of the input attractor has 
been altered by the system, 
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 This process is then repeated for a total of  random points and the average local 
attractor variance ratio (ALAVR) 
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 The ALAVR metric discussed above is one of several features that have been presented 
recently as damage indicators. Nichols, Todd, and colleagues have constructed attractor-based 
auto- and cross-prediction error metrics for a number of bolted joint applications 
[85,86,87,88,89].The concept here is that a reconstructed attractor may be used to auto-predict 
itself (or cross-predict another simultaneously sampled attractor) in a baseline condition, and 
subsequently this prediction will fail as the system changes due to damage.  

 The fundamental prediction error model is as follows. First, a set of F random fiducial 
points is chosen from the baseline attractor, X1(n), and a corresponding set of points is 
obtained from the comparison attractor, X2(n), correlated in some way, typically either 
temporally or geometrically (from the state space reconstruction), to the fiducial points from 
the baseline attractor. Next, a set of P nearest neighbors to each point is found for both 
attractors. These neighbor points will be separated by at least h points in time from the 
fiducial point using a Theiler window [90]; in other words, nearest neighbors to a fiducial 
point should not be highly correlated temporally to the fiducial point on that individual 
attractor. This verified that the neighbors are geometrically correlated to the flow dynamics 
and insensitive to sampling rate. The size of the set of fiducial points, F, depends on the total 
number of points on the attractor and should be chosen to produce invariant statistics 
(completely ‘span’ the attractor). The number of nearest neighbors for a given fiducial point, 
P, will also depend on the dynamics and inherent noise of the system. Classic choices for F 
and P are N/10 and N/1000 respectively, where N is the number of points on the attractor 
[91]. The Theiler window, h, is typically a function of the delay choice with the only 
stipulation that it be larger than the delay T chosen to reconstruct the attractors. 
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 After the fiducial points and neighborhoods have been selected, they are time evolved 
by s time increments, known as the prediction horizon. Some simple statistic (typically, the 
mean location) of the neighborhood is computed (or, the fiducial point iself) so that we 
have set of means from a reference attractor φ1 and a similar set from a test attractor φ2. 
Finally, a comparison is drawn between the sets by forming the Euclidean error distance 
for each fiducial point n: 
 

ε = φ2(n + s) − φ1(n + s) . (98) 
 
 This error metric may then be averaged over the whole data set to generate an average 
prediction error that relates how one attractor “predicts” another [85, 86, 87, 88, 89], or 
local statistics may be computed [92]. Regardless of how the specific error metric is 
formed, the feature can be normalized by either a representation of the geometrical size of 
the attractor or by an undamaged reference error value in attempt to establish a quantitative 
sense of the prediction error values. Moniz et al.. [93] used this general concept of 
correlation and predictability to build a continuity statistic to detect changes in an electrical 
circuit that was used to simulate a lumped mass structural system. 

 Other researchers have focused on attractor-based measures derived straight from the 
local probability structure of the data. Bogdan and Yin [94] computed estimates of the 
local probability density and then used the resulting distribution on the attractor as the 
damage-indicating feature for a nonlinear aeroelastic plate subject to stiffness degradation. 
Trendafilova looked at the local probability structure of data in detecting static load shifts 
in a reinforced concrete plate [95]. Hively and Protopopescu used a phase space measure 
of probability to distinguish between healthy and damaged motor-driven systems [96].  

 Finally, some attention has been given to using Lyapunov Exponents (LEs) as a 
damage-sensitive feature. A system's LEs capture the rate at which trajectories in phase 
space diverge or converge in each of the phase space directions. Global LEs have been 
used in [97] and [98] to detect backlash in robot joints and in gears, respectively. A more 
complete discussion on the use of LEs in health monitoring, including a discussion of local 
LE measures, may be found in [92]. 

7.2.2 Detection of Damage in a Cantilever Beam Using the Local Attractor Variance 
 The technique just described was used to detect damage in a simulated cantilever 
beam. An eight-degree-of-freedom model was used and a crack at the root of the beam was 
simulated by placing a bilinear stiffness between the wall and the mass element adjacent to 
it, as shown in Fig. 71. The equation of motion of this system is 
 

)(}{}]{[}]{[}]{[ tfBxxcxm =++ κ���  ,  (99) 
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where [m], [c] and ][κ  are the respective mass, damping and stiffness matrices formed 
from the elements in the model, with 
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The vector {B} simply selects where the force f(t) is applied to the system, which in this 
case is the end mass. 
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Figure 71. Eight Degree-of-Freedom model of a cantilever beam with a bilinear 
stiffness tosimulate damage. 

 

 A chaotic signal was created from the displacement response of a Duffing oscillator 
[84], which is known to be chaotic. Details of this process can be found in [99]. The 
attractor associated with the force is shown in Fig. 72. A time step of 0.0785s was used in 
the integration. The system parameters of the structure were chosen as , 

and . Again, Fourth-order Runge-Kutta was employed for the simulation. 
The displacement  of the first mass element was chosen as the variable to use in the 
calculation of the ALAVR because it was the most sensitive to the bilinear stiffness. 

01.0=m
15.0=c 2=k

1x

 The ALAVR was calculated at each damage level over 5000=iN  randomly selected 
points and local subsets were created using the 40=jN  nearest points. The values of ALAVR 
obtained were normalized with respect to the ALAVR of the undamaged system so that 
 

R
RRR || *−

=∆     . (101) 

 
where *R refers to the ALAVR of the undamaged system. The results are shown in Fig. 73. 
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Figure 72. Reconstructed forcing attractor. 
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Figure 73. Normalized values of ALAVR at different damage levels. 
 

 

 There is a change in the geometry of the attractors and this is reflected in the values of 
ALAVR obtained. As the level of damage increased, the value of the ALAVR increased, 
indicating that the local variance of the attractors was also increasing. It was shown in [84] 
that the ALAVR can be used in a statistical procedure to flag damage with a given 
statistical confidence. The same procedure is expected to work here. Moreover, the same 
input/output attractor variance “mapping” implied by this procedure may be applied to 
output-only data. In other words, two measured responses can be compared in a similar 
way, forming their own cross variance ratio, which detects relative geometric changes 
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between responses. Such a formulation is useful when either one cannot measure the input 
or it may reasonably be hypothesized that the damage mechanism is closely related to 
synchronization or coupling between two output measurements, for example, a 
connectivity loss. A related attractor-based correlation metric was also discussed in [100]. 
 

8. NONLINEAR SYSTEM IDENTIFICATION APPROACHES 
 The system identification approach to damage detection proceeds in a different 
manner. The idea is to obtain estimates of the actual equations of motion of the system of 
interest using measured time series data. The presence (and location to an extent) of 
nonlinearities becomes immediately obvious in this approach. 
  

 8.1 Restoring Force Surface Model 
 In order to illustrate the methodology, the restoring force surface approach to 
identification will be discussed. This is a method developed by Masri and Caughey [101] 
and independently by Crawley and Aubert [102]. 

 The equation of motion of a standard SDOF mass-spring-damper can be written as,  
 

)(),( tfxxgxm =+ ���   , (102) 
 
where m is the mass of the system and  is the internal restoring force which acts to 
return the oscillator to equilibrium when disturbed. The function g can be a quite general 
function of position x(t) and velocity . In the special case when the system is linear, 

),( xxg �

)(tx�
 

kxxcxxg += ��),(  , (103) 
 
where c and k are the damping constant and stiffness, respectively. Because g is assumed 
to be dependent only on x and , it can be represented by a surface over the phase-plane, 
i.e. the -plane. A trivial re-arrangement of Eq. 102 gives,  

x�
),( xx �

 
xmtfxxg ��� −= )(),(   . (104) 

 
If the mass m is known and the excitation f(t) and acceleration  are measured, all the 
quantities on the right hand side of this equation are known and, hence, so is g. If 
t

)(tx��

i = (i-1)/δt denotes the ith sampling instant, then at ti Eq. 104 gives, 
 

iiiii xmfxxgg ��� −== ),(     , (105) 

where  and  and hence i  are known at each sampling instant. If the 
velocities i  and displacements x

)( ii tff = )( ii txx ���� = g
x� i are also known (i.e. from direct measurement or from 

numerical integration of the sampled acceleration data), at each instant  a triplet 
 is specified. The first two values indicate a point in the phase plane, and the 

third gives the height of the restoring force surface above that point.  

