Effects of Liver Disease on Pharmacokinetics

Juan J.L. Lertora, M.D., Ph.D.

Director

Clinical Pharmacology Program

Office of Clinical Research Training and Medical Education
National Institutes of Health
Clinical Center

GOALS of Liver Disease Effects Lecture


- Estimation of Hepatic Clearance
- Effect of Liver Disease on Elimination:
 - RESTRICTIVELY Eliminated Drugs
 - NON-RESTRICTIVELY Eliminated Drugs
- Other Effects of Liver Disease:
 - Renal Function
 - Drug Distribution
 - Drug Response
- Modification of Drug Therapy in Patients with Liver Disease

ADDITIVITY of Clearances

$$CL_E = CL_R + CL_{NR}$$

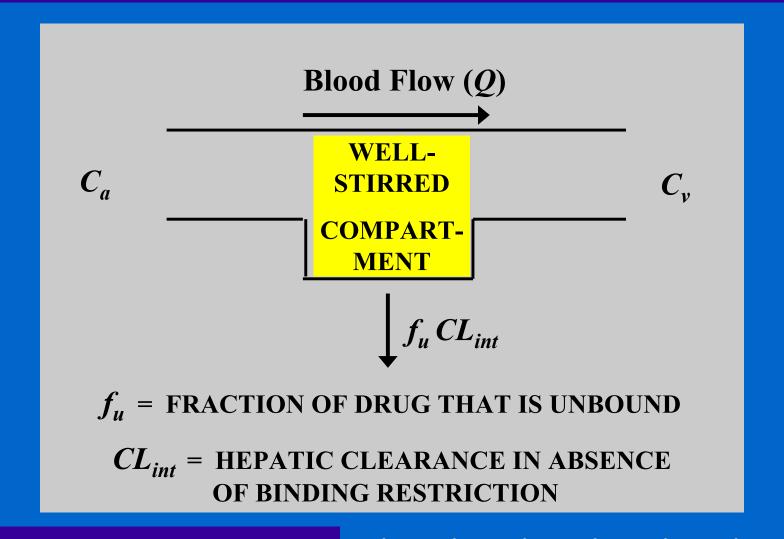
ESTIMATED FROM PLASMA LEVEL-VS.-TIME CURVE

ESTIMATED FROM RECOVERY OF DRUG IN URINE

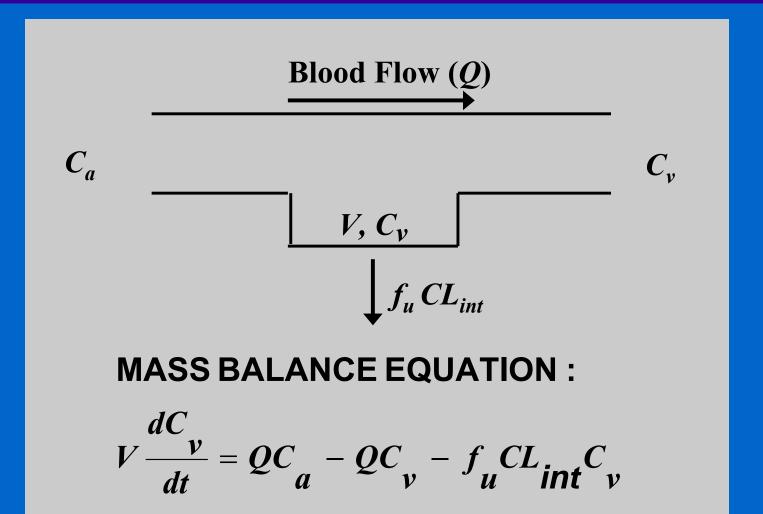
CALCULATION OF CL_H

$$CI_H = CI_E - CI_R$$

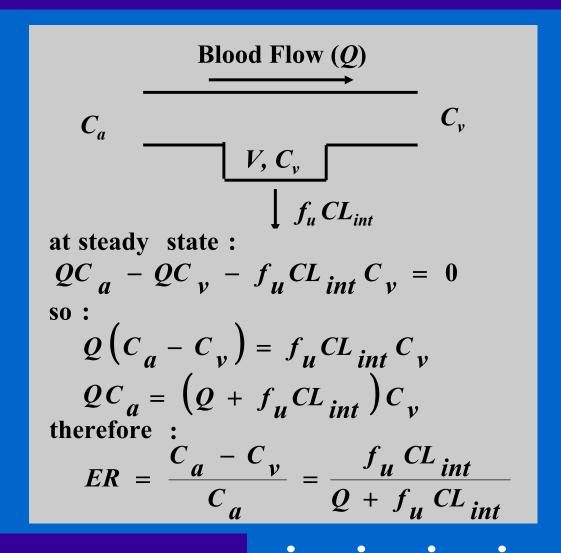
ASSUMES $CL_H = CL_{NR}$


FICK EQUATION

$$CI = Q \left[\frac{A - V}{A} \right]$$


$$E = \left[\frac{A - V}{A} \right]$$
So
$$CI = Q \bullet E$$

A = CONCENTRATION ENTERING LIVER V = CONCENTRATION LEAVING LIVER Q = HEPATIC BLOOD FLOW


Derivation of ROWLAND EQUATION (I)

Derivation of ROWLAND EQUATION (II)

Derivation of ROWLAND EQUATION (III)

