Multi-scale Modeling of Composite Material Damage: An Overview

Todd O. Williams

Irene J. Beyerlein

Workshop on Validating of Damage Evolution Models for Composite Materials, August 14-16, 2007

LAUR-07-5332

Scope of Talk

- Give an overview of damage modeling approaches at the different pertinent length scales for laminate structures
 - Structural models : O(m), structural thickness
 - Meso-scale models, O(mm), lamina thickness
 - Delamination modeling
 - Meso-scale constitutive models
 - Material point models, O(µm sub mm)
 - Continuum (constitutive & failure surface) models
 - Micromechanical models
 - Deterministics
 - Stochastic
- Strengths/weaknesses/validation & other considerations

Model Connectivity

Setting the Stage

- Advanced structural applications increasingly operate in regimes dominated by history-dependent phenomena
 - Increasing use of laminated composite structures to meet demands
- To accurately model damage/history-dependent behavior over multiple scales must:
 - Explicitly couple behaviors across the different scales
 - Consider mesoscale directly rather than in smeared sense
 - Deal with complex material models
 - Have accurate fields representations Nonlinear evolution
 - Not introduce restrictive assumptions about constitutive behavior/models and types of damage states

Setting the Stage

- To model damage/failure traverse all realms of behavior:
 - Elastic
 - Viscoelastic/viscoplastic
 - Damage initiation Types of damage?
 - » Damage growth More types of damage?
 - » Failure
- Interactions of different mechanisms at each & over all the different length scales can result in non-intuitive behaviors
- Complex loading states
- Strain rate : Static, Intermediate, Dynamic

- Shock : Wave propagation, strong field gradients

- What is full range of structural response characteristics expected, i.e. what need to be incorporated in the structural theory?
 - Static vs. Dynamic behavior
 - Vibration modes
 - Bending/extension
 - Degree of deformation
 - Small rotation/small strain Geometric linearity
 - Moderate rotation/small strain Von Karman assumption
 - Large rotation/small strain
 - Finite deformations (large rotations/large deformations/large strains)
 - Buckling
- What are the structural boundary conditions?
 - Dirichlet, Neumann, Robin (mixed) B.C.s
 - Simply supported, clamped, etc

- Traditional (3D) Finite Elements
 - Strengths
 - Flexible set up/solution of problem Available tools for meshing/analysis
 - Well proven Extensive application to many problems
 - Can handle complex constitutive models
 - Delamination can be handled using various types of cracking analyses - Cohesive zone models, VCCT, etc.
 - Weaknesses
 - Typically uses lower order elements in practice Use more elements?
 - Locking/Element aspect ratio
 - Lower order elements
 - Computational efficiency for many lamina
 - Most current practical forms have discontinuous fields at interfaces
 - Implications for evolution of history-dependent effects

NATIONAL LABORATOR Cracking only between elements FIED

- Plate/Shell Theories
 - Smeared/Equivalent Single Layer
 - Strengths
 - Global responses ok for large plate aspect ratios (> 20)
 - » Vibration modes
 - » Bending/extension
 - Computationally efficient
 - Weaknesses
 - Can't provide accurate representations of local fields Inaccurate estimates for evolution of history-dependent effects/damage/failure in general loading situations
 - Can't incorporate delamination effects
 - Some versions don't go to correct limits (thick/thin plate limits)
 - Discontinuous tractions at interfaces
 - Often limited types of boundary conditions on top/bottom surfaces

- Plate/Shell Theories (cont'd)
 - Discrete layer/Zig-Zag
 - Strengths
 - Can provide very accurate estimates for local fields
 - Can handle complex constitutive theories (not Zig-Zag theories)
 - Can incorporate delamination thru CZM, VCCT, etc
 - Approach satisfaction of interfacial continuity as order increases
 - Weaknesses
 - Accurate solutions Computationally demanding

- Plate/shell theories
 - Multiscale theories Global/Local fields
 - Strengths
 - Can provide very accurate estimates for local fields
 - Can handle complex constitutive theories (not Zig-Zag theories)
 - Can incorporate delamination thru CZM, VCCT, etc
 - Potentially more computationally efficient than discrete layer theories
 - » Mix global orders and local orders to obtain optimal efficiency
 - Can satisfy interfacial constraints exactly (GMSST)
 - Framework from which to obtain ESL, DL, as well as global/local
 - Transition from multiscale to global only analysis w/in surface of plate/shell
 - » Obtain accurate results in critical regions and less accurate results in regions far away
 - » Enhanced computational efficiency for entire solution

Weaknesses

EST 1943

- More computationally demanding that smeared theories

- FE application of plate/shell theories
 - Easier mesh generation than 3D Finite Elements
 - Computationally more efficient than 3D FE due to separation of inplane and through thickness integration
 - Locking/Aspect ratio issues still present (inplane)
 - Some FE implementations of plate theory do not go to the correct limits (Classical FE/FSDT locks for thin plates, unlike FE/CLT)
- Can implement plate/shell theories in other types of numerical strategies
 - Particle Methods
 - Etc.