Ni ,,1"=
),,( iii gxx �
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 Given this scattering of force values above the phase plane, there are a number of 
methods of interpolating a continuous surface on a regular grid. The various interpolation and 
plotting procedures are discussed in some detail in [24]. Two simple approaches are followed 
here. In the first case, a force surface is obtained by dividing the phase plane into a regular grid 
and averaging the force values above the resultant cells. These average values are plotted 
above the centers of the cells. The main disadvantage of this approach is that there may be 
many phase-space cells that are empty of data points and, therefore, do not have force values. 
Such cells will produce ‘holes’ in the surface, although there are some simple heuristics that 
can be used to fill in some of the holes [24]. The main advantage of this approach is that a 
regular plotting grid is obtained that is amenable to standard graphics software. The second 
plotting procedure is to show a slice of the force data on a plane of constant velocity or 
displacement. This plot gives the stiffness and damping sections respectively. 

 

 

 

Figure 74. Stiffness section of SDOF system with bilinear 
stiffness representing a breathing crack. 

 

 In order to illustrate the approach in the context of damage identification, consider a 
bilinear system of the form shown in Fig. 74 that simulates a breathing crack. The k-value 
used was 104 and the stiffness ratio α  was chosen as 10. As usual the time data were 
simulated using fourth-order Runge-Kutta integration scheme. In this case, because 
random excitation is preferred for system identification, the forcing f(t) was taken as 
Guassian white noise. For the purposes of this simulation, the velocity and acceleration 
data were taken directly from the numerical solution of Eq. 90, as described above. In 
practice one would probably measure acceleration data and numerically integrate these 
data to obtain the corresponding velocities and displacements. The simplest representation 
of the force surface is the stiffness section and this is shown in Fig. 74. 
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 A more comprehensive representation of the nonlinearity is given by the full restoring 
force surface as shown in Fig. 75. Both representations show the bilinear nature of the 
internal force and thus detect the presence of the ‘crack’. In order to extract location 
information for the damage it is necessary to move to a more sophisticated MDOF model 
of the system. 

 

 

 

Figure 75. Restoring force surface for SDOF bilinear stiffness system. 

 

 For a general N DOF system, it is assumed that the mass is concentrated at N 
measurement points, i  being the mass at point i. Each point i is then assumed to be 
connected to each other point j by a link ijl , and to ground by a link . The situation is 
illustrated in Fig. 76 for a three degree-of-freedom system. 

m
iil

 If the masses are displaced and released, they are restored to equilibrium by internal 
forces in the links. These forces are assumed to depend only on the relative displacements and 
velocities of the masses at each end of the links. If jiij xx −=δ  is the relative displacement of 
mass  relative to mass , and  is the corresponding relative velocity, then, im jm jiij xx ��� −=δ
 

Force in link  =  ,  (106) ijl ),( ijijijg δδ �

 
where iii  and  for the link to ground. It will be clear that, as links  and  
are the same, 

x=δ iii x�� =δ ijl jil

),(),(),( ijijjijijijiijijij ggg δ−δ−=δδ=δδ ��� . (107) 
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Figure 76. Link model of nonlinear 3DOF system. 

 

If an external force is now applied at each mass, the equations of motion are, )(tf i
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 It is expected that this type of model would be useful for representing a system with a 
finite number of modes excited. In practice, only the N accelerations and input forces at 
each point are measured. Differencing yields the relative accelerations ij , which can be 
integrated numerically to give  and 

δ��

ijδ� ijδ . If a polynomial representation is adopted for 
, this gives a model, ijg
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 Least-squares parameter estimation can be used to obtain the values of the coefficients 

i  and klij  that best fit the measured data. If there is no excitation at point i, 
transmissibility arguments yield the appropriate form for the equation of motion of , 
m a )(

im
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where klij
i

klij a
m

a )()(
1' = . 
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 In principle, the inclusion of difference variables allows the model to locate 
nonlinearity; for example, if a term of the form  appears in the appropriate expansion 
one can infer the presence of a cubic stiffness nonlinearity between points 2 and 3 [

3
23δ

103]. 

 If one of the equations for an MDOF system has a non-zero input , then i  can 
be estimated and it can be shown that this scale can be transferred to all equations so that 
the whole MDOF system can be identified using only one input. 

)(tf i m

 A further advantage of adopting this model is that it allows a natural definition of the 
restoring force surface for each link. After obtaining the model coefficients the surface ij  
can be plotted as a function of ij

f
δ  and ij  for each link ijl . In this case the surfaces are 

purely a visual aid to the identification. They might still be important however, as the 
polynomial representation does not offer a clue to the type of nonlinearity if it is piecewise 
linear for example. 

δ�

  To illustrate an MDOF application, a three mass system as shown in Fig. 76 was 
simulated (again using a Runge-Kutta integration scheme and a white noise excitation). 
The exact values of the various parameters are not important here, but the nonlinearity was 
placed between the central mass and ground. The nonlinearity used was a symmetric 
piecewise linear stiffness, which is the type that might be observed for loss of preload at a 
joint for example. After identification, the various restoring force surfaces could be plotted. 
Figure 77 shows the identified restoring force surface for the link 21l and is linear as 
expected. Figure 78 shows the identified surface for the link 22  and shows a symmetric 
nonlinearity. In fact this is only a cubic approximation to the real piecewise linear behavior 
and is a result of the cubic polynomial fit that was used to form the model. In order to more 
accurately see the piecewise nature, a higher order polynomial fit would be required. 

l

 The final example given here comes from an experimental study. A fatigue crack was 
grown at the center point of a 3-meter-long concrete beam. A random excitation was 
applied using an electro-dynamic shaker immediately below mid-span, the response was 
measured at various points on the top surface. In order to simplify matters, a SDOF 
restoring force surface analysis was carried out using the measured force and the response 
from the nearest accelerometer to the crack. The resulting stiffness section is shown in 
Fig. 79 with a ninth-order least-squares polynomial fit superimposed. Although the section 
is rather noisy (as a result of the neglected degrees of freedom), the smoothed curve fit 
shows a very clear bilinear nature as one might expect from a breathing crack. 
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Figure 77. Model restoring force surface for link l21 of the 
simulated 3 DOF system. 

 

 

 

 

Figure 78. Model restoring force surface for link l22 of the 3 DOF 
simulated system. 
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Figure 79. Restoring force surface for a concrete beam with fatigue crack. 
 

 

8.2 Gradient Descent Methods for Nonlinear System Identification 
 As previously discussed, many of the nonlinear system identification approaches that 
are used for SHM require that a parametric model is fit to measured system input and/or 
response data. Changes in the parameters of these models are then used as damage 
indicators. Therefore, a fairly general description of the nonlinear system identification 
problem may be given as follows. The obtained time series data, y, are assumed to have been 
generated from a system that has a known functional form, but unknown parameters, such as 
 

( )
( )θ

θ
,,,ˆˆ
,,,ˆˆ

tuxgy
tuxfx

=
=�   , (111) 

 
where  and  are some known functional forms with parameters f g θ and input u, and  
and  are the estimated values of the states and outputs, respectively. The goal of the 
identification procedure is then to determine the parameters 

x̂
ŷ

θ  that best explain y and then 
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look for changes in those parameters when the identification procedure is repeated with 
new data. Such changes are inferred to be an indicator of damage. This parameter 
estimation is usually accomplished by minimizing some cost function. For example, given 
data from t = 0 to T and an estimate of a reasonable set of parameters, 0θ , a simple cost 
function, J, for the above model might be: 
 

( ) ( ) ( ) ( )dtRyyQyyJ T
T

T
00

0

ˆˆ θθθθ −−+−−= ∫   , (112) 

 
where Q is a user defined n x n positive, semi-definite matrix, and R is a user defined m x 
m positive-definite matrix, with n equal to the number of states and m equal to the number 
of parameters. 