ROWLAND EQUATION WELL-STIRRED COMPARTMENT

$$CL_{H} = Q \cdot E = Q \cdot \left[\frac{f_{u}CL_{\text{int}}}{Q + f_{u}CL_{\text{int}}} \right]$$

TWO LIMITING CASES:

RESTRICTIVELY METABOLIZED DRUGS ($Q >> f_U CL_{int}$):

$$CL_H = f_u CL_{\rm int}$$

NON-RESTRICTIVELY METABOLIZED DRUGS ($f_UCL_{int} >> Q$):

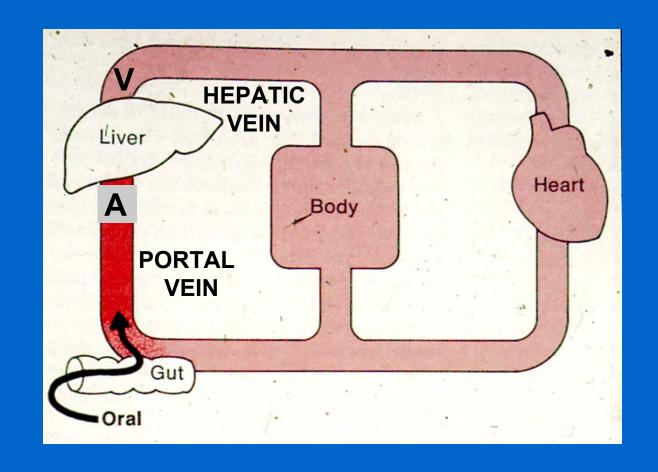
$$CL_H = Q$$

RESTRICTIVELY and NON-RESTRICTIVELY Eliminated Drugs

RESTRICTIVELY METABOLIZED DRUGS:

Phenytoin Warfarin Theophylline

NON-RESTRICTIVELY METABOLIZED DRUGS:


Lidocaine Propranolol Morphine

HEPATIC FIRST-PASS METABOLISM

$$E = \frac{A - V}{A}$$

IF
$$E = 1: V = 0$$

IF
$$E = 0$$
: $V = A$

NON-RESTRICTIVELY Eliminated Drugs

$$CI_H = Q = Q \bullet ER$$

FOR: ER =
$$\left[\frac{A - V}{A}\right] \Rightarrow 1, V \Rightarrow 0$$

BUT: F = 1 - ER, So $F \Rightarrow 0$

THESE DRUGS HAVE EXTENSIVE FIRST-PASS METABOLISM

ACUTE VIRAL HEPATITIS

- Acute inflammatory condition
- Mild and transient changes related to extent of disease in most cases. Infrequently severe and fulminant
- May become chronic and severe
- Changes in drug disposition less than in chronic disease
- Hepatic elimination returns to normal as disease resolves

