Continuous Renal Replacement Therapy

Gregory M. Susla, Pharm.D., F.C.C.M.
Associate Director, Medical Information
MedImmune, Inc.
Gaithersburg, MD

Definition of Terms

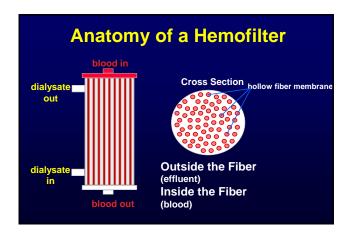
- SCUF Slow Continuous Ultrafiltration
- CAVH Continuous Arteriovenous Hemofiltration
- CAVH-D Continuous Arteriovenous Hemofiltration with Dialysis
- CVVH Continuous Venovenous Hemofiltration
- CVVH-D Continuous Venovenous Hemofiltration with Dialysis

Indications for Continuous Renal Replacement Therapy

- · Remove excess fluid because of fluid overload
- Clinical need to administer fluid to someone who is oliguric
 - Nutrition solution
 - Antibiotics
 - Vasoactive substances
 - Blood products
 - Other parenteral medications

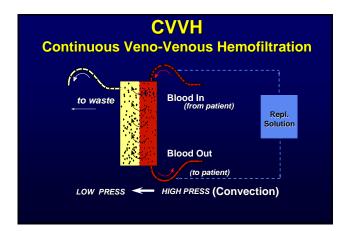
Advantages of Continuous Renal Replacement Therapy

- · Hemodynamic stability
 - Avoid hypotension complicating hemodialysis
 - Avoid swings in intravascular volume
- Easy to regulate fluid volume
 - Volume removal is continuous
 - Adjust fluid removal rate on an hourly basis
- Customize replacement solutions
- · Lack of need of specialized support staff

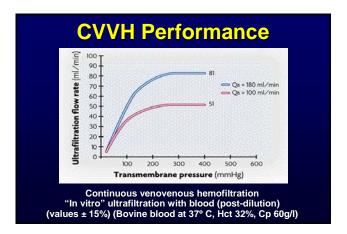

Disadvantages of Continuous Renal Replacement Therapy

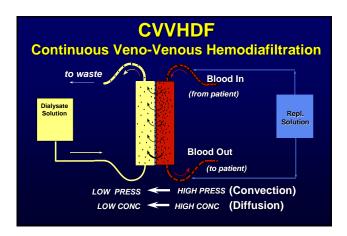
- · Lack of rapid fluid and solute removal
 - GFR equivalent of 5 20 ml/min
 - Limited role in overdose setting
- Filter clotting
 - Take down the entire system

Basic Principles


- Blood passes down one side of a highly permeable membrane
- Water and solute pass across the membrane
 - Solutes up to 20,000 daltons
 - Drugs & electrolytes
- Infuse replacement solution with physiologic concentrations of electrolytes

-	
-	
-	


Basic Principles


- Hemofiltration
 - Convection based on a pressure gradient
 - 'Transmembrane pressure gradient'
 - Difference between plasma oncotic pressure and hydrostatic pressure
- Dialysis
 - Diffusion based on a concentration gradient

CVVH Continuous VV Hemofiltration

- Primary therapeutic goal:
 - Convective solute removal
 - Management of intravascular volume
- Blood Flow rate = 10 180 ml/min
- UF rate ranges 6 50 L/24 h (> 500 ml/h)
- Requires replacement solution to drive convection
- No dialysate

CVVHDFContinuous VV Hemodiafiltration

- Primary therapeutic goal:
 - Solute removal by diffusion and convection
 - Management of intravascular volume
- Blood Flow rate = 10 180ml/min
- Combines CVVH and CVVHD therapies
- UF rate ranges 12 24 L/24h (> 500 ml/h)
- Dialysate Flow rate = 15 45 ml/min (~1 3 L/h)
- Uses both dialysate (1 L/h) and replacement fluid (500 ml/h)

Pharmacokinetics
of
Continuous
Renal Replacement Therapy

Basic Principles

 Extracorporeal clearance (Cl_{EC}) is usually considered clinically significant only if its contribution to total body clearance exceeds 25 - 30%

$$Fr_{EC} = CI_{EC} / CI_{EC} + CI_R + CI_{NR}$$

- Not relevant for drugs with high non-renal clearance
- Only drug not bound to plasma proteins can be removed by extracorporeal procedures

Determinants of Drug Removal by CRRT

Drug

Same as hemodialysis but increased MW range

Membrane

Permeability Sieving Coefficient

· Renal replacement technique

Convection + diffusion Cl Flow rates

Blood, Dialysate, UF

Duration of CRRT

Sieving Coefficient (S)

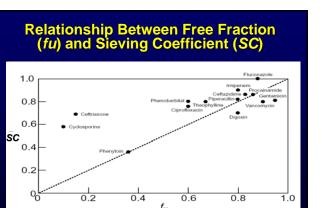
• The capacity of a drug to pass through the hemofilter membrane