 Thus, minimization of this cost function would seek to minimize the error in the 
estimate , without allowing the parameters to assume “unreasonable” values. This cost 
function can only be minimized iteratively, as it can not be minimized analytically. One 
minimization technique that can be used is gradient descent. In this method, the gradient of 
the cost function J with respect to the parameters 

ŷ

θ  is computed, and θ  is updated so as to 
decrease J. This process is repeated until convergence or some other stopping criteria is 
achieved. Advantages to gradient descent include simplicity and, depending on the particular 
problem, rapid determination of θ∂∂ /J , even when θ  is very high dimensional. The key 
disadvantage is susceptibility to local minima. Global optimization techniques such as 
evolutionary programming, surrogate management framework, and simulated annealing 
[104] seek to avoid the problem of local minima, but are not discussed in this section. 

 Once θ∂∂ /J  is obtained, one must decide how to use it to update θ . There are many 
methods that have been developed to perform this update. Among these methods are 
steepest descent, Newton’s method and the conjugate gradient method [105]. For the sake 
of simplicity, this discussion will focus only on steepest descent. The other methods may 
loosely be viewed as modifications to the steepest descent method that seek to reduce the 
number of iterations required for convergence. 

 The update to θ  using the steepest descent method is given by  

n

J
nn

θθθ
αθθ

=
+ ∂

∂
−=1 ,  (113) 

 

where α  is the size of the step. A common method of selecting α  is by means of a line 

search, in which α  is selected to minimize ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
= n

JJ n
θθθ

αθ . One approach by which this 

minimization can be accomplished is to first perform an abbreviated Taylor series 
expansion of J.   
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then, setting 0/ =∂∂ αJ , results in 
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  . (115) 

 
 This procedure is easily demonstrated through an example. Consider the system in 
Fig. 80 which consists of two masses connected with springs and dampers to ground.  

 

 
Figure 80.Nonlinear 2-DOF system. 

  

 The spring between ground and the first mass is a cubic spring, and the governing 
equations for the system are given by the following 
 

( ) ( )
( ) ( ) ( )
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12212222

12212211
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11111

xy
tuxxcxxkxm
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����

�����
  . (116) 

 
 The goal is to estimate nl  given knowledge of all other parameters and only k y  as a 
measurement. Given a measured time series  and some estimate of  that results in 
an estimated time series , the cost function is then given by  

y nlk̂ nlk
ŷ

 

( ) ( )dtyyyyJ
T

T∫ −−=
0

ˆˆ   .  (117) 

nl  can be easily determined via finite difference.Let  be a perturbed 
 that results in an estimated time series 

kDDJ ˆ/ δ+=′ nlnl kk ˆˆ

nlk̂ y′ˆ . Then   
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( ) ( ) ( ) ( )
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 For this case, the step size α  can be seen to be given by 
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 If we let , 121 == mm 5021 == kk , 121 == cc , 10=nlk , and equal to the random 
input, shown in Fig. 81(a), then  is shown in Fig. 81(b). If we start with an initial guess 
of , then after approximately 30 iterations of the gradient descent procedure, 

, which is very close to the exact value of 10.0. 

u
y

0ˆ =nlk
999.9ˆ =nlk
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Figure 81. a) Random input (top), b) Response of mass 2 
(bottom) for the system shown in Fig. 80. 

 

8.3 Using Nonlinear System Models to Design Inputs for Active Sensing 
 Most procedures discussed thus far do not use an input that is designed to enhance the 
damage detection process. Instead, these methods work with whatever input and/or response 
can be measured during the structure’s operation. However, with advent of active sensing 
approaches there can be SHM applications where the excitation is selectable, and, indeed, 
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where proper excitation selection is essential. As a simple example, consider a beam or 
column with a crack which is nominally closed because of a preload. If the provided 
excitation is not sufficient to open and close the crack, the detectability of the crack in the 
measured output will be severely limited. Thus, if possible, it is important to answer the 
question: “Given ever-present physical limits on the level of excitation, and limited outputs 
that can be measured, what excitation should be provided to a system to make damage most 
detectable?” When one considers that an excitation may be viewed as a time series with 
hundreds or thousands of free parameters, optimization in this high dimensional space might 
be a daunting task. However, as is demonstrated in this section, a gradient based technique 
may be used in which the gradient can be calculated very efficiently. 

 First, assume that undamaged and damaged structures excited with an input u may be 
modeled as follows: 
 

uu

uuu

Cxy
tuxfx

=
= ),,(�

 (120)  

( )
dd

ddd

Cxy
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 (121)  

 
or, 
 

( )
[ xCCy

tuxfx
−= ]

= ,,�
 (122) 

 
where  and d  are the state vector of the undamaged and damaged systems respectively, 

and 
ux x

T
du xxx ][= ( ) ( ) ( )[ T

dduu tuxftuxftuxf ,,,,,, = ] .  is simply a matrix such that the 
measurable output  and  are some linear combination of the states.  

C
uy dy

 The excitation design problem may then be stated as the following optimization 
problem that seeks to make y  (the difference between the outputs of the undamaged and 
damaged systems) is big as possible, given constraints on u . 
 

T T

0

1max J y ydt
2

= ∫ . (123) 

 
subject to Eq. 122 and γ<

∞
u . 

 This may be rewritten as 
 

T T

0

1max J x Qxdt
2

= ∫ . (124) 
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subject to Eq. 122 and γ<
∞

u , where [ ] [ ]CCCCQ T −−= . 

 If the input u is perturbed by , the perturbed state trajectory is given by the tangent 
linear equation 

'u

 
')(')(' utBxtAx +=�  or 'Bux =A  (125) 

 

where A
dt
d

−=A , and A and B are obtained by linearizing Eq. 122 about x and u. The 

resulting perturbation to J is then given by 
 

T T

0
J ' x Qx 'dt= ∫ .   (126)  

 

 The goal of what follows is simply to re-express J ′  as a function linear in u . To that 
end, lets consider Eq. 125 integrated against a test function, r. 

′

 
T TT T

0 0
r x 'dt r (x Ax ')dt= −∫ ∫ �A . (127) 

 
 Using integration by parts, Eq. 127 can be rewritten as 
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where TA
dt
d

−−=*A . This is true for any test function, r. If r is selected such that 
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then Eq. 126 can be rewritten as  
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Thus, 
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 Equation 129 is referred to as the adjoint equation. Therefore, given an initial guess at 
an excitation, un, Eq. 122 is solved for x. This x is then used to solve Eq. 129 in reverse-
time, because r(T) is known. Thus, the gradient may be calculated from just two 
simulations, no matter how many points are in the time series for u. A typical gradient 
ascent procedure then follows, with the constraint being enforced by renormalizing the 
updated input after each iteration. 

 If one considers again the example in Section 8.2 and treat 10=nlk  as the undamaged 
case,  as the damaged case, and set the maximum input level 9=nlk 5=γ , then using the 
same random input as shown in Fig. 81(a), we see very little difference in the outputs of 
the undamaged and damaged systems, as shown in Fig. 82. 
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Figure 82. Difference in response due to random excitation for 
mass 2 shown in Fig. 80. 

 

 However, after just 20 iterations using the gradient ascent method outlined above, an 
excitation, shown in Fig. 83(a) is developed that yields a much larger difference in the 
outputs of the undamaged and damaged systems (by approximately a factor of 1000!), as 
shown in Fig. 83(b). 
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Figure 83.  a) Optimized excitation, b) Difference in response 
with optimized excitation for mass 2 shown in Fig. 80. 

