Pharmacokinetic and Pharmacodynamic Considerations in the Development of Macromolecules

April 10, 2008

Pamela D. Garzone, Ph.D.

OUTLINE OF LECTURE TOPICS

- * Macromolecules
- * Interspecies Scaling
- * Pharmacokinetic Characteristics
 - Scientific Issues
- * Pharmacodynamics
- * Monoclonal Antibodies

REPRESENTATIVE MARKETED MACROMOLECULES

Macromolecule **Trade Name** Erythropoietin Epogen (Amgen) **Growth Hormone** Nutropin (Genentech) G-CSF Neupogen (Amgen) IL-2**Proleukin** (Chiron) IL - 11Neumega (GI) BeneFIX (GI) Factor IX rt-PA Alteplase (Genentech)

APPROVED MONOCLONAL ANTIBODIES

Name	Approval	Indication
Avastin Bevacizumab	Feb, 2004	First line (with 5-FU) in metastatic colon CA
Erbitux Cefuximab	Feb, 2004	Alone or in combination in metastatic colon CA
Raptiva Efalizumab	Oct, 2003	Moderate to severe psoriasis
Xolair Omalizumab	June, 2003	Asthma
Humira Adalimumab	Dec, 2002	Prophylaxis of acute organ rejection
Campath Alemtuzumab	May, 2001	Second line treatment of β -cell CLL in patients

ASSAYS FOR MACROMOLECULES

- * Immunoassays
 - ELISA (Enzyme-Linked Immuno-sorbent Assay)
 - RIA (Radioimmunoassay)
 - IRMA (Immunoradiometric Assay)
 - RRA (Radioreceptor Assay)

INTERSPECIES SCALING OF MACROMOLECULES

Factors to Consider

- * Species specificity
- * Glycosylation and sialation
- * Binding proteins
- * Size, shape and charge
- * Relative abundance of tissue receptors

ALLOMETRIC EQUATIONS FOR SOME MACROMOLECULES

Macromolecule	Allometric V ₁	Equations CL	
Factor IX	87 W ^{1.26}	14 W ^{0.68}	
Factor VIII	44 W ^{1.04}	10 W ^{0.69}	
IL-12	65 W ^{0.85}	8 W ^{0.62}	
GH	68 W ^{0.83}	7 W ^{0.71}	
rt-PA	91 W ^{0.93}	17 W ^{0.84}	

INITIAL COMPARTMENT VOLUME PREDICTED BY ALLOMETRIC SCALING COMPARED WITH OBSERVED V₁

Macromolecule	Human Parameter: Predicted (mL)	V1 Observed (mL)
FIX	18,380	10,150
Factor VIII	3,617	3,030
IL-12	2,406	3,360
GH	2,243	2,432
rt-PA	5,814	4,450

ELIMINATION CLEARANCE PREDICTED BY ALLOMETRIC SCALING COMPARED WITH OBSERVED CL

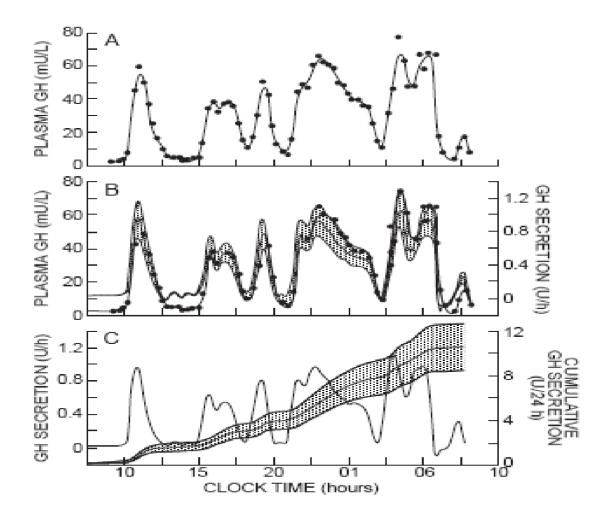
Macromolecule	Human Parameter:	CI
	Predicted	Observed
	(mL/hr)	(mL/hr)
FIX	248	434
Factor VIII	195	174
IL-12	113	406
GH	148	175
rt-PA	646	620

ALLOMETRIC EQUATIONS for EGF Mab PK PARAMETERS

Parameter (Y)	Coefficient (<i>a</i>)	Exponent (b)	1*
V _d (mL)	219	0.84	0.92
CL (mL/hr)	4.07	0.85	0.94