CHRONIC LIVER DISEASE

- Usually related to chronic alcohol use or viral hepatitis
- Irreversible hepatocyte damage
 - Decrease in SERUM ALBUMIN concentration
 - Decrease in INTRINSIC CLEARANCE of drugs
 - Intrahepatic and extrahepatic shunting of blood from functioning hepatocytes
 - FIBROSIS disrupts normal hepatic architecture
 - NODULES of regenerated hepatocytes form

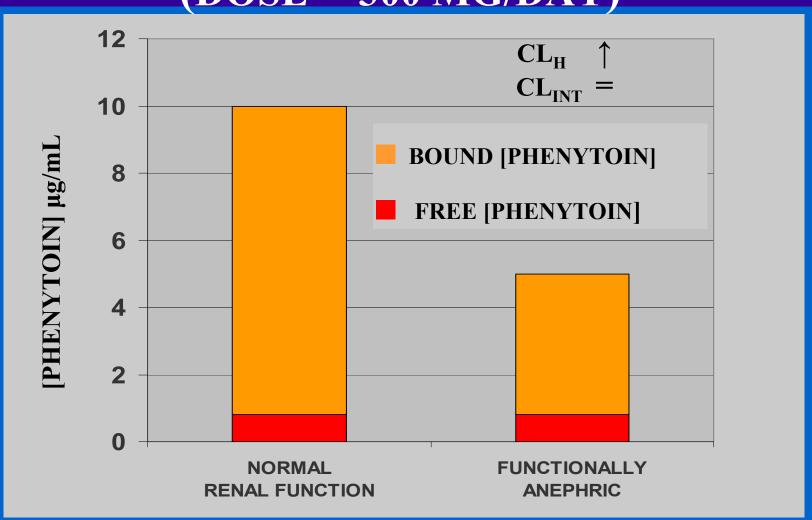
RESTRICTIVELY Metabolized Drugs:

Effects of LIVER DISEASE

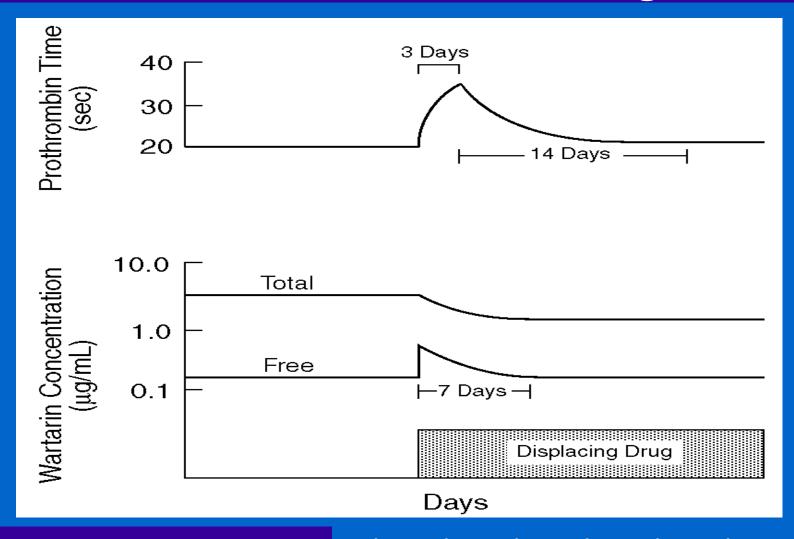
$$CL_H = f_u CL_{int}$$

	CL_H	FREE CONC.
↓ALBUMIN	↑	NO CHANGE
$\downarrow CL_{int}$	\	↑
PORTOSYSTEMIC SHUNTING	\	↑

RESTRICTIVELY Metabolized Drugs: Effect of PROTEIN BINDING Changes


$$\overline{\mathbf{C}}_{\mathrm{ss}} = \frac{\mathbf{DOSE}/\tau}{CL_{H}}$$

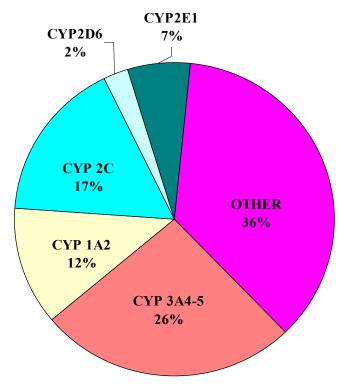
FOR RESTRICTIVELY ELIMINATED DRUGS:


$$CL_{H} = f_{u}CL_{int}$$

FREE CONC. = $\overline{C}_{ss} \cdot f_{u} = \frac{f_{u} \, DOSE/\tau}{f_{u} \, CL_{int}}$