  

 No claim can be made that this method can provide a globally optimal excitation. 
However, if a particular excitation is being considered for a damage detection test, this 
method does allow one to easily determine if another excitation would be better. The 
method does require a model of the system and the accuracy of that model will influence 
the results. A more detailed discussion of the optimal excitation design for active sensing 
can be found in [106, 107]. 

 

8.4 Extended Kalman Filter 
 Another, more traditional method for parameter estimation is the Extended Kalman filter 
(EKF). Predictably, the “extended” moniker is due to the fact that it is an extension of the 
Kalman filter, which, for linear systems subject to Gaussian white noise disturbances to the 
states and outputs, provides optimal state estimation. By moving to a nonlinear process, the 
optimality guarantee is lost, and in fact, the estimate may diverge. This possibility for 
divergence is true even in the case of trying to identify the parameters of a linear system (since 
this is actually cast as a nonlinear system). However, in many cases, the EKF provides 
acceptable results. There are no shortage of texts and other resources available for more 
detailed information regarding the Kalman filter and EKF (e.g. [108, 109]), thus the EKF 
algorithm will simply be presented below, without proof, using the example problem above. 

 Recall that the goal is to estimate the value of  in the 2-DOF system given by nlk

 
( ) ( )12212211

3
11111 xxcxxkxcxkxkxm nl ����� −+−+−−−=  (132) 

 

 106



Nonlinear System Identification for Damage Detection LA-14353-MS   

( ) ( ) ( )tuxxcxxkxm +−−−−= 12212222 ����   (133) 

2xy =   (134) 
 
We rewrite this system to treat  as one of the states: nlk
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For convenience, we can use simple Euler integration to solve this set of ODE’s 
and obtain 
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which is of the form 
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We define 
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 There are two basic steps in the estimation process: a prediction step and an update 
step. In the prediction step, the state estimate is given by: 
 

),ˆ(ˆ 1 nnn uxfx =+  (140) 
 
and the error covariance matrix is given by: 

QAPAP T
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where  is an estimate of the state (or process) error covariance matrix. For this simple 
example we take it to be  
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because the only state that we don’t know at the beginning is , and there isn’t any 
process noise that can perturb the states. 

nlk

 The update step is as follows: 
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and R is the output noise covariance, which for our example, we take to be R=1. 
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 We start the filter by assuming 0,0ˆ 00 == Px . Then, by following the above 
procedure, and given the actual 2  that would be obtained using the random input and 

 we obtain the plot shown in Fig. 84 for the estimation of . 
x

10=nlk nlk

Clearly, the estimate for  is approaching the value of 10. nlk

 From this example one can envision applications to damage detection where changes 
to the system are not only detected, but also quantified and assigned a physical meaning. 
Assuming one has a model of the system, data would be acquired in the undamaged 
condition and state variables associated with this model would be estimated using the 
extended Kalman filter. Then at periodic intervals, or after a potentially damaging event 
trigger a new measurement, the system identification process would be repeate. The new 
state variables would be analyzed to determine if they have changed in a statistically 
significant manner from the baseline condition. As with many other approaches discussed 
in this report, the question arises regarding the suitability of a single model for both the 
damaged and undamaged conditions. Also, environmental and operational variability can 
cause changes in the system states that are not associated with damage. Such changes are 
inherent in all damage detection procedures and must be dealt with through additional 
measurements of conditions such as temperature and through additional statistical pattern 
recognition procedures. 
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Figure 84. Extended Kalman filter estimate of the nonlinear stiffness coefficient. 
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9.  CHALLENGES AND FUTURE RESEARCH NEEDS  
 Sections 6–8 of this report discussed many approaches where nonlinearity is either 
being identified, exploited, or actively used for structural health monitoring and damage 
prognosis (SHM/DP). Despite the fact that many engineered systems can and do behave in 
often subtle nonlinear ways—particularly once damage has initiated—these nonlinear 
identification or exploitation approaches rarely have made the transition into practical use. 
Does this mean they are of academic interest only? The answer may seem affirmative at 
present, and there are, very generally, three classes of related reasons why this may be true. 

 

9.1 Nonlinear Behavior Does Not Generalize  
 In fact, nonlinearity cannot be defined per se; rather, it is defined by what it is not, 
namely, any process that does not fundamentally obey the principles of homogeneity and 
superposition, that is, 
 

H an xn
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where H is the system response to weighted inputs an xn
n=1

N

∑ .  

 
 For linear systems, an equality sign holds in Eq. 132, and a number of very 
generalized concepts follow, such as reciprocity, input level insensitivity, and certain 
symmetries, as discussed in Section 4. These properties lead to a single class of approaches 
for analysis. Linear systems have well-defined and well-understood behavior, and 
mathematically they may be solved by fundamental numerical and analytical techniques 
that are independent of the specific physics of the system. A classic example is the 
analogous behavior of a simple elastic spring/mass/dashpot mechanical system to a simple 
capacitor/inductor/resistor electrical circuit. Both have exactly the same form of dynamic 
behavior, even though the solution parameters (e.g., spring vs. capacitor) have very 
different physical interpretations. In other words, the typical techniques used to 
characterize the mechanical system, or changes to it, would in general work equally well to 
characterize the electrical circuit and its associated changes . This is not the case for a 
nonlinear system, where specific physics typically dictate the need for a specific nonlinear 
model, which in most cases subsequently does not have a solution that generalizes for any 
value of the system parameters. Thus, analysis techniques that may prove useful for one 
nonlinear system may have little value for another. 

 With this in mind, perhaps the most directly adverse effect of nonlinear processes on 
SHM strategies is the lack of invertibility. SHM is inherently an inverse problem; data are 
measured and mined for information that reveals something about the existence, location, 
extent, or type of damage. Thus, the practitioner has an effect usually in the form of 
measured system response data that requires diagnosing a particular cause, which in the case 
of SHM is damage. Nonlinearity implies lack of a guaranteed unique inverse relationship, or 
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that one even exists. The practitioner “forces” the effect to match the cause and may very 
well do so for the limited case or cases at hand, but there is no such guarantee that damage is 
the only cause that leads to a particular damage set. That is not to say that linearity 
guarantees inverses or well-conditioned inverses; however, one can much more readily find 
data transformations in the linear domain that properly reduce and/or orthogonalize the data 
in order to better condition the inverse by “orthogonalizing” possible multiple causes. The 
nonlinear problem may be partially mitigated, although not “solved,” for nonlinear systems 
by performing experiments in the forward direction, e.g., damaging a system in a controlled 
but field-realistic manner and observing what subsequent response changes occur in order to 
build an appropriate data- or physics-based model. Of course, such a forward approach 
requires a heavily supervised learning mode, which system owners most often do not have 
the economic or life-safety justification to implement. 

 

9.2 Nonlinear Approaches are Computationally Cumbersome, Expensive, and 
Require too Many Parameters to be Defined 

 In part, this point is related to the previous point about lack of generality. The less 
general a model or technique is, the more input parameters (i.e., “knobs” or “tweak 
parameters”) the model generally requires to make it function properly. Consequently, the 
model or technique’s outputs are often highly sensitive to these inputs so that the 
robustness of the technique is called into question. One example of this lack of generality 
is with some of the information-based metrics such as transfer entropy that are being 
applied to data to detect nonlinearity. While such a method was clearly shown to be an 
efficient nonlinearity detector for composite delamination and bolt loosening applications, 
the parameters chosen to construct the probabilities that go into the calculation (e.g., 
neighborhood size and kernel condition) have large effects on the quantitative transfer 
entropy estimation that is directly used as the feature. In another example, the actual 
calculation of the neighborhoods in the attractor-based methods of Section 7.2 can be very 
time-consuming, especially for a large data set. While k-d tree methods [110] have given a 
more computationally efficient means to partition state space in this case, run times for a 
technique that requires this are an order of magnitude slower than a comparable linear 
technique that does not require this partitioning. Furthermore, the memory and resident 
libraries required to implement this makes system-on-a-chip (SOC) solutions less 
attractive, although still possible. In general, specialized algorithms that do not generalize 
well, which by definition include most nonlinear analyses, are generally not as conducive 
to efficient mass production because of a lack of generalized market. They also do not 
possess the kind of robustness required for consistent application and this lack of 
robustness results in lack of confidence by owners, regulators, and users. 

