Noncompartmental vs. Compartmental Approaches to
Pharmacokinetic Data Analysis

Paolo Vicini, Ph.D. David M. Foster., Ph.D.

Pfizer Global Research and University of Washington Development
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Questions To Be Asked

> Pharmacokinetics

- What the body does to the drug
> Pharmacodynamics
- What the drug does to the body
> Disease progression
- Measurable therapeutic effect
$>$ Variability
- Sources of error and biological variation
> Pharmacokinetics
"What the body does to the drug"
Fairly well known
Useful to get to the PD

Pharmacodynamics
"What the drug does to the body"
> Largely unknown Has clinical relevance Pharmacokinetics / Pharmacodynamics

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hierarchical Variability

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pharmacokinetic Parameters

> Definition of pharmacokinetic parameters \qquad

- Descriptive or observational
- Quantitative (requiring a formula and a means to estimate using the formula)
> Formulas for the pharmacokinetic parameters
$>$ Methods to estimate the parameters from the formulas using measured data

Models For Estimation

Noncompartmental
Compartmental
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goals Of This Lecture

> Description of the parameters of interest \qquad
> Underlying assumptions of
noncompartmental and compartmental models
> Parameter estimation methods
$>$ What to expect from the analysis
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goals Of This Lecture

$>$ What this lecture is about \qquad

- What are the assumptions, and how can these affect the conclusions \qquad
- Make an intelligent choice of methods depending upon what information is required from the data
$>$ What this lecture is not about
- To conclude that one method is "better" than another

A Drug In The Body:
Constantly Undergoing Change
$>$ Absorption
$>$ Transport in the circulation
> Transport across membranes
> Biochemical transformation
> Elimination

A Drug In The Body:
Constantly Undergoing Change

\qquad

Definition Of Kinetics:

Consequences
Spatial: Where in the system

- Spatial coordinates
- Key variable: $s=(x, y, z)$

Temporal: When in the system

- Temporal coordinates
- Key variable: t
$\frac{\partial c(\vec{s}, t)}{\partial x}, \quad \frac{\partial c(\vec{s}, t)}{\partial y}, \quad \frac{\partial c(\vec{s}, t)}{\partial z}, \quad \frac{\partial c(\vec{s}, t)}{\partial t}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Drug In The Body:
Constantly Undergoing Change

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Spatially Distributed Models

$>$ Spatially realistic models:

- Require a knowledge of physical chemistry, irreversible thermodynamics and circulatory dynamics.
- Are difficult to solve.
- It is difficult to design an experiment to estimate their parameter values.
$>$ While desirable, normally not practical.
> Question: What can one do?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Resolving The Problem

$>$ Reducing the system to a finite number of components
> Lumping processes together based upon time, location or a combination of the two
> Space is not taken directly into account: rather, spatial heterogeneity is modeled through changes that occur in time
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Lumped Parameter Models

$>$ Models which make the system discrete through a lumping process thus eliminating the need to deal with partial differential equations.
> Classes of such models:

- Noncompartmental models

Based on algebraic equations

- Compartmental models

Based on linear or nonlinear differential equations

Probing The System

> Accessible pools: These are system spaces that are available to the
experimentalist for test input and/or measurement.
Nonaccessible pools:
These are spaces comprising the rest of the system which are not available for test input and/or measurement.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Focus On The Accessible Pool \qquad INPUT

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Characteristics Of The Accessible Pool

Kinetically Homogeneous Instantaneously Well-mixed

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Pharmacokinetic Parameters

$>$ Which pharmacokinetic parameters can
\qquad we estimate based on measurements in the accessible pool? \qquad
> Estimation requires a model

- Conceptualization of how the system works
> Depending on assumptions:
- Noncompartmental approaches
- Compartmental approaches
\qquad
\qquad
\qquad
\qquad