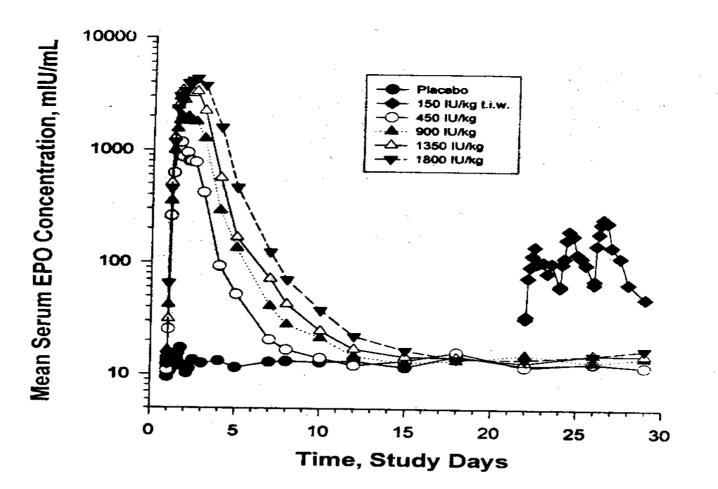
COMPARISON BETWEEN the PREDICTED EGF PK PARAMETERS and OBSERVED PK PARAMETERS

Parameter (Y)	Predicted PK Parameter Estimate	Observed PK Parameter in Cancer Patients
⊥_ _d (L/kg)	0.01	0.04
CL (mL/hr/kg)	0.22	0.98


PHARMACOKINETIC CHARACTERISTIC OF MACROMOLECULES

- * Endogenous concentrations
- * Absorption
- * Distribution
- * Metabolism
- * Elimination

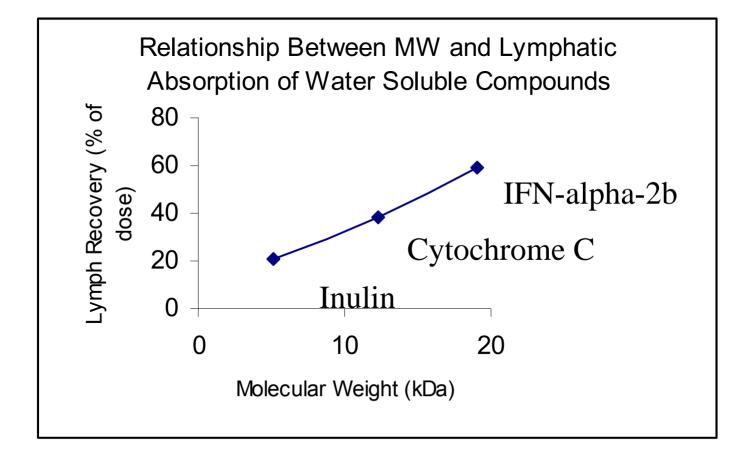
THE PROBLEM OF ENDOGENOUS CONCENTRATIONS OF MACROMOLECULES


- * Endogenous concentrations What do you do with them?
- * Two examples
 - Growth Hormone
 - Erythropoietin

Growth Hormone

Albertsson-Wikland K, et al. Am J Physiol 1989;257:E809-14.)