 Finally, it is noted the mathematics, in general, is no setup to deal with nonlinear 
systems. Historically, mathematics has been built with a complete dependence on linearity. 
An immediate example of this focus on linearity is the entire framework of vector space 
theory. This lack of a mathematical framework to address nonlinear problems is possibly 
the biggest challenge to further development and adaptation of nonlinear system 
identification approaches for SHM applications. 
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9.3 Many Existing Engineers, Technicians, and System Certifiers are not Comfortable 
with and/or Even Trained with Nonlinear Processes or Analysis Techniques   

 The previous points in part fuel this point. The fact that nonlinearity does not have well-
understood ubiquitous behavior and that nonlinear methods can be too parameter-sensitive 
(and thus nonrobust) fail to give system owners and/or safety certifiers confidence in their use 
for SHM applications. Economic and liability issues dictate, in most applications, relatively 
strict or conservative guidelines for design and performance specifications, including 
monitoring systems, with very high required reliability. The SHM/DP system itself cannot be 
the most unreliable component. This overall lack of confidence is rooted even earlier by a lack 
of exposure in technical education programs; most technically-trained personnel do not study 
nonlinear processes or any form of nonlinear behavior at the undergraduate level. Even at the 
graduate level, exposure is very limited or narrowly focused and does not at all consider 
uncertainty propagation or quantification, which are very important concepts linked to 
assessing a model or technique performance. This issue is particularly acute for nonlinear 
models where the physics may not be exactly known or characterized. 

 

9.4 Other Technical Challenges 
 There are still many other outstanding issues for the application of nonlinear system 
identification methods to SHM problems. In most cases reported herein, almost all studies 
have been applied to laboratory structures of relatively simple geometry or to numerical 
simulations of similarly simple structures. If these approaches to SHM feature extraction 
are to make the transition from a research demonstration to practical application, studies 
must be conducted on more complicated systems with numerous joints and interfaces 
between structural elements.   

 Also, this report has been limited to applications where the structure of interest can 
accurately be modeled as a linear system when in its undamaged state. Many real-world 
structures, particularly those with numerous complicated joints and interfaces, will exhibit 
nonlinear response in their undamaged state. Therefore, approaches that can distinguish 
changes in nonlinear response associated with varying damage levels from the inherent 
nonlinearities associated with the system in its undamaged condition are needed.  

 The studies reported herein have not addressed many other issues associated with using 
nonlinear system identification for damage detection. These issues include the amplitude 
dependence of many nonlinearities and the ability of the excitation sources (ambient of 
prescribed) to excite the nonlinearity. In most studies quantifying the location of the 
nonlinearity, identifying the type of nonlinearity, identifying the extent of damage associated 
with the nonlinearity, and the time-rate-of-change of the damage based on changes of the 
measured response have not been addressed. Also, most studies of systems with 
nonlinearities caused by damage tend to focus on discrete source nonlinearities such as a 
local crack or single-stiffness element. Most studies have not focused on distributed sources 
of nonlinearities such a distributed crack field that may occur in a concrete structure. 
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 Almost all SHM/DP studies that make use of nonlinear system identification do so in 
a passive sensing mode. By passive sensing, it is implied that a prescribed input with a 
known waveform that is designed to enhance the damage observability has not been used. 
The active sensing approaches associated with the nonlinear acoustic methods (Section 
6.14), local attractor variance methods (Section 7.2), and the optimal input design (Section 
8.3) are examples where researchers are starting to couple active sensing with nonlinear 
system identification to enhance the damage detection process. 

 Finally, most of the experimental studies reported herein have been conducted in well- 
controlled laboratory settings. The ability of these methods to distinguish changes in 
system response associated with damage from changes associated with varying operational 
and environmental conditions has not been established.  

 

10. RECOMMENDATIONS 
 Given these barriers and challenges, a number of things can be done to promote the 
development, testing, and eventual deployment (if successful) of nonlinear approaches for 
SHM/DP. The ultimate payoff of many nonlinear assessment techniques or modeling is 
greatly increased sensitivity to damage characterization, but this cannot come at the cost of 
excessive economic, execution (e.g., computational), or robustness burdens. Some 
recommendations for future research and development are listed below. 

 

10.1 Fundamental Benchmark Platforms  
 The SHM/DP community stakeholders (industry, government agencies, researchers) 
should propose an array of fundamental platforms in key markets (civil, aerospace, 
manufacturing, etc.) that will serve to host benchmark studies. Such studies should have 
the following characteristics: 

1. With input from owners and regulatory agencies, develop several long-term test beds 
that cover aerospace, mechanical and civil applications. A candidate mechanical 
system might be as a wind turbine where damage to the composite blades and gear 
boxes are to be identified. Developing a damage detection approach for wing of an 
unmanned aerial vehicle is a possible aerospace application where damage may result 
from debris impact. Many aspects of bridge damage detection such the identification of 
fatigue cracks in welded plate girders is a possible candidate for the application of 
nonlinear system identification methods. 

2. Define realistic damage to be detected. Appropriate failure modes must be controllably 
introduced and propagated under expected loading scenarios (a forward direction test). 

3. Operational and environmental variables should be controllable to realistic conditions 
observed in practice. 

4. Sensor and actuator arrays should be defined and deployed to accommodate a wide 
variety of methods (time and length scales).  
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5. Have an independent panel run the tests and assess the ability of the SHM system to 
detect the damage. 

6. Make the test bed available to as many researchers as possible. 

7. Require completely open disclosure of results. Include what didn’t work as well as 
what did work in these presentations. Also, report information like required SHM 
system maintenance, down time, false-positives, and comparisons with more traditional 
linear methods of damage detection 

 All results should include full, detailed documentation of how each method was 
applied and what the failures of the method were in addition to any successes. Method 
‘performance metrics’ should be defined (energy budget, execution time, footprint/weight, 
statistical confidences, resolution, accuracy, economic cost, etc.) and a global objective 
function defined that each method may be independently and objectively characterized for 
comparative purposes. These benchmark tests should be funded primarily by government 
funding agencies (80%) with secondary buy-in from industry (20%). 

 The data sets being made available at the Engineering Institute web page 
(www.lanl.gov/projects/ei) and described in Appendices A and B are a start at providing 
standard test structures and data to validate damage detection algorithms (both linear and 
nonlinear approaches). However, these structures are laboratory test specimens and do not 
have all the desired attributes listed above. 

 

10.2 Increased Industry and Government Investment  
 Industry and government agencies such as the Department of Defense are ultimately 
the ones that directly stand to benefit from SHM/DP technology. Therefore, after 
benchmarks have been demonstrated that objectively compare methods on different 
platforms, industry and government agencies must be willing to invest directly in 
transitioning promising technologies to practice, including further long-term testing and 
development, packaging, and appropriate calibrations and certifications. 

 

10.3 Education  
 The university system also plays a key role in overcoming these challenges, as 
universities are usually the first major stop in an engineer or scientist’s career. 
Universities must: 

1. Start actively deploying multidisciplinary educational programs that give a 
systems-level perspective to students at both the undergraduate and graduate 
levels. In particular for SHM/DP, the sensing, feature extraction, statistical 
modeling, and predictive modeling components span almost all traditional 
engineering departments and degree programs must be designed in which 
students can transcend these traditional boundaries. Exposure to advanced 
and emerging technologies such as some forms of nonlinear analysis must be 
included in this transformation. 
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2. Actively encourage and reward their faculty for forming multidisciplinary 
teams to solve the systems-level problems that SHM/DP applications pose. 
No one faculty member, department, or even university can claim to ‘corner 
the market’ on SHM/DP expertise, and true collaboration—where the 
rewards are both external (solving real problems for increased industrial 
competitiveness in a global market) and internal (faculty/researcher careers 
are promoted for teamwork)—is the only solution. 