Accessible Pool \& System
Assumptions \rightarrow Information
> Accessible pool

- Initial volume of distribution
- Clearance rate
- Elimination rate constant
- Mean residence time
- System
- Equivalent volume of distribution
- System mean residence time
- Bioavailability
- Absorption rate constant
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compartmental and Noncompartmental Analysis

The only difference between the two methods is in how the nonaccessible portion of the system is described

The Noncompartmental Model \qquad

SOURCE

ELIMINATION

Recirculation-exchange Assumptions

Recirculation/

\qquad

Single Accessible Pool
Noncompartmental Model
> Parameters (IV bolus and infusion)

- Mean residence time
- Clearance rate
- Volume of distribution
> Estimating the parameters from data
> Additional assumption:
- Constancy of kinetic distribution parameters

Mean Residence Time
$>$ The average time that a molecule of drug spends in the system

Areas Under The Curve

$>$ AUMC

- Area Under the Moment Curve
> AUC
- Area Under the Curve
$>$ MRT
- "Normalized" AUMC (units = time)
$M R T=\frac{\int_{0}^{+\infty} t(t) d t}{\int_{0}^{+\infty} C(t) d t}=\frac{A U M C}{A U C}$

What Is Needed For MRT?
> Estimates for AUC and AUMC. \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

What Is Needed For MRT?

> Estimates for AUC and AUMC. \qquad

```
AUC= \int
```

\qquad
$A U M C=\int_{0}^{\infty} t \cdot C(t) d t=\int_{0}^{t_{1}} t \cdot C(t) d t+\int_{t_{1}}^{t_{n}} t \cdot C(t) d t+\int_{t_{n}}^{\infty} t \cdot C(t) d t$ \qquad
> They require extrapolations beyond the time frame of the experiment \qquad
> Thus this method is not model independent as often claimed. \qquad
\qquad

Estimating AUC And AUMC Using Sums Of Exponentials

AUMC $=\int_{0}^{t} \cdot C(t) d t=\int_{0}^{4 t} t \cdot C(t) d t+\int_{4}^{4 t} t \cdot C(t) d t+\int_{a}^{s} t \cdot C(t) d t$
$C(t)=A_{1} e^{-\lambda_{1} t}+\cdots+A_{n} e^{-\lambda_{n} t}$

Bolus IV Injection
Formulas can be extended to other administration sites

$$
\begin{aligned}
\mathrm{AUC} & =\int_{0}^{\infty} \mathrm{C}(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{A}_{1}}{\lambda_{1}}+\cdots+\frac{\mathrm{A}_{\mathrm{n}}}{\lambda_{n}} \\
\mathrm{AUMC} & =\int_{0}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{A}_{1}}{\lambda_{1}^{2}}+\cdots+\frac{\mathrm{A}_{n}}{\lambda_{n}^{2}}
\end{aligned}
$$

$$
C(0)=A_{1}+\cdots+A_{n}
$$

Estimating AUC And AUMC Using Other Methods

> Trapezoidal
> Log-trapezoidal
$>$ Combinations
$>$ Other
$>$ Role of extrapolation

The Integrals

> These other methods provide formulas for the integrals between t_{1} and t_{n} leaving it up to the researcher to extrapolate to time zero and time infinity.
$A U C=\int_{0}^{\infty} C(t) d t=\int_{0}^{t_{1}} C(t) d t+\int_{t_{1}}^{t_{n}} C(t) d t+\int_{t_{n}}^{\infty} C(t) d t$
$A U M C=\int_{0}^{\infty} t \cdot C(t) d t=\int_{0}^{t_{1}} t \cdot C(t) d t+\int_{t_{1}}^{t_{n}} t \cdot C(t) d t+\int_{t_{n}}^{\infty} t \cdot C(t) d t$
\qquad

Trapezoidal Rule

> For every time $t_{i}, i=1, \ldots, n$

$$
A \cup C_{i-1}^{i}=\frac{1}{2}\left[y_{\text {obs }}\left(t_{i}\right)+y_{\text {obs }}\left(t_{i-1}\right)\right]\left(t_{i}-t_{i-1}\right)
$$