FREE and TOTAL PHENYTOIN Levels (DOSE = 300 MG/DAY)

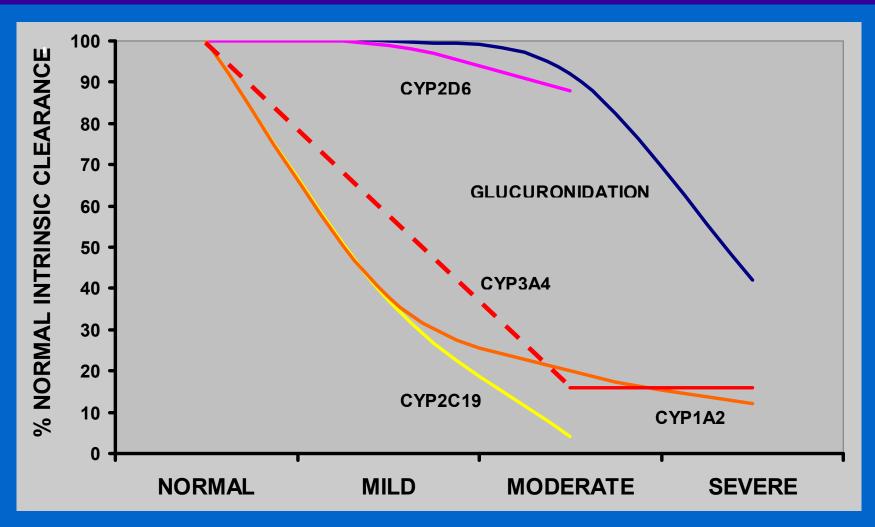
RESTRICTIVELY Metabolized Drugs: Effect of PROTEIN BINDING Changes


RESTRICTIVELY Metabolized Drugs: Effects of LIVER DISEASE

$$CL_H = f_u CL_{int}$$

	CL_H	FREE CONC.
↓ ALBUMIN	↑	NO CHANGE
$\downarrow CL_{int}$	↓	↑
PORTOSYSTEMIC SHUNTING	↓	↑

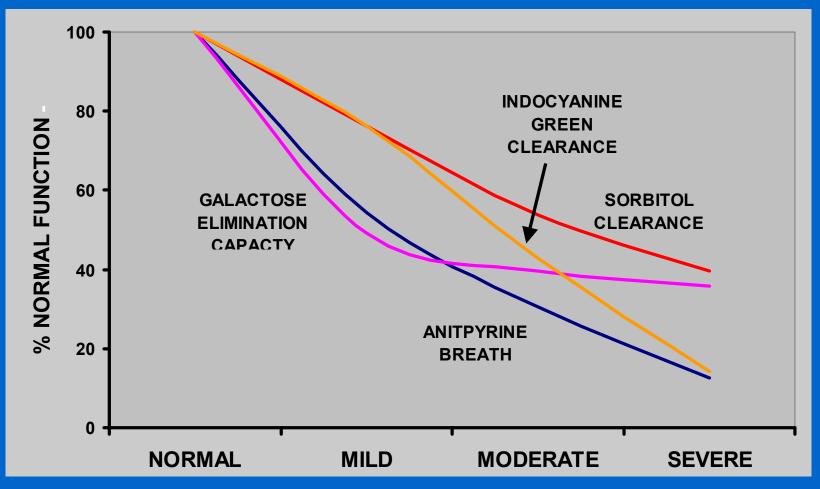
Role of CYP ENZYMES in Hepatic Drug Metabolism