Structural Modeling – V&V Issues

- Can carry out initial V&V w/in context of exact solutions for boundary value problems (BVPs)
 - Use of exact solutions eliminates uncertainty issues
 - What BVPs most appropriate/most demanding?
 - Types of B.C.s Cylindrical bending, etc
 - Types of layups Monolithic, Cross ply, angle ply, general layup
 - Types of material behavior (currently almost exclusively elastic material behavior)
 - Need to incorporate inelastic effects
 - Loading states (currently mostly static BVPs)
 - Need BVPs for dynamic effects
- Comparison w/other analysis techniques for some problem set

Structural Modeling – V&V Issues

- Comparison w/experimental data for structural response
 - Introduces the need to quantify uncertainty in material behavior/constitutive theories
 - Material consistency/uniformity
 - Identification of constitutive model parameters : Extra work/money
- Appropriate combination of the above comparisons?
- Statistical issues
 - Variability of material properties
 - Fiber alignments
 - Gaps between tows
 - Variability of lamina thickness
 - Variability of interlaminar regions

• Types of failure mechanisms

- Ply cracking/splitting
- Delamination
- Sublaminate buckling
- Crushing
- Kink band formation
- Localization of failure
- Interactions between mechanisms

- Models for delamination
 - Cohesive zone models (CZMs) Relates interfacial tractions to displacement discontinuities
 - Strengths
 - Can predict initiation and growth w/o a priori assumptions about cracks
 - Can formulate using internal state variable formalism
 Variety of (coupled) history-dependent effects
 - Can be implemented into many types of numerical strategies
 - » Applicable to complex structures subjected to complex loading states
 - Direct connection to fracture mechanics
 - Weaknesses
 - Currently accurate assessments tied to element size in FE
 - Computational efficiency (unpublished work at LANL shows how to eliminate this constraint)
 - Actual shape of the CZM may not be important Uniqueness?
 - Characterization data can be hard to obtain

- Models for delamination
 - Fracture Mechanics based analyses : LEFM, VCCT, etc.
 - General Strengths
 - Large body of work
 - Different types of growth criteria : SIF, SERR, etc.
 - Some versions of these techniques can handle complex constitutive models for material behavior
 - General weaknesses
 - Assumptions about cracks
 - » Number of cracks
 - » Location of crack(s)
 - » Size of crack(s)
 - » Can be difficult to determine direction of growth/mode separation
 - Potential length scale issues in composites (process zone size)
 - Application to complex structures subjected to complex loading states can be difficult
 - Characterization data can be hard to obtain

- Meso-scale (lamina scale) continuum damage modeling
 - Assumes uniform stress/strain states within lamina
 - Thermodynamically derived constitutive relations for lamina behavior : Internal state variable (ISV) formalism
 - Strengths
 - Computationally efficient since no field variation through thickness
 - History-dependent behavior predicted :
 - Can incorporate many types of (smeared) effects: Viscoplasticity, Cracking, Etc.
 - Weaknesses
 - Accuracy of smeared assumption
 - Variation from mean fields
 - Static vs. Dyn. loading states : Dyn. Potentially strong grad. w/in lamina
 - Characterization/interpretations of model parameters

Meso-Scale Modeling – V&V Issues

- How to uniquely validate a given meso-scale fracture model since typically have material effects influencing behavior
 - Multiple phenomena interacting at lower length scales
 - Complex, 3D constitutive models
- Statistical issues
 - Sensitivity of the predictions to variations in the model parameters
 - Variations in model parameters : Variability in experimental data/material behavior: Elastic properties, damage location/localization, strength, etc.

Material Point Modeling

- (Some) General requirements for Material Models
 - Processing effects
 - Changing strain rates (static to dynamic)
 - Changing load paths (monotonic vs cyclic vs complex)
 - Changing temperatures rates and paths
 - Coupling between mechanical, thermal, and moisture (and chemical and electrical?) effects
 - Aging
 - Influence of microstructure : Interactions between the constituents/interfaces
 - Types and evolution of damage : Appropriate underlying physics Many types at once
 - Interactions between the different effects

Material Point Modeling

- Large number of damage mechanisms
 - Debonding of constituents
 - Micro-buckling/kinking of constituents
 - History-dependent deformations within constituents
 - Void initial/growth/coalescence
 - Fiber bridging
 - Fiber or matrix damage/cracking
 - Others?

Material Point Modeling

- Two types of theories : Continuum & Micromechanical
 - Continuum level theories :
 - Consider material behavior at macroscopic level as function of current state
 - Thermodynamically based OR Empirically postulated
 - Many types : LEFM, Weibull Strength of brittle materials, Phenomenological failure theories, Phenomenological constitutive theories
 - Micromechanical theories :
 - Directly consider the material microstructure and the phase behaviors to predict both macroscopic and microscopic responses
 - Homogenization based theories
 - Deterministic vs stochastic
 - Direct micromechanical analyzes