ERYTHROPOIETIN

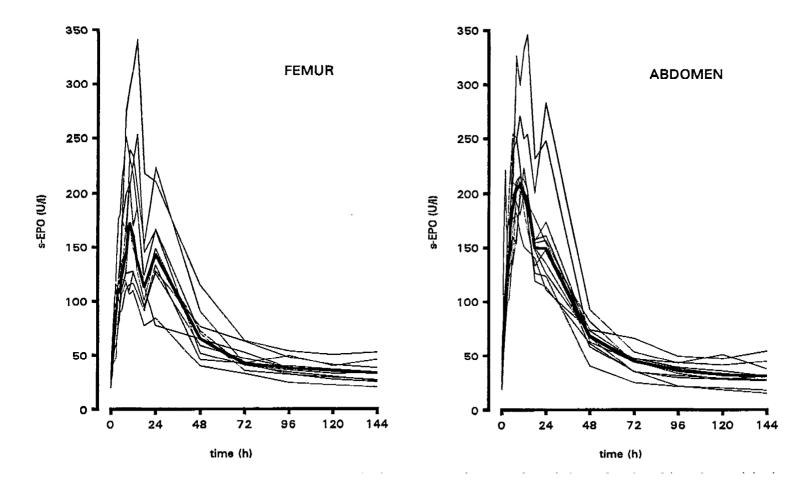


Cheung et al CPT 1998; 64:412-423

ABSORPTION OF MACROMOLECULES

- * Flip-flop model
- * Site of administration

RELATIONSHIP BETWEEN MW AND LYHMPHATIC ABSORPTION OF WATER SOLUBLE COMPOUNDS



Supersaxo A et al. Pharm Res 1990; 7:167-169

COMPARISON OF ABSORPTION AND ELIMINATION RATE CONSTANTS

Macromolecule	Route of	K _a	К _е
	Administration	(hr⁻¹)	(hr-1)
GH	SC	$\textbf{0.23} \pm \textbf{0.04}$	$\textbf{0.43} \pm \textbf{0.05}$
	IV		2.58
IFN-α-2b	SC	0.24	0.13
	IV		0.42
Erythropoietin	SC	$\textbf{0.0403} \pm \textbf{0.002}$	$\textbf{0.206} \pm \textbf{0.004}$
	IV		0.077

SITE OF INJECTION EFFECTS ON EPO ABSORPTION

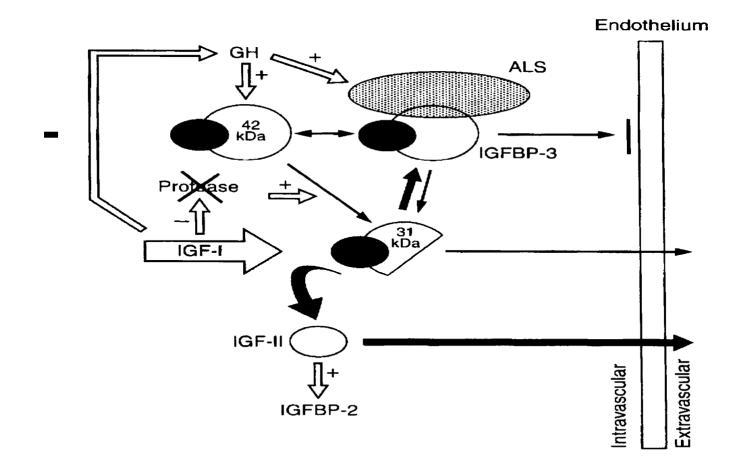
Jensen JD et al Eur J Clin Pharmacol 1994; 46:333-337

DISTRIBUTION OF MACROMOLECULES

- * Volume of Distribution
- * Binding Proteins

DISTRIBUTION VOLUMES OF REPRESENTATIVE MACROMOLECULES

Macromolecule	MW	V ₁	V _{ss}	
	(kDa)	(mL/kg)	(mL/kg)	
Inulin	5.2	55	164	
Factor IX	57	136*	271*	
IL-2	15.5	60	112	
IL-12	53	52	59	
G-CSF	20	44	60	
rt-PA	65	59	106	
* Calculated from literature				


PHARMACOKINETICS of MARKETED MONOCLONAL ANTIBODIES

Mabs	Molecular Weight (kD)	<i>Т</i> _{1/2} ª (Days)	V ₁ ª (L)	<u>Vss</u> ª
Avastin	149	13-15	3	3.5-4.5 L
Erbitux	152	NDÞ	2.7-3.4	2-3 L/m ²
Raptiva	150	6-7.5°	NRª	9 Le
Humira	148	12-18	3	5 L
Campath	150	1-14 ^f	NRª	7-28 L

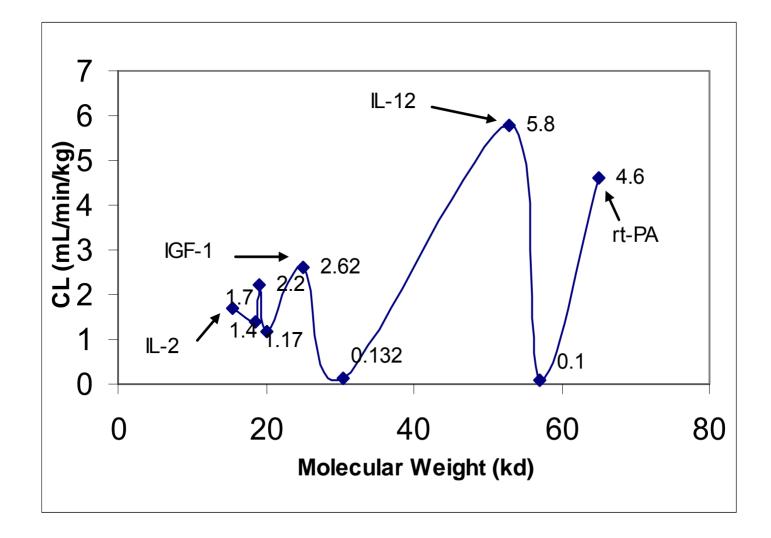
EFFECTS & RELEVANCE OF MACROMOLECULE BINDING TO a₂-MACROGLOBULIN

Macromolecule	Effect	Relevance
NGF		Assay inteference
IL-1	Regulation of proliferation of thymocytes	Regulatory protein
IL-2	Impaired proliferation of T-cells	Inactivation
TGF _β	Growth of kidney fibroblasts	Clearance