3. Be willing to form organizations with industrial partners to work in “IP-free” 
zones where research and development can be performed in free and open 
exchange without the restrictions of nondisclosure agreements. Such an 
arrangement, for example, is currently in place for the sixth-floor laboratories 
in the University of California San Diego division of the California Institute 
of Telecommunication and Information Technology (Calit2) 
(http://www.calit2.net). 

 
11. SUMMARY 
 The basic premise of this report is that in many cases damage causes a structure that 
initially behaves in a predominantly linear manner to exhibit nonlinear response when 
subject to dynamic loads associated with its operating environment. Therefore, many 
approaches to nonlinear system identification are directly applicable to damage detection. 
This report has summarized a variety of these nonlinear system identification techniques 
that have been reported in the structural health monitoring literature and classified them 
into the following three groups: 

 
Methods based on nonlinear indicator functions 

Methods based on nonlinear dynamical systems theory 

Methods based on nonlinear system identification approaches 
 
  This report has also addressed the levels of damage identification that can be obtained 
with each method as well as the limitations of these various methods when applied to 
SHM problems.  

 Several approaches to SHM based on nonlinear structural dynamics are discussed in this 
report. First, features that can be used to identify nonlinear system response such as 
harmonic generation, the coherence function, probability density function distortion, 
correlation tests, and the Holder exponent were discussed and applications of these indicators 
to analytical and experimental damage detection studies were presented. These techniques 
can only identify the presence of a nonlinearity that would be indicative of damage. 
Information about location or extent of damage can not, in general, be obtained with these 
features. It was also pointed out that some of the indicators such as the coherence function 
can change significantly as a result of other factors not related to damage. 
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 Next, a data analysis approach motivated by nonlinear dynamical systems theory was 
developed to quantify features of chaotic attractors that can be related to damage. It was 
shown that bilinear stiffness nonlinearity, typical of a breathing crack, caused a chaotic 
response when the system was subjected to a harmonic excitation and thus produced a 
fractional-dimensional attractor in phase space. This method was shown to be successful at 
identifying the presence of damage. However, despite the fact that certain invariants are a 
necessary consequence of nonlinearity, the simulations indicated that it is unlikely that 
features of the chaotic response like fractal dimension of the attractor or Lyapunov 
exponents would be of value for damage quantification. This statement is based on the fact 
that the response moves between super-harmonic, subharmonic and chaotic response in a 
disorderly fashion as a function of forcing frequency or damage extent. Therefore, the 
features are not monotonic functions of damage extent.  

 In the second illustration motivated by nonlinear dynamical systems theory, the use of 
a chaotic signal to interrogate a damaged structure provided a sensitive method of 
quantifying the level of damage in the system. The damage, in the form of a bilinear 
stiffness in one of the spring elements of a MDOF system, altered the geometry of the 
input attractor to a great enough extent for it to be measured using the average local 
attractor variance ratio. 

 In Section 7 the application of nonlinear system identification to the SHM problem 
was considered. To simplify matters, a single technique known as the restoring force 
method was illustrated. The analysis showed that for SDOF systems at least, a picture of 
the nonlinearity can be obtained and this picture can be used to characterize the 
nonlinearity. For MDOF systems, the analysis can potentially be extended to locate the 
source of the nonlinearity. In both cases, the coefficient of the nonlinear terms in the 
equations of motion can give guidance on the extent of the damage present. This portion of 
the report concluded by showing how a nonlinear system model can be used to design an 
optimal input for damage observability when the SHM process makes use of an active 
sensing approach. 

 To conclude, the authors acknowledge that this report has only really just begun to 
introduce possible nonlinear dynamics system assessment methods that are applicable to 
the SHM problem. The literature on nonlinear structural dynamics is extensive and other 
nonlinearity detectors have not been discussed. Similarly, identification methods like 
Reverse Path Analysis [111] have been neglected. Readers may wish to consult one of the 
major reviews or books [24] available on the subject of nonlinear dynamics to become 
familiar with these various approaches to nonlinear dynamics system assessment. 
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13. APPENDIX A. UC-IRVINE CONCRETE COLUMN TESTS 
 The University of California, Irvine (UCI) had a research contract with CALTRANS to 
perform static, cyclic load tests on seismically retrofitted, reinforced-concrete bridge columns. 
This project was under the direction of Professor Gerry Pardoen at UCI and Mr. Tim Leahy at 
CALTRANS. The primary purpose of these tests was to study the relative strength and ductility 
provided by two retrofit construction procedures. The first procedure extends the diameter of the 
existing column with cast-in-place concrete. The second procedure extends the diameter of the 
existing column using shotcrete that is sprayed onto the exterior of the existing column. With 
funds obtained through Los Alamos National Laboratory’s (LANL) University of California 
interaction office, staff from the LANL’s Engineering Analysis Group and a faculty member 
from the Mechanical Engineering Department at Rose-Hulman Institute of Technology were able 
to perform experimental modal analyses on the columns. These modal tests were performed at 
various stages during the static load cycle testing. Results obtained from the experimental modal 
analyses provide further insight into the relative effectiveness of the two retrofit procedures. The 
data from these tests are provided on The Engineering Institute web site 
(www.lanl.gov/projects/ei) for others to analyze.  

 

13.1 Test Structure Description 
 The test structures consisted of two 24-in-dia (61-cm-dia) concrete bridge columns that 
were subsequently retrofitted to 36-in-dia (91-cm-dia) columns. The first column tested, labeled 
Column 3, was retrofitted by placing forms around existing column and placing additional 
concrete within the form. The second column, labeled Column 2, was extended to the 36-in-
diameter by spraying concrete in a process referred to as shotcreting. The shotcreted column was 
then finished with a trowel to obtain the circular cross-section.  

 The 36-in-dia. portions of both columns were 136 in. (345 cm) in length. The columns were 
cast on top of 56-in-sq. (142-cm-sq.) concrete foundation that was 25-in-high (63.5-cm-high). A 
24-in-sq. concrete block that had been cast integrally with the column extends 18-in. above the top 
of the 36-in-dia. portion of the column. This block was used to attach the hydraulic actuator to the 
columns for static cyclic testing and to attach the electromagnetic shaker used for the experimental 
modal analyses. As is typical of actual retrofits in the field, a 1.5-in-gap (3.8-cm-gap) was left 
between the top of the foundation and the bottom of retrofit jacket. Therefore, the longitudinal 
reinforcement in the retrofitted portion of the column did not extend into the foundation. The 
concrete foundation was bolted to the 2-ft-thick (0.61-m-thick) testing floor in the UCI laboratory 
during both the static cyclic tests and the experimental modal analyses. The structures were not 
moved once testing was initiated. Figure 85 shows the test structure geometry. 

 The columns were constructed by first placing the foundations on July 18, 1997. Then the 24-
in-diameter columns were placed on August 19, and the retrofits were added on September 19. 
Corresponding portions of both test structures were constructed from the same batch of concrete. 
The only measured material property for these columns was the 28-day ultimate strength of the 
concrete and the test day ultimate strength. The 28-day ultimate strength of  
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Figure 85. Concrete column dimensions. 

 

foundations was 4600 psi (32 MPa). Test day ultimate strength was not measured for the  
foundations. The 24-in-dia. column 28-day ultimate strength was 4300 psi (30 MPa) and the test 
day ultimate strength was 4800 psi (33 MPa). The 28-day-ultimate strength of the retrofit portion 
of the structures was 5200 psi (36 MPa). On test day the strength of the retrofit concrete was 
found to be 4900 psi (34 MPa). 