AUMC $_{\mathrm{i}-1}^{i}=\frac{1}{2}\left[\mathrm{t}_{\mathrm{i}} \cdot \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{t}_{\mathrm{i}-1} \cdot \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)\right]\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Log-trapezoidal Rule

$>$ For every time $t_{i}, i=1, \ldots, n$ \qquad

$\operatorname{AUMC}_{\mathrm{i}-1}^{\mathrm{i}}=\frac{1}{\ln \left(\frac{\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)}{\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)}\right)}\left[\mathrm{t}_{\mathrm{i}} \cdot \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}}\right)+\mathrm{t}_{\mathrm{i}-1} \mathrm{y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{i}-1}\right)\right]\left(\mathrm{t}_{\mathrm{i}}-\mathrm{t}_{\mathrm{i}-1}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad

Trapezoidal Rule Potential Pitfalls

> As the number of samples decreases, the interpolation may not be accurate (depends on the shape of the curve)
Extrapolation from last measurement necessary

Extrapolating From t_{n} To Infinity
$>$ Terminal decay is assumed to be a \qquad monoexponential
$>$ The corresponding exponent is often called λ_{z}.
$>$ Half-life of terminal decay can be calculated: \qquad $t_{z / 1 / 2}=\ln (2) / \lambda_{z}$

Extrapolating From t_{n} To Infinity

\qquad

From last data point:
\qquad
$A \cup C_{\text {extrap-dat }}=\int_{t_{n}}^{\infty} C(t) d t=\frac{y_{\text {obs }}\left(t_{n}\right)}{\lambda_{z}}$
$\mathrm{AUMC}_{\text {extrap-dat }}=\int_{\mathrm{t}_{n}}^{\infty} \mathrm{t} \cdot \mathrm{C}(\mathrm{t}) \mathrm{dt}=\frac{\mathrm{t}_{\mathrm{n}} \cdot \mathrm{Y}_{\text {obs }}\left(\mathrm{t}_{\mathrm{n}}\right)}{\lambda_{z}}+\frac{\mathrm{y}_{\text {obs }}\left(\mathrm{t}_{n}\right)}{\lambda_{\mathrm{z}}^{2}}$
From last calculated value:

$$
\begin{gathered}
\mathrm{AUC}_{\text {extrap-calc }}=\int_{t_{n}}^{\infty} C(t) d t=\frac{A_{z} e^{-\lambda_{z} t_{n}}}{\lambda_{z}} \\
\mathrm{AUMC}_{\text {extrap-calc }}=\int_{t_{n}}^{\infty} t \cdot C(t) d t=\frac{t_{n} \cdot A_{z} e^{-\lambda_{2} t_{n}}}{\lambda_{z}}+\frac{A_{z} e^{-\lambda_{z} t_{n}}}{\lambda_{z}^{2}}
\end{gathered}
$$

\qquad
\qquad
\qquad
\qquad
\qquad

Extrapolating From t_{n} To Infinity
> Extrapolating function crucial \qquad
\qquad
\qquad
$\stackrel{0}{0}$

\qquad

Estimating The Integrals

$>$ To estimate the integrals, one sums up the \qquad individual components.

\qquad
\qquad
\qquad

Advantages Of Using Sums

 Of Exponentials> Extrapolation done as part of the data \qquad fitting

- Statistical information of all parameters calculated
> Natural connection with the solution of linear, constant coefficient compartmental models
Software available
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Clearance Rate

- The volume of blood cleared per unit time,
\qquad relative to the drug

$\mathrm{CL}=\frac{\text { Elimination rate }}{\text { Con }}$
 Concentratoninblood

> It can be shown that \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Compartmental Model
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single Accessible Pool Models
Noncompartmental $>$ Compartmental \qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Model Of The System \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compartmental Model