HYPOTHETICAL MODEL of the BINDING EFFECTS of IGF-1

METABOLIC EFFECTS OF MACROMOLECULES

* Effects on P450s


EFFECTS OF MACROMOLECULES ON P450 CYP ENZYMES

Macromolecule	Isoenzyme	Effects
IFN-γ	CYP2C11	Decreased mRNA
IL-1	CYP2C11	and enzyme levels Decreased mRNA
		and enzyme levels
	CYP 2D	Decreased mRNA and enzyme levels
IL-2	CYP2D1	Increased mRNA
		and enzyme levels
IL-6	CYP2C11	Decreased mRNA and enzyme levels
TNF	CYP2C11	Decreased enzyme levels

EXCRETION OF MACROMOLECULES

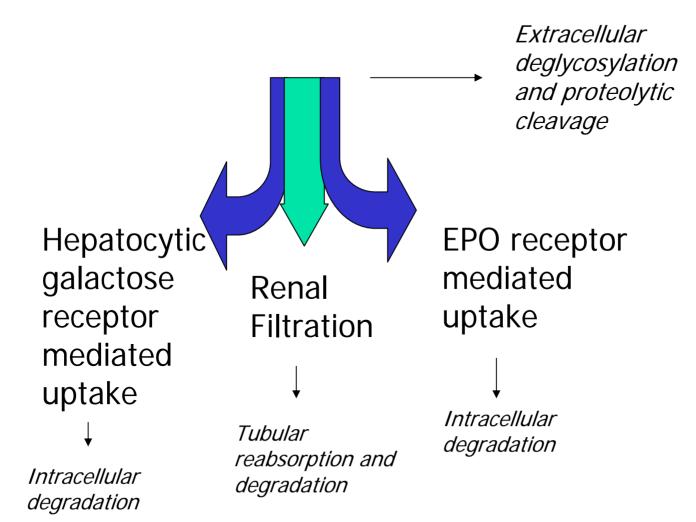
- * Contributions of kidney and liver
- * CHO vs E. Coli produced
- * Receptor mediated clearance

RELATIONSHIP BETWEEN MOLECULAR WEIGHT AND ELIMINATION CLEARANCE

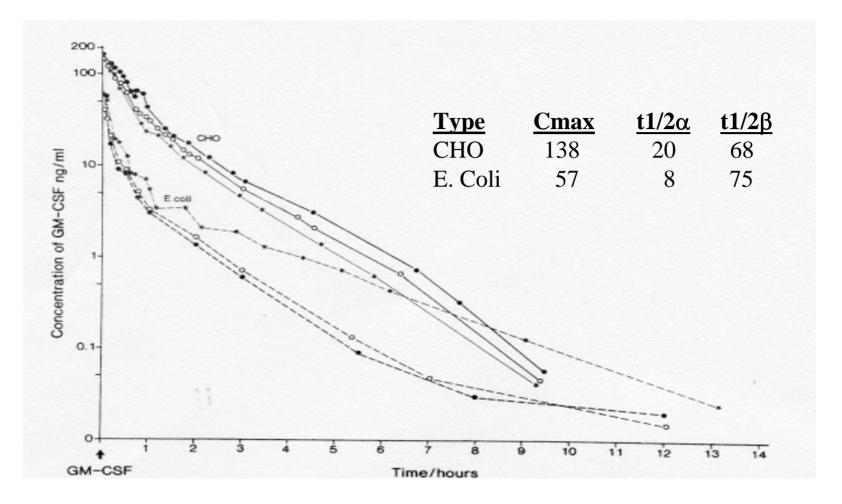
LIVER CELL SURFACE RECEPTORS FOR CLEARANCE OF CARBOHYDRATES & MONOSACCHARIDES

Specificity	Cell Type
Gal/Gal/NAc	Liver parencymal cells
Gal/GalNAc	Liver Kupffer and endothelial cells
Man/GlcNAc	Peritoneal macrophages Liver Kupffer and endothelial cells
Fuc	Peritoneal macrophages Liver Kupffer cells

DIFFERENCES BETWEEN rhEPO AND NESP (NOVEL ERYTHROPOIESIS-STIMULATING PROTEIN)

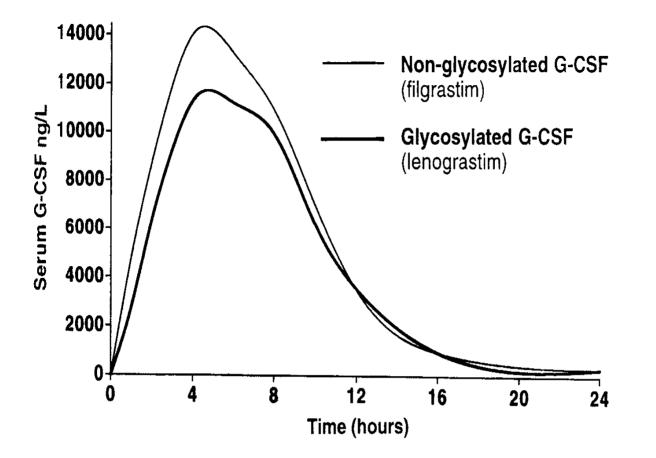

* rhEPO

- 165 normal amino acid sequence
- Up to 40% carbohydrate
- 3 N-linked sugar chains
- Up to 14 sialic acids
- 30.4 Kd
- Plasma $T_{1/2}$ = 4-8 hrs

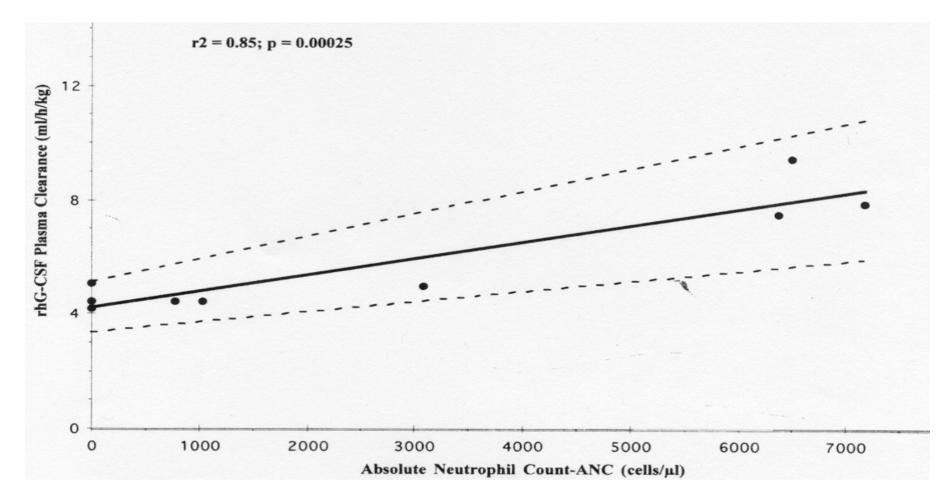

* NESP

- 5 amino acid exchanges
- Up to 52% carbohydrate
- 5 N-linked sugar chains
- Up to 22 sialic acids
- 38.5 Kd
- Plasma T_{1/2}= 24 hrs

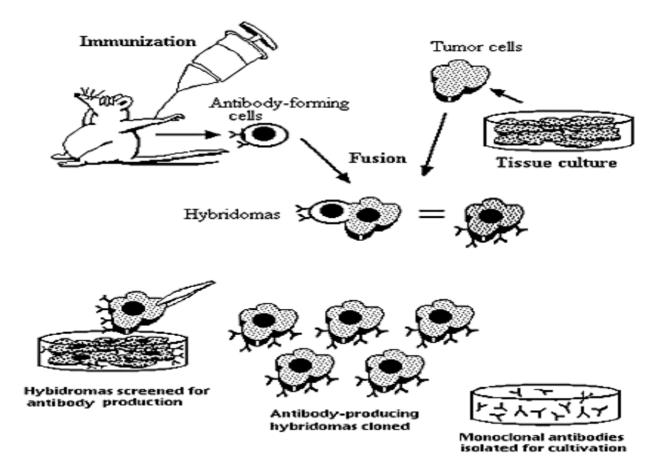
METABOLIC FATE OF EPO



SERUM CONCENTRATION-TIME PROFILES FOR CHO VS. E. Coli PRODUCED GM-CSF


Mortensen HD et al. Eur J Haematol 1993; 50:32-36