 Within the 24-in-dia initial column reinforcement consisted of an inner circle of 10 #6 (3/4-in-
dia, 19-mm-dia) longitudinal rebars with a yield strength of 74.9 ksi (516 MPa). These bars were 
enclosed by a spiral cage of #2 (1/4-in-dia, 13.5-mm-dia) rebar having a yield strength of 30 ksi 
(207 MPa) and spaced at a 7-in pitch (18 cm). Two-inch-cover (5- cm-cover) was provided for the 
spiral reinforcement. The retrofit jacket had 16 #8 (1-in-dia, 25-mm-dia) longitudinal rebars with a 
yield strength of 60 ksi (414 MPa). These bars were enclosed by a spiral cage of #6 rebar spaced at 
a 6-in pitch (15 cm). The spiral steel also had a yield strength of 60 ksi. Again, 2-in.-cover was 
provided for this reinforcement. Lap-splices 17-in (43-cm) in length were used to connect the 
longitudinal reinforcement of the existing 24-in column to the foundation. 
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13.2 Static Loading 
 

Before applying lateral loads, an axial load of 90 kips (400 kN) was applied to simulate dead 
loads that an actual column would experience. A steel beam was placed on top of the column. 
Vertical steel rods, fastened to the laboratory floor, were tensioned by jacking against the steel 
beam that, in turn, applied a compressive load to the column. A photo of the test configuration is 
shown in Fig. 86.  

 

 
Figure 86. Test configuration. 

 

 A hydraulic actuator was used to apply lateral load to the top of the column in a cyclic manner. 
The loads were first applied in a force-controlled manner to produce lateral deformations at the top of 
the column corresponding to 0.25∆yT, 0.5∆yT, 0.75∆yT and ∆yT. Here ∆yT is the lateral deformation 
at the top of the column corresponding to the theoretical first yield of the longitudinal reinforcement. 
The structure was cycled three times at each of these load levels.  

 Based on the observed response, a lateral deformation corresponding to the actual first yield, 
∆y, was calculated and the structure was cycled three times in a displacement-controlled manner 
to that deformation level. Next, the loading was applied in a displacement-controlled manner, 
again in sets of three cycles, at displacements corresponding to 1.5∆y, 2.0∆y, 2.5∆y, etc. until the 
ultimate capacity of the column was reached. Load deformation curves for columns 3 and 2 are 
shown in Figs 87 and 88, respectively. This manner of loading put incremental and quantifiable 
damage into the structures. The axial load was applied during all static tests. 
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Figure 87. Load –displacement curves for the cast-in-place column. 

 

 
Figure 88. Load-displacement curves for the shotcrete column. 
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13.3 Dynamic Excitation 
 For the experimental modal analyses the excitation was provided by an APS electro-magnetic 
shaker mounted off-axis at the top of the structure. The shaker is shown in Fig 89. The shaker 
rested on a steel plate attached to the concrete column. Horizontal load was transferred from the 
shaker to the structure through a friction connection between the supports of the shaker and the 
steel plate. This force was measured with an accelerometer mounted to the sliding mass of the 
shaker 0.18 lb-s2/in (31 Kg). A 0 - 400 Hz uniform random signal was sent from a source module 
in the data acquisition system to the shaker, but feedback from the column and the dynamics of the 
mounting plate produced an input signal that was uniform over the specified frequency range. 
Fig. 90 shows a typical input power spectrum. The same level of excitation was used in all tests 
except for one at twice this nominal level that was performed as a linearity check. 

 

 
 

Figure 89. Shaker used during experimental modal analyses. 
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Figure 90. Input power spectra. 

 

13.4 Data Acquisition  
 Forty accelerometers were mounted on the structure as shown in Fig. 91. Note that locations 
2, 39 and 40 had PCB 302A accelerometers. These accelerometers have a nominal sensitivity of 
10 mV/g and were not sensitive enough for the measurements being made. Locations 33, 34, 35, 
36, and 37 were Wilcoxon 736-t accelerometers that had a nominal sensitivity of 100 mV/g. All 
other channels were PCB 336C accelerometers with a nominal sensitivity of 1V/g. During the 
test on the shotcrete column (column 2) the 336C accelerometer at location 23 had to be replaced 
with a PCB 308b02 accelerometer that had a sensitivity of 1V/g. All calibration factors were 
entered into the data acquisition system prior to the measurements. A calibration factor of 1.0 
was entered for the accelerometer that monitored the sliding mass on the shaker. 

 Data were sampled and processed with a Hewlett-Packard (HP) 3566A dynamic data 
acquisition system. This system includes a model 35650 mainframe, 35653A source module used 
to drive the shaker, five 35653A 8-channel input modules, which provided power for 
accelerometers and performed the analog to digital conversion of accelerometer signals, and a 
35651C signal-processing module that performed the needed Fast Fourier Transform 
calculations. A Toshiba Tecra 700CT Laptop was used for data storage and as a platform for the 
HP software that controls the data acquisition system. 

 Data acquisition parameters were specified such that frequency response functions (FRFs), 
input and response power spectra, cross-power spectra and coherence functions in the range of 
0-400 Hz could be measured. Each spectrum was calculated from 30 averages of 2-s-long time 
histories discretized with 2048 points. These sampling parameters produced a frequency 
resolution of 0.5 Hz. Hanning windows were applied to all measured time histories before the 
calculation of spectral quantities. A second set of measurements was acquired from 8-s-long time 
histories discretized with 8192 points. Only one average was measured. A uniform window was 
specified for these data, because the intent was to measure a time history only. 
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Figure 91.  Accelerometer locations and coordinate system 
for modal testing. Red numbers indicate accelerometers 
mounted in the –y direction. Accelerometers 1, 3 – 32 are 
PCB 336C with 1V/g sensitivity. Accelerometer 23 was 
replaced during test on the shotcreted column (Column 2) 
with a PCB 308b02 that had 1 V/g sensitivity. 
Accelerometers 2, 39 and 40 are PCB 302A with 10 mV/g 
sensitivity. Accelerometers 33–37 are Wilcoxon 736-t with 
100 mV/g sensitivity. Accelerometers 36 and 37 are located 
8 in. (20. 3 cm) off axis in the –y direction. 
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13.5 Data Files 
 Data that were collected during the experimental modal analyses are described below in 
Table 4. All files are in Universal File (Type 58) format. In general, FRF and time-history 
measurements made at each damage level were done both with and without the preload applied. 

 Files are designated TEST#* 

Where # indicates the sequential test number and * is a suffix indicating the type of test. The suffixes are: 

P – indicates preload was applied 

T-indicates time history measurement 

L- test performed using twice the excitation level 

Note that no “T” implies a test where FRFs based on 30 averages were measured. These files 
include the last time history used to form the average. No “P” indicates a test where the preload 
had been removed. 

Table 4. Summary of Concrete Column Tests 

Tests on Cast-In-Place Column 10/21/97 Tests on Shotcrete Column 10/23/97 

Undamaged Tests 
     TEST0 
     TESTOT 
     TESTOL 
     TESTOP 
     TESTOPT 

Undamaged Tests 
     TEST6 
     TEST6T 
     TEST6P 
     TEST6PT 

Cycled to theoretical rebar first yield, ∆y 
     TEST1 
     TEST1T 
     TEST1P 
     TEST1PT 

Cycled to theoretical rebar first yield, ∆y 
     TEST7 
     TEST7T 
     TEST7P 
     TEST7PT 

Cycled to 1.5 ∆y 
     TEST2T 
     TEST2P 
     TEST2PT 

Cycled to 1.5 ∆y 
     TEST8 
     TEST8T 
     TEST8P 
     TEST8P 

Cycled to 2.5 ∆y 
     TEST3 
     TEST3T 
     TEST3P 
     TEST3PT 

Cycled to 2.5 ∆y 
     TEST9 
     TEST9T 
     TEST9P 
     TEST9PT 

Cycled to 4.0 ∆y 
     TEST4 
     TEST4T 
     TEST4P 

Cycled to 4.0 ∆y 
     TEST10 
     TEST10T 
     TEST10P 
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14. APPENDIX B: FOUR-DEGREE-OF-FREEDOM TEST STRUCTURE 
 

14.1 Test Structure Description 
 A four-story building structure was used as a test bed, shown in Fig. 92. The structure consists 
of assembled aluminum columns and blocks using bolted joints with a rigid base. At each floor, 
four aluminum columns (17.78 × 2.54 × 1.27 cm) are connected to top and bottom aluminum 
blocks (30 × 30 × 2.54 cm), which constructs a four-degree-of-freedom system. Additionally, a 
center column (15 × 2.54 × 2.54 cm) is suspended from the top floor, shown in Fig. 92, which is 
used to induce nonlinear behaviors when it contacts a bumper mounted on the bottom of the floor. 
The position of the bumper can be adjusted to vary the extent of the nonlinearity. The structure 
slides on rails that allow movement in the x-direction only, as shown in the figure. 