% DRUGS METABOLIZED BY CYP ENZYMES

RESTRICTIVELY Metabolized Drugs: Effect of CIRRHOSIS on CL_{int}

PUGH-CHILD CLASSIFICATION Of Liver Disease Severity


ASSESSMENT	ASSIGNED SCORE				
PARAMETERS	1 POINT	2 POINTS	3 POINTS		
ENCEPHALOPATHY GRADE	0	1 or 2	3 or 4		
ASCITES	ABSENT	SLIGHT	MODERATE		
BILIRUBIN (mg/dL)	1-2	2-3	>3		
ALBUMIN (gm/dL)	>3.5	2.8 – 3.5	< 2.8		
PROTHROMBIN TIME (seconds > control)	1-4	4-10	> 10		
CLASSII	CLASSIFICATION OF CLINICAL SEVERITY				
CLINICAL SEVERITY	MILD	MODERATE	SEVERE		
TOTAL POINTS	5-6	7-9	>9		

Correlation of Lab Test Results with Impaired CYP Enzyme Function

The Central Problem:

There is no laboratory test of liver function that is as useful for guiding drug dose adjustment in patients with liver disease as is the estimation of creatinine clearance in patients with impaired renal function.

Correlation of SPECIAL TESTS of Liver Function with CHILD-PUGH SCORES*

* Data from Herold C, et al. Liver 2001;21:260-5.

"PITTSBURGH COCKTAIL" Approach*

DRUG	ENZYME
CAFFEINE	CYP 1A2
CHLORZOXAZONE	CYP 2E1
DAPSONE	CYP 3A + NAT2
DEBRISOQUIN	CYP 2D6
MEPHENYTOIN	CYP 2C19

^{*} From: Frye RF, et al. Clin Pharmacol Ther 1997;62:365-76

RESTRICTIVELY Metabolized Drugs:

Effects of Liver Disease

$$CL_H = f_u CL_{int}$$

	CL_H	FREE CONC.
↓ ALBUMIN	↑	NO CHANGE
$\downarrow CL_{int}$	\	↑
PORTOSYSTEMIC SHUNTING	\	↑

Effects of HEPATIC SHUNTING on ROWLAND EQUATION*

$$CL_{H} = \left(\frac{Q_{P}}{Q_{T}}\right) \left(\frac{Q_{T} f_{u} CL_{int}}{Q_{T} + f_{u} CL_{int}}\right)$$

 Q_T = TOTAL BLOOD FLOW TO LIVER

Q_P = BLOOD FLOW PERFUSING LIVER

 $Q_T - Q_P = SHUNT BLOOD FLOW$

* From: McLean A, et al. Clin Pharmacol Ther 1979;25:161-6.

RESTRICTIVELY Metabolized Drugs: Effects of Hepatic Shunting*

SEVERITY	\mathbf{Q}_{T}	$\mathbf{Q}_{\mathtt{P}}$	Q_p/Q_T	ANTIPYRINE CL _H
	(mL/min)	(mL/min)	(%)	(mL/min)
MODERATE	1.26	0.92	73	27.1
SEVERE	0.72	0.20	28	10.3
SEVERE/ MODERATE	0.57	0.22	0.38	0.38

^{*} From: McLean A, et al. Clin Pharmacol Ther 1979;25:161-6.

NON-RESTRICTIVELY Metabolized Drugs: Effects of Liver Disease

$$CL_H = Q$$

	CL_H	F
↓ ALBUMIN	NO CHANGE*	NO CHANGE
$\downarrow CL_{int}$	"NO CHANGE"	"NO CHANGE"
↓ HEPATIC PERFUSION	+	↑ ↑

* HOWEVER, NOTE THAT FREE CONCENTRATION IS \(^{\)

NON-RESTRICTIVELY Metabolized Drugs: Effects of Liver Disease

$$CL_H = Q$$

	CL_H	F
↓ ALBUMIN	NO CHANGE*	NO CHANGE
↓ CL _{int}	"NO CHANGE"	"NO CHANGE"
↓ HEPATIC PERFUSION	+	↑ ↑

HOWEVER, f_uCL_{int} MAY NO LONGER BE >> Q

NON-RESTRICTIVELY Metabolized Drugs: Effects of Liver Disease

$$CL_H = Q$$

	CL_H	F
↓ ALBUMIN	NO CHANGE*	NO CHANGE
$\downarrow CL_{int}$	"NO CHANGE"	"NO CHANGE"
↓ HEPATIC PERFUSION	↓ ↓	↑ ↑

Effects of Hepatic Shunting on Rowland Equation*

$$CL_{H} = \left(\frac{Q_{P}}{Q_{T}}\right) \left(\frac{Q_{T} f_{u} CL_{int}}{Q_{T} + f_{u} CL_{int}}\right)$$

