Noncompartmental vs. Compartmental Approaches to Pharmacokinetic Data Analysis

Paolo Vicini, Ph.D. Pfizer Global Research and Development

David M. Foster., Ph.D. University of Washington

Questions To Be Asked

- > Pharmacokinetics
 - What the body does to the drug
- > Pharmacodynamics
 - What the drug does to the body
- > Disease progression
 - Measurable therapeutic effect
- > Variability
 - Sources of error and biological variation

Sin 12.00	ul		ne	ous	sly I	Prese	nt	Varia Betwee own Var	en-Subje	ct and
10.00 -	۰ ۰	٥	\$	\$						
8.00 -	°°°°	*	∘ •∞	8	۵ ۵	8		Biologica	al sources?	
6.00 -	هه ۵۵	8	8 8	8 8 8 8	◇		8			
4.00 -	** *				8	* ***	00 00 00			0
2.00 -	80 8						\$			۰ ۲
0.00 \$	00									80
0.00 €	00			5.00		10.00		15.00	20.00	25.00

Pharmacokinetic Parameters

- > Definition of pharmacokinetic parameters
 - Descriptive or observational
 - Quantitative (requiring a formula and a means to estimate using the formula)
- Formulas for the pharmacokinetic parameters
- Methods to estimate the parameters from the formulas using measured data

Models For Estimation

Noncompartmental Compartmental

Goals Of This Lecture

- > Description of the parameters of interest
- Underlying assumptions of noncompartmental and compartmental models
- > Parameter estimation methods
- > What to expect from the analysis

Goals Of This Lecture

- > What this lecture is about
 - What are the assumptions, and how can these affect the conclusions
 - Make an intelligent choice of methods
 depending upon what information is required
 from the data
- > What this lecture is not about
 - To conclude that one method is "better" than another

A Drug In The Body: Constantly Undergoing Change

- > Absorption
- > Transport in the circulation
- > Transport across membranes
- > Biochemical transformation
- Elimination

Kinetics And Pharmacokinetics

- > Kinetics
 - The temporal and spatial distribution of a substance in a system.
- > Pharmacokinetics
 - The temporal and spatial distribution of a drug (or drugs) in a system.

Spatially Distributed Models

- > Spatially realistic models:
 - Require a knowledge of physical chemistry, irreversible thermodynamics and circulatory dynamics.
 - Are difficult to solve.
 - It is difficult to design an experiment to estimate their parameter values.
- > While desirable, normally not practical.
- > Question: What can one do?

Resolving The Problem

- Reducing the system to a finite number of components
- Lumping processes together based upon time, location or a combination of the two
- Space is not taken directly into account: rather, spatial heterogeneity is modeled through changes that occur in time

Lumped Parameter Models

- Models which make the system discrete through a lumping process thus eliminating the need to deal with partial differential equations.
- > Classes of such models:
 - <u>Noncompartmental models</u>
 Based on algebraic equations
 - <u>Compartmental models</u>
 Based on linear or nonlinear differential equations

Probing The System

- Accessible pools: These are system spaces that are available to the experimentalist for test input and/or measurement.
- > Nonaccessible pools: These are spaces comprising the rest of the system which are not available for test input and/or measurement.

Characteristics Of The Accessible Pool

Kinetically Homogeneous Instantaneously Well-mixed

The Pharmacokinetic Parameters

- Which pharmacokinetic parameters can we estimate based on measurements in the accessible pool?
- > Estimation requires a model
 - Conceptualization of how the system works
- > Depending on assumptions:
 - Noncompartmental approaches
 - Compartmental approaches

Accessible Pool & System Assumptions \rightarrow Information

- > Accessible pool
 - Initial volume of distribution
 - Clearance rate
 - Elimination rate constant
 - Mean residence time
- > System
 - Equivalent volume of distribution
 - System mean residence time
 - Bioavailability
 - Absorption rate constant

Compartmental and Noncompartmental Analysis

The only difference between the two methods is in how the nonaccessible portion of the system is described

Single Accessible Pool Noncompartmental Model

- > Parameters (IV bolus and infusion)
 - Mean residence time
 - Clearance rate
 - Volume of distribution
- > Estimating the parameters from data
- > Additional assumption:
 - Constancy of kinetic distribution parameters

Mean Residence Time

> The average time that a molecule of drug spends in the system

What Is Needed For MRT?