 

 
Figure 92. Test structure setup. 

 
14.2 Data Acquisition 
 An electromagnetic shaker provides the excitation to the base floor (mass 1) of the structure. 
The structure and shaker are mounted together on a baseplate (76.2 × 30 × 2.54 cm). A force 
transducer (sensitivity 2.2 mV/N) was attached at the end of stinger to measure the input force 
from the shaker. Four accelerometers of sensitivity 1 V/g were attached at the opposite side from 
the excitation source to measure the response from each floor. Figure 93 shows the location of 
the accelerometers. These accelerometers are mounted in the middle of the floor in order to avoid 
measuring the torsion modes of the structure.  

 A Dactron Spectralbook FFT Analyzer was used to collect and process data. The output 
channel of this system is connected to a Techron 5530 Power Supply Amplifier that drives the 
shaker. The five input channels were utilized through out the testing shown in Table 5. 
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Figure 93. Attachment of accelerometers. 
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Table 5. Data Acquisition Channels 

 Transducers Sensitivity 

Channel 1 Force Transducer 2.2 mV/N 

Channel 2 Accelerometer from Mass 1 1000 mV/g 

Channel 3 Accelerometer from Mass 2 1000 mV/g 

Channel 4 Accelerometer from Mass 3 1000 mV/g 

Channel 5 Accelerometer from Mass 4 1000 mV/g 

 
14.3 Data Files 
The data set correspond to testes performed with band-limited random excitation. The sampling 
frequency was set to 320 Hz with 800 lines (2048 time domain data points, which correspond to 
a frequency resolution of 0.156 Hz). A band-limited random excitation in the range of 20–150 
Hz was provided to the system. This excitation signal was chosen in order to avoid the rigid body 
modes of the structure that are present at lower than 20 Hz.  

 For the linearity check, two different levels of excitation were provided, one with 2 V RMS 
and the other with 0.5V RMS. Three measurements were made with each excitation level. In 
order to introduce the nonlinearity, the bumper was set in contact with the center column 
between Mass 3 and Mass 4. The testing was then repeated at each excitation level, recording 
two measurements under this condition.  
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 A Hanning window was applied to the time domain data for frequency response estimates 
and 15 averages were performed to improve the signal to noise ratio. For each test, time domain 
data, frequency response functions, and coherence functions were recorded.  

 Table 6 summarizes the band-limited random excitation data files that are available at 
www.lanl.gov/projects/ei

 

Table 6. Band-Limited Random Excitation Data Files 

Contents of File  
Filename Test Conditions # of Tests 

Lin_2VRMS.mat* 2V RMS input, No bumper 3 

NonLin_2VRMS.mat* 2V RMS input, With bumper 2 

Lin_05VRMS.mat* 0.5V RMS input, No bumper 3 

NonLin_05VRMS.mat* 0.5V RMS input, With bumper 2 

* The files are in the Matlab structure data format. H: frequency response functions; C: coherence 
functions; T: time domain data; freq, time: frequency and time axis respectively. The number corresponds 
to the channel number.  

 

 Next a single-frequency harmonic excitation was used to excite the structure. The same 
experimental setup as in the Band-limited random excitation was applied. Instead of providing 
random excitation, a single frequency sinusoidal signal was provided to the system in order to 
observe superharmonics caused by nonlinearity. Two frequencies (53 Hz and 70Hz) were 
chosen, which corresponds to 3rd and 4th resonant frequencies of the system.  

 Both sinusoidal signals were applied with the sampling frequency of 2560 Hz and 16384 
data points. The same bumper was used to introduce the nonlinearity. Two measurements at each 
condition (with and without bumper contact, 53 and 70 Hz) were made. Time domain data and 
auto-power spectrum data were recorded for each test.  

 Table 7 summarizes the single-frequency harmonic excitation data files that are available at 
www.lanl.gov/projects/ei

 
Table 7. Single-Frequency Harmonic Excitation Data Files 

Contents of File  
Filename Test Conditions # of Tests 

Lin_53 Hz.mat* 53 Hz sinusoidal input, No bumper 2 

NonLin_53 Hz.mat* 53 Hz sinusoidal input, With bumper 2 

Lin_70 Hz.mat* 53 Hz sinusoidal input, No bumper 2 

NonLin_70 Hz.mat* 53 Hz sinusoidal input, With bumper 2 

* The files are in the Matlab structure data format. T: time domain data; G: autospectrum, freq, time: 
frequency and time axis respectively. The number corresponds to the channel number. 
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 Finally, an impact excitation was applied to the structure. For this testing, the stinger and the 
force transducer used to connect the shaker were removed from the structure. The excitation was 
given to Mass 2 at the exact opposite location of the accelerometer connected to Channel 3. An 
impact hammer (PCB086D20, 0.23 mV/N) was used. The sampling frequency was set to 320 Hz 
with 400 lines (1024 time domain data points, a frequency resolution of 0.312 Hz). The 
frequency response functions, auto-power spectra, and coherence functions were calculated with 
15 averages and no window. For the reciprocity test, an accelerometer was placed to the 
excitation location and the impact was applied to the location where the accelerometer was 
placed. The reciprocity test was done in sequence for all four accelerometers. These tests were 
performed with and without the bumper contact.   

 Table 8 summarizes the impact excitation data files that are available at 
www.lanl.gov/projects/ei. 

 

Table  8. Impact Excitation Data Files 

Contents of File  
File Name Test Conditions No. of Tests 

Lin_Impact.mat* Impact input, No bumper 5 

Lin_Impact_Reciprocity.mat* Impact input, No bumper** 2 

NonLin_Impact.mat* Impact input, With bumper 5 

NonLin_Impact_Reciprocity.mat* Impact input, With bumper** 2 

* The files are in the Matlab structure data format. H: frequency response functions; C: coherence 
functions; freq: frequency axis. The number corresponds to the channel number.  
** Each frequency response function is measured after the locations of the accelerometer and the impact 
location is switched.  

 
15. OTHER ENGINEERING INSTITUTE STRUCTURAL HEALTH MONITORING 

REPORTS AND THESES 
All reports and theses can be downloaded from www.lanl.gov/projects/ei

 Reports 
• “Power Harvesting for Embedded Structural Health Monitoring Sensing Systems,” Los 

Alamos National Laboratory report, LA-14314-MS (2007). 

• “A Review of Structural Health Monitoring Literature from 1996-2001,” Los Alamos 
National Laboratory report LA-13976-MS (2004). 

• “Damage Prognosis: Current Status and Future Needs,” Los Alamos National 
Laboratory report LA-14051-MS (July 2003).  

• “Damage Detection in Mechanical Structures Using Extreme Value Statistics,” Los 
Alamos National Laboratory report, LA-13903-MS (August 2002). 
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• “Applying the LANL Statistical Pattern Recognition Paradigm for Structural Health 
Monitoring to Data from a Surface-Effect Fast Patrol Boat,” Los Alamos National 
Laboratory Report Los Alamos National Laboratory report LA-13761-MS, (Jan. 2001).  

• "Structural Health Monitoring Studies of the Alamosa Canyon and I-40 Bridges," Los 
Alamos National Laboratory report, LA-13635-MS (July, 2000).  

• “Damage Identification and Health Monitoring of Structural and Mechanical Systems 
From Changes in their Vibration Characteristics: A literature Review,” Los Alamos 
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