$>$ Compartment \qquad

- Instantaneously well-mixed
- Kinetically homogeneous
> Compartmental model
- Finite number of compartments
- Specifically connected
- Specific input and output

Kinetics And The Compartmental Model

> Time and space
$\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}$
∂x ' $\partial y^{\prime} \partial z$ ' ∂t
$\rightarrow X(x, y, z, t)$
$\rightarrow \frac{\partial X(x, y, z, t)}{\partial x}, \frac{\partial X(x, y, z, t)}{\partial y}, \frac{\partial X(x, y, z, t)}{\partial z}, \frac{\partial X(x, y, z, t)}{\partial t}$
$>$ Time

Demystifying Differential Equations
$>$ It is all about modeling rates of change, i.e. slopes, or derivatives:

$>$ Rates of change may be constant or not

Ingredients Of Model Building

$>$ Model of the system

- Independent of experiment design
- Principal components of the biological system
> Experimental design
- Two parts:

Input function (dose, shape, protocol)
Measurement function (sampling, location)
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single Compartment Model

$\frac{d q_{1}(t)}{d t}=-k(0,1) q_{1}(t)$
> The rate of change of the amount in the compartment, $q_{1}(t)$, is equal to what enters the compartment (inputs or initial conditions), minus what leaves the compartment, a quantity proportional to $\mathrm{q}_{1}(\mathrm{t})$
$k(0,1)$ is a rate constant

Experiment Design
Modeling Input Sites

- The rate of change of the amount in the compartment, $q_{1}(t)$, is equal to what enters the compartment (Dose), minus what leaves the compartment, a quantity proportional to $q(t)$
Dose(t) can be any
function of time

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The $F_{i j}$

$>$ Describe movement among, into or out of
\qquad a compartment
> A composite of metabolic activity

- transport
- biochemical transformation
- both
> Similar (compatible) time frame

A Proportional Model For The Compartmental Fluxes
$>q=$ compartmental masses \qquad
$>p=$ (unknown) system parameters
$>\mathrm{k}_{\mathrm{ji}}=\mathrm{a}$ (nonlinear) function specific to the transfer from i to j \qquad

$$
F_{\mathrm{ji}}(\mathrm{q}, \mathrm{p}, \mathrm{t})=\mathrm{k}_{\mathrm{ji}}(\mathrm{q}, \mathrm{p}, \mathrm{t}) \cdot \mathrm{q}_{\mathrm{i}}(\mathrm{t})
$$

The k_{ij}

- The fractional coefficients k_{ij} are called \qquad fractional transfer functions
- If k_{ij} does not depend on the compartmental masses, then the kij is called a fractional transfer (or rate) constant.

$$
\mathrm{k}_{\mathrm{ij}}(\mathrm{q}, \mathrm{p}, \mathrm{t})=\mathrm{k}_{\mathrm{ij}}
$$

Compartmental Models And Systems Of Ordinary Differential Equations
$>$ Good mixing

- permits writing $Q_{f}(t)$ for the $i^{i t h}$ compartment.
$>$ Kinetic homogeneity
- permits connecting compartments via the k_{ij}.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear, Constant Coefficient

 Compartmental Models> All transfer rates k_{ij} are constant.

- This facilitates the required computations \qquad greatly
> Assume "steady state" conditions.
- Changes in compartmental mass do not affect the values for the transfer rates

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The Compartmental Matrix

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$>$ A detailed postulation of how one believes a system functions.
$>$ The need to perform the same experiment on the model as one did in the laboratory.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Experiments

> Need to recreate the laboratory
experiment on the model.
$>$ Need to specify input and measurements
$>$ Key: UNITS

- Input usually in mass, or mass/time
- Measurement usually concentration

Mass per unit volume
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Model Of The System?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Pharmacokinetic Experiment
Collecting System Knowledge

The model starts as a qualitative construct, based on known physiology and further
\qquad assumptions \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parameter Estimates

$>$ Model parameters: k_{ij} and volumes
> Pharmacokinetic parameters: volumes, clearance, residence times, etc.
$>$ Reparameterization - changing the parameters from k_{ij} to the PK parameters.