 Q_T = TOTAL BLOOD FLOW TO LIVER

Q_P = BLOOD FLOW PERFUSING LIVER

 $Q_T - Q_P = SHUNT BLOOD FLOW$

* From: McLean A, et al. Clin Pharmacol Ther 1979;25:161-6.

NON-RESTRICTIVELY Metabolized Drugs: Effects of Decreased Liver Perfusion*

SEVERITY	\mathbf{Q}_{T}	Q_P	Q_P/Q_T	ICG CL _H
	(mL/min)	(mL/min)	(%)	(mL/min)
MODERATE	1.26	0.92	73	766
SEVERE	0.72	0.20	28	182
SEVERE/ MODERATE	0.57	0.22	0.38	0.24

^{*} From: McLean A, et al. Clin Pharmacol Ther 1979;25:161-6.

Influence of *PORTOSYSTEMIC SHUNTING* on Oral Bioavailability (F)

RESTRICTIVELY Eliminated Drugs:

Little change

NON-RESTRICTIVELY Eliminated Drugs:

SHUNTING may markedly increase extent of drug absorption (F)

CIRRHOSIS Affects Exposure to Some NON-RESTRICTIVELY Metabolized Drugs

	ABSOLUTE BIOAVAILABILITY		RELATIVE EXPOSURE CIRRHOTICS/CONTROL	
	CONTROLS CIRRHOTICS (%)		IV	ORAL
MEPERIDINE	48	87	1.6	3.1
PENTAZOCINE	18	68	2.0	8.3
PROPRANOLOL	38	54	1.5*	2.0*

^{*} THIS ALSO INCORPORATES 55% INCREASE IN PROPRANOLOL f₁₁

CIRRHOSIS Affects Renal Function: The Hepatorenal Syndrome

- *Risk* in Patients with Cirrhosis, Ascitis, and GFR > 50 mL/min:
 - 18% within 1 year
 - 39% within 5 years
- **Predictors** of Risk:
 - Small liver
 - Low serum albumin
 - High plasma renin
- Cockcroft and Gault Equation may *overestimate* renal function


CIRRHOSIS Affects Renal Function: The Hepatorenal Syndrome

• The Syndrome has a FUNCTIONAL rather than an Anatomical Basis.

HEPATORENAL SYNDROME ANTEMORTEM Arteriogram

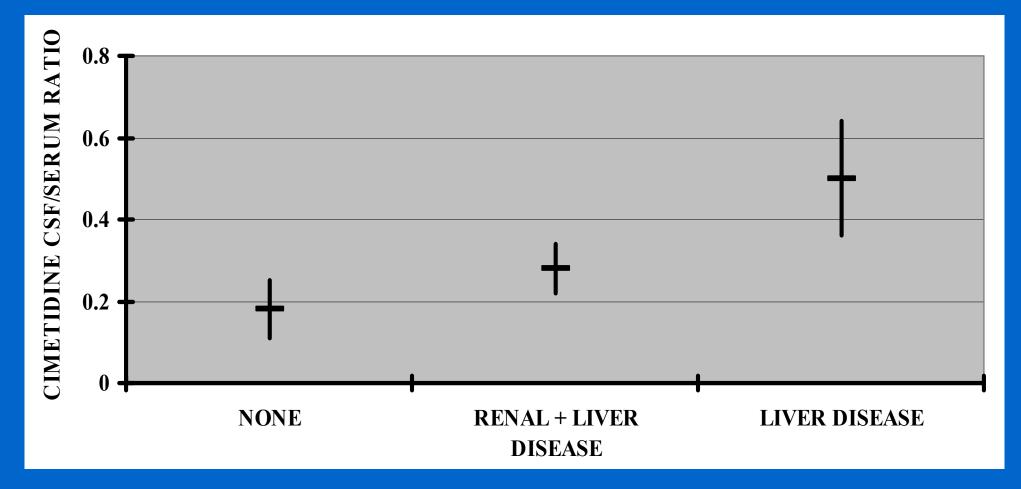
HEPATORENAL SYNDROME POSTMORTEM Arteriogram