> Estimates for AUC and AUMC.

 $AUC = \int_0^\infty C(t)dt = \int_0^{t_1} C(t)dt + \int_{t_1}^{t_n} C(t)dt + \int_{t_n}^\infty C(t)dt$

 $AUMC = \int_0^\infty t \cdot C(t) dt = \int_0^{t_1} t \cdot C(t) dt + \int_{t_1}^{t_n} t \cdot C(t) dt + \int_{t_n}^\infty t \cdot C(t) dt$

- > They require extrapolations beyond the time frame of the experiment
- Thus this method is not model independent as often claimed.

Formulas can be extended to other administration sites

$$AUC = \int_{0}^{\infty} C(t)dt = \frac{A_{1}}{\lambda_{1}} + \dots + \frac{A_{n}}{\lambda_{n}}$$

$$AUMC = \int_{0}^{\infty} t \cdot C(t)dt = \frac{A_{1}}{\lambda_{1}^{2}} + \dots + \frac{A_{n}}{\lambda_{n}^{2}}$$

$$C(0) = A_{1} + \dots + A_{n}$$

Estimating AUC And AUMC Using Other Methods

Bra -

12 Time

20

- > Trapezoidal
- > Log-trapezoidal
- Combinations
- > Other
- > Role of extrapolation

The Integrals

These other methods provide formulas for the integrals between t₁ and t_n leaving it up to the researcher to extrapolate to time zero and time infinity.

 $\begin{aligned} AUC &= \int_0^\infty C(t)dt = \int_0^{t_1} C(t)dt + \int_{t_1}^{t_n} C(t)dt + \int_{t_n}^\infty C(t)dt \\ AUMC &= \int_0^\infty t \cdot C(t)dt = \int_0^{t_1} t \cdot C(t)dt + \int_{t_1}^{t_n} t \cdot C(t)dt + \int_{t_n}^\infty t \cdot C(t)dt \end{aligned}$

Extrapolating From t_n To Infinity

- Ferminal decay is assumed to be a monoexponential
- > The corresponding exponent is often called λ_z .
- Half-life of terminal decay can be calculated:

 $t_{z/1/2} = \ln(2) / \lambda_z$

Extrapolating From t_n To Infinity

Estimating The Integrals
> To estimate the integrals, one sums up the
individual components.

$$AUC = \int_{0}^{\infty} C(t)dt = \int_{0}^{t_{1}} C(t)dt + \int_{t_{1}}^{t_{n}} C(t)dt + \int_{t_{n}}^{\infty} C(t)dt$$

$$AUMC = \int_{0}^{\infty} t \cdot C(t)dt = \int_{0}^{t_{1}} t \cdot C(t)dt + \int_{t_{n}}^{t_{n}} t \cdot C(t)dt + \int_{t_{n}}^{\infty} t \cdot C(t)dt$$

Advantages Of Using Sums Of Exponentials

- Extrapolation done as part of the data fitting
- Statistical information of all parameters calculated
- Natural connection with the solution of linear, constant coefficient compartmental models
- > Software available

Clearance Rate

> The volume of blood cleared per unit time, relative to the drug

 $CL = \frac{Elimination rate}{Concentration in blood}$

AUC

≻ It can be shown that CL = <mark>DrugDose</mark>

Compartmental Model

> Compartment

- Instantaneously well-mixed
- Kinetically homogeneous
- Compartmental model
 - Finite number of compartments
 - Specifically connected
 - Specific input and output

Ingredients Of Model Building

- > Model of the system
 - Independent of experiment design
 - · Principal components of the biological system
- > Experimental design
 - Two parts:
 - Input function (dose, shape, protocol)
 Measurement function (sampling, location)

Experiment Design Modeling Measurement Sites The measurement (sample) **s1** s1 does not subtract mass or perturb the system The measurement equation q1 s1 links q1 with the experiment, thus preserving the units of differential equations and data (e.g. q_1 is k(0,1) mass, the measurement is Dose concentration $q_1(t)$ s1(t) = compartment 1

The F_{ij}

- Describe movement among, into or out of a compartment
- > A composite of metabolic activity
 - transport
 - biochemical transformation
 - both
- > Similar (compatible) time frame

A Proportional Model For The Compartmental Fluxes

- > q = compartmental masses
- > p = (unknown) system parameters
- k_{ji} = a (nonlinear) function specific to the transfer from i to j

 $F_{ji}(q, p, t) = k_{ji}(q, p, t) \cdot q_i(t)$

(ref: see Jacquez and Simon)

The k_{ij}

- The fractional coefficients k_{ij} are called fractional transfer functions
- If k_{ij} does not depend on the compartmental masses, then the kij is called a fractional transfer (or rate) constant.

 $k_{ij}(q, p, t) = k_{ij}$

Compartmental Models And Systems Of Ordinary Differential Equations

- Good mixing
- permits writing Q_i(t) for the ith compartment.
- Kinetic homogeneity
 - permits connecting compartments via the $\boldsymbol{k}_{ij}.$

Linear, Constant Coefficient Compartmental Models

- > All transfer rates k_{ij} are constant.
 - This facilitates the required computations greatly
- > Assume "steady state" conditions.
 - Changes in compartmental mass do not affect the values for the transfer rates

Experiments

- Need to recreate the laboratory experiment on the model.
- > Need to specify input and measurements
- > Key: UNITS
 - Input usually in mass, or mass/time
 - Measurement usually concentration
 Mass per unit volume

Parameter Estimates

- > Model parameters: k_{ij} and volumes
- Pharmacokinetic parameters: volumes, clearance, residence times, etc.
- Reparameterization changing the parameters from k_{ij} to the PK parameters.

Recovering The PK Parameters From Compartmental Models

- > Parameters can be based upon
 - The model primary parameters
 Differential equation parameters
 Measurement parameters
 - The compartmental matrix
 Aggregates of model parameters

Parameters Based Upon The Compartmental Matrix

Generalization of Mean Residence Time

The average time the drug entering compartment j for the first time spends in compartment i before leaving the system.

<mark>Յ</mark>ii

The probability that a drug particle in compartment j will eventually pass through compartment i before leaving the system.

Compartmental Models: Advantages

- Can handle nonlinearities
- Provide hypotheses about system structure
- Can aid in experimental design, for example to design dosing regimens
- > Can support translational research

Noncompartmental Versus Compartmental Approaches To PK Analysis: A Example

- Bolus injection of 100 mg of a drug into plasma. Serial plasma samples taken for 60 hours.
- > Analysis using:
 - Trapezoidal integration
 - Sums of exponentials
 - Linear compartmental model

		Results	
	Trapezoidal Analysis	Sum of Exponentials	Compartmental Model
Volume		10.2 (9%)	10.2 (3%)
Clearance	1.02	1.02 (2%)	1.02 (1%)
MRT	19.5	20.1 (2%)	20.1 (1%)
λ _z	0.0504	0.0458 (3%)	0.0458 (1%)
AUC	97.8	97.9 (2%)	97.9 (1%)
AUMC	1908	1964 (3%)	1964 (1%)

Take Home Message

- > To estimate traditional pharmacokinetic parameters, either model is probably okay when the sampling schedule is dense
- > Sparse sampling schedule may be an issue for noncompartmental analysis
- > Noncompartmental models are not predictive
- Best strategy is probably a blend: but, careful about assumptions!

Some References

- JJ DiStefano III. Noncompartmental vs compartmental analysis: some bases for choice. Am J. Physiol. 1982;243:R1-R6
 DG Covell et. al. Mean Residence Time. Math. Biosci. 1984;72:213-2444
- Jacquez, JA and SP Simon. Qualitative theory of compartmental analysis. SIAM Review 1993;35:43-
- Jacquez, JA. <u>Compartmental Analysis in Biology and Medicine</u>, BioMedware 1996. Ann Arbor, MI.
 Cobelli, C, D Foster and G Toffolo. <u>Tracer Kinetics in Biomedical Research</u>, Kluwer Academic/Plenum Publishers. 2000, New York.