Recovering The PK Parameters From Compartmental Models
> Parameters can be based upon

- The model primary parameters

Differential equation parameters
Measurement parameters

- The compartmental matrix

Aggregates of model parameters

Compartmental Residence Times

> Rate constants
> Residence times

- Intercompartmental clearances
\qquad

Parameters Based Upon The Compartmental Matrix

$K=\left[\begin{array}{cccc}k_{11} & k_{12} & \cdots & k_{1 n} \\ k_{21} & k_{22} & \cdots & k_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{n 1} & k_{n 2} & \cdots & k_{n n}\end{array}\right] \quad \Theta=-K^{-1}=\left(\begin{array}{cccc}\vartheta_{11} & \vartheta_{12} & \cdots & \vartheta_{1 n} \\ \vartheta_{21} & \vartheta_{22} & \cdots & \vartheta_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ \vartheta_{n 1} & \vartheta_{n 2} & \cdots & \vartheta_{n n}\end{array}\right)$

Theta, the negative of the inverse of the compartmental matrix, is called the mean residence time matrix.

Parameters Based Upon The Compartmental Matrix
 Generalization of Mean Residence Time

$母_{\mathrm{ij}} \quad$ The average time the drug entering compartment for the first time spends in compartment i before leaving the system.
$\frac{\Im_{\mathrm{ij}}}{\Im_{\mathrm{ii}}}, \quad \mathrm{i} \neq \mathrm{j} \quad \begin{aligned} & \text { The probability that a drug particle in } \\ & \text { compartment } \mathrm{j} \text { will eventually pass through } \\ & \text { compartment } \mathrm{i} \text { before leaving the system. }\end{aligned}$

Compartmental Models:

Advantages
$>$ Can handle nonlinearities
> Provide hypotheses about system structure
> Can aid in experimental design, for example to design dosing regimens
$>$ Can support translational research
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Noncompartmental Versus Compartmental Approaches To PK Analysis: A Example
$>$ Bolus injection of 100 mg of a drug into plasma. Serial plasma samples taken for 60 hours.
> Analysis using:

- Trapezoidal integration
- Sums of exponentials
- Linear compartmental model

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Trapezoidal Analysis	Sum of Exponentials	Compartmental Model
	$10.2(9 \%)$	$10.2(3 \%)$
1.02	$1.02(2 \%)$	$1.02(1 \%)$
19.5	$20.1(2 \%)$	$20.1(1 \%)$
0.0504	$0.0458(3 \%)$	$0.0458(1 \%)$
97.8	$97.9(2 \%)$	$97.9(1 \%)$
1908	$1964(3 \%)$	$1964(1 \%)$

\qquad

Take Home Message

$>$ To estimate traditional pharmacokinetic \qquad parameters, either model is probably okay when the sampling schedule is dense \qquad
> Sparse sampling schedule may be an issue for noncompartmental analysis \qquad
$>$ Noncompartmental models are not predictive \qquad
> Best strategy is probably a blend: but, careful about assumptions! \qquad
\qquad

Some References

> JJ DiStefano III. Noncompartmental vs
compartmental analysis: some bases for choice. Am J. Physiol. 1982;243:R1-R6

- DG Covell et. al. Mean Residence Time. Math. Biosci. 1984;72:213-2444
- Jacquez, JA and SP Simon. Qualitative theory of compartmental analysis. SIAM Review 1993;35:4379
Jacquez, JA. Compartmental Analysis in Biology and Medicine. BioMedware 1996. Ann Arbor, MI.
Cobelli, C, D Foster and G Toffolo. Tracer Kinetics in Biomedical Research. Kluwer Academic/Plenum Publishers. 2000, New York.