CIRRHOSIS Affects Renal Function: The Hepatorenal Syndrome

• Therapy with some drugs may precipitate
Hepatorenal Syndrome

ACE Inhibitors

NSAIDs


Furosemide (High Total Doses)

CIRRHOSIS May Affect Drug Distribution

 Increased Free Concentration of NON-RESTRICTIVELY Eliminated Drugs (e.g. PROPRANOLOL)

Increased Permeability of Blood: CNS Barrier
 (e.g. CIMETIDINE)

CIRRHOSIS Affects Drug Distribution: Increased CNS Penetration of Cimetidine*

* From Schentag JJ, et al. Clin Pharmacol Ther 1981;29:737-43

CIRRHOSIS may affect PHARMACODYNAMICS

• Sedative response to **BENZODIAZEPINES** is exaggerated

Response to LOOP DIURETICS is reduced

Drug Dosing in Patients with LIVER DISEASE

The Central Problem:

There is no laboratory test of liver function that is as useful for guiding drug dose adjustment in patients with liver disease as is the estimation of creatinine clearance in patients with impaired renal function.

PUGH-CHILD CLASSIFICATION of Liver Disease Severity

ASSESSMENT	ASSIGNED SCORE			
PARAMETERS	1 POINT	2 POINTS	3 POINTS	
ENCEPHALOPATHY GRADE	0	1 or 2	3 or 4	
ASCITES	ABSENT	SLIGHT	MODERATE	
BILIRUBIN (mg/dL)	1-2	2-3	>3	
ALBUMIN (gm/dL)	> 3.5	2.8 – 3.5	< 2.8	
PROTHROMBIN TIME (seconds > control)	1-4	4-10	> 10	
CLASSIFICATION OF CLINICAL SEVERITY				
CLINICAL SEVERITY	MILD	MODERATE	SEVERE	
TOTAL POINTS	5-6	7-9	>9	

Drugs CONTRAINDICATED in Patients with Severe Liver Disease

- May precipitate renal failure:
 - NSAIDs
 - ACE Inhibitors
- Predispose to bleeding:
 - β-LACTAMS with N-Methylthiotetrazole Side Chain (e.g. CEFOTETAN)

Drug Requiring ≥ 50% *Dose Reduction* in Patients with MODERATE CIRRHOSIS

	CHANGE IN CIRRHOSIS	
	F	CLE
ANALGESIC DRUGS		
Morphine	↑ 213%	↓ 59%
Meperidine	† 94%	↓ 46%
Pentazocine	↑ 318%	↓ 50%

Drugs Requiring ≥ 50% *Dose Reduction* in Patients with MODERATE CIRRHOSIS

	CHANGE IN CIRRHOSIS	
	F	CL _E
CARDIOVASC. DRUGS		
Propafenone	↑ 257%	↓ 24%
Verapamil	↑ 136%	↓ 51%
Nifedipine	↑ 78%	↓ 60%
Losartan	↑ 100%	↓ 50%

Drugs Requiring ≥ 50% *Dose Reduction* in Patients with MODERATE CIRRHOSIS

	CHANGE IN CIRRHOSIS	
	F	CLE
OTHER DRUGS		
Omeprazole	↑ 75%	↓ 89%
Tacrolimus	↑ 33%	↓ 72%

Recommended Evaluation of Pharmacokinetics in Liver Disease Patients*

REDUCED Study Design:

- Study Control Patients and Patients with Child-Pugh Moderate Impairment
- Findings in Moderate Category Applied to Mild Category; Dosing Prohibited in Severe Category

FULL Study Design:

- Study Control Patients and Patients in All Child-Pugh Categories
- Population PK Approach

* FDA Clinical Pharmacology Guidance, May 2003