- Both types of models assume scale separation

- Failure surface models
 - Many types Max. strain/stress, Tsai-Hill, Polynomial Tensor, etc.
 - Range from simple to fairly complex
 - World-wide failure exercise discusses formulations and capabilities of many leading theories of this type
 - Strengths
 - Computationally efficient
 - Easily implemented in various types of numerical strategies
 - Useful for examining trends in many possibilities
 - Weaknesses
 - Independent of material constitutive behavior Not history-dependent
 - Phenomenological/Empirical
 - Predictions : Initial damage state vs final damage state?
 - Validity in coupled loading states

dentification of model parameters

- Macroscopic constitutive theories
 - Material behavior determined by current state
 - Basis (often) rests on thermo-dynamic constraints/relations although have empirical developments as well
 - $1^{st} \,and \, 2^{nd} \, law$
 - Thermo-dynamic potentials
 - Postulates types/evolution/interactions of history-dependent effects – Internal State Variables (ISV)
 - Only two observable external state variables : Strain and Temperature
 - ISVs inferred/postulated : Attempt to account for changes in internal state/structure
 - Gives macroscopic response only
 - Examples Viscoelastic theories, Incremental plasticity, Bodner-Partom viscoplastic theory, Continuum Damage Mechanics (scalar and tensor forms), etc.

- Macroscopic constitutive theories
 - Strengths
 - Computationally efficient
 - Large historical body of work
 - Flexible formulational framework
 - Can couple many types of physical mechanisms interactively
 - Can be/have been implemented into many numerical schemes
 - Characterization of model parameters can be simpler than for micromechanical models (no interface parameters needed)

- Macroscopic constitutive theories
 - Weaknesses
 - No direct account of microstructure
 - No direct account of fundamental response mechanisms/interactions
 - Postulates types/evolution/interactions of history-dependent effects
 - Only two observable state variables : Strain and Temperature
 - Internal state variables inferred/postulated
 - No generally accepted set of ISVs for given class of materials
 - » Some art in chosing set of ISVs, the thermodynamic potentials, and the evolution equations for ISVs
 - Need to reformulate if postulated physics changes
 - Complex models Large numbers of ISVs
 - More difficult to integrate due to many time scales
 - More difficult to characterize model parameters
 - More difficult to interpret meaning of different parameters
 - More sensitive to changes in the data?
 - Development for anisotropic materials more complex than for isotropic

Los Alamos^{materials}

Material Point Modeling – Micromech. Theories

- Micromechanical theories
 - General Strengths
 - Direct insight into microstructural effects
 - Direct insight into fundamental response mechanisms and their relative importance
 - Gives both micro and macro responses
 - Can incorporate physics as necessary
 - Handles anisotropy naturally

Material Point Modeling – Micromech. Theories

- Micromechanical theories
 - General Weaknesses
 - How much microstructural info is enough?
 - Definition of appropriate microstructure (RVE/Unit Cell)
 - Mean fields vs. detailed microstructural info
 - Type of physics incorporated influences predictions
 - More characterization info req'd than continuum constitutive theories
 - Phase properties,
 - Interface properties (Often very difficult to obtain accurately)
 - Accurate simulations
 - More computational state variables to carry in analysis
 - » More memory intensive
 - » More computationally demanding (than most continuum level theories)

Material Point Modeling – V&V Issues

- Interpretation of Exp. Data What is the appropriate underlying physics?
- Material characterization
 - Simple tests Sufficiency/uniqueness?
 - Elimination of structural size effects to obtain pure material behavior
 - Nonlinear, multivariable optimization for advanced continuum level models
 - Sensitivities of the models to variation in the parameters
 - Influence of experimental data variability
- Satisfaction of the scale separation assumption?
 - Under strong dynamic loading assumption may not be satisfied.

Summary/Final Considerations

- Many required component models required to analyze multiscale BVPs
 - Non-intuitive interactions between different physics and different component models can occur
- Questions that need to be addressed within the context of a given modeling framework:
 - Accuracy
 - How is this judged?
 - What is good enough?: Trends/Engineering analyses vs. accurate predictive analyses? Probably require both to ensure safety.
 - Accuracy vs. computational efficiency vs. modeling framework/ complexity vs. computational resources – Trade offs
- Where's the uncertainty and how is it propagating thru analysis?

Not so Bleak – Dedicated to Frank Addessio

- Outlined many problems but is the picture so bleak? NO.
 - Any approach is a optimization of different considerations : Must balance needs/capabilities
 - Identify size of critical regions in structure?
 - Is computational efficiency more important than accuracy or vice versa or is this even a necessary questions?
 - Can different techniques be combined to enhance both accuracy and OVERALL computational efficiency?
 - » Use meso-scale constitutive models away from critical area while use continuum or micromechanical constitutive models in critical area?
 - Can new techniques be introduced?
 - » Multiscale analysis with global/local to global only transitions can enhance comp. efficiency.
 - Are trends good enough or do you need predictive capabilities?
 - » A lot of experimental data vs. little experimental data?

Los AlamosComputational resources are getting more capable all the time.

Not so Bleak

- Additional considerations
 - Computational resources are getting more capable all the time.
 - Parallel processing makes some things more feasible.
 - How much time to you have to do the implementations?
 - How much expertise required to do the implementations?
 - Modeling is getting more complex \rightarrow Team efforts becoming more important