 $S = C_{uf} / C_{p}$

C_{uf} = drug concentration in the ultrafiltrate

C_p = drug concentration in the plasma

S = 1 Solute freely passes through the filter


S = 0 Solute does not pass through the filter

 $CL_{HF} = Q_f \times S$

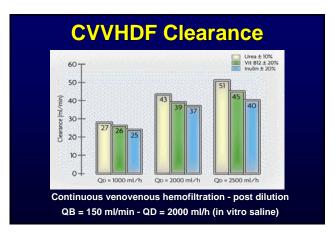
Determinants of Sieving Coefficient

- Protein binding
 - Only unbound drug passes through the filter
 - Protein binding changes in critical illness
- Drug membrane interactions
 - Not clinically relevant
- · Adsorption of proteins and blood products onto filter
 - Related to filter age
 - Decreased efficiency of filter

_	
-	

Dialysate Saturation (S_d)

- Countercurrent dialysate flow (10 30 ml/min) is always less than blood flow (100 - 200 ml/min)
- Allows complete equilibrium between blood serum and dialysate
- Dialysate leaving filter will be 100% saturated with easily diffusible solutes
- · Diffusive clearance will equal dialysate flow


Dialysate Saturation (S_d)

 $\label{eq:Sd} \mathbf{S_d} = \mathbf{C_d} \, / \, \mathbf{C_p}$ $\mathbf{C_d}$ = drug concentration in the dialysate

C_p = drug concentration in the plasma

- Decreasing dialysate saturation
 - Increasing molecular weight
 - Decreases speed of diffusion
 - Increasing dialysate flow rate
 - · Decreases time available for diffusion

 $CI_{HD} = Q_d \times S_d$

Extracorporeal Clearance

Hemofiltration clearance (CI_{HF} = Q_f x S)

Q_f = Ultrafiltration rate

S = Seiving coefficient

Hemodialysis clearance (Cl_{HD} = Q_d x S_d)

Q_d = Dialysate flow rate

 S_d = Dialysate saturation

• Hemodialfiltration clearance

 $CI_{HDF} = (Q_f \times S) + (Q_d \times S_d)$

Case History

- AP 36yo HM s/p BMT for aplastic anemia
- Admitted to ICU for management of acute renal failure
- CVVH-D initiated for management of uremia
- ICU course complicated by pulmonary failure failure requiring mechanical ventilation, liver failure secondary to GVHD and VOD, and sepsis

Case History Antibiotic Management on CRRT

- Gentamicin 180 mg IV q24h
- Vancomycin 1 g IV q24h
- · Dialysis rate 1000 ml/hour
 - 12 hour post gentamicin levels: 3 4 mg/L
 - 12 hour post vancomycin levels: 20 23 mg/L
- Dialysis rate increased to 1200 ml/hour
 - 12 hour post gentamicin levels: < 0.4 mg/L
 - 12 hour post vancomycin levels: < 4 mg/L

Dosage Adjustments in CRRT

- Will the drug be removed?
 - Pharmacokinetic parameters
 - Protein binding < 70 80%
 - Normal values may not apply to critically ill patients
 - Volume of distribution < 1 L/kg
 - Renal clearance > 35%
- How often do I dose the drug?
 - Hemofiltration: 'GFR' 10 20 ml/min
 - Hemofiltration with dialysis: 'GFR' 20 50 ml/min

Drug Removal During CRRT

- Recommendations not listed in PDR
- · Limited to case reports or series of patients
- Different filter brands, sizes, flow rates
- Limited information in many reports
 - Rarely report % of dose removed
- · Many journals will not publish case reports
- Artificial models and predictions have no clinical value

-		

Dosage Adjustments in CRRT

- Loading doses
 - Do not need to be adjusted
 - Loading dose depends solely on volume of distribution
- Maintenance doses
 - Standard reference tables
 - Base on measured loses
 - Calculate maintenance dose multiplication factor (MDMF)

Dosage Adjustments in CRRT

- Frequent blood level determinations
 - Aminoglycosides, vancomycin
- Reference tables

 - Bennett's tables or the PDR recommendations require an approximation of patient's GFR
 The CVVH 'GFR' is approximated by the ultrafiltrate rate (UFR), plus any residual renal clearance
 - Using Bennett's or the PDR's tables, in most CVVH patients, drug dosing can be adjusted for a 'GFR' in the range of 10 to 50 ml/min

Supplemental Dose Based on Measured Plasma Level

Dose
$$_{\text{Suppl}} = (C_{\text{target}} - C_{\text{measured}}) V_{\text{d}}$$

Adjusted Dose Based on Clearance Estimates

$$MDMF = \frac{CL_{EC} + CL_{R} + CL_{NR}}{CL_{R} + CL_{NR}}$$

COMPARISON OF DRUG REMOVAL BY INTERMITTENT HD AND CRRT

	$CL_R + CL_{NR}$	MDMF	
DRUG	(mL/min)	INTERMITTENT HEMODIALYSIS	CONTINUOUS RENAL REPLACEMENT
CEFTAZIDIME	11.2	1.6	2.2
CEFTRIAZONE	7.0	1.0	3.4
CIPROFLOXACIN	188	1.0	2.4
THEOPHYLLINE	57.4	1.1	1.4
VANCOMYCIN	6	3.9	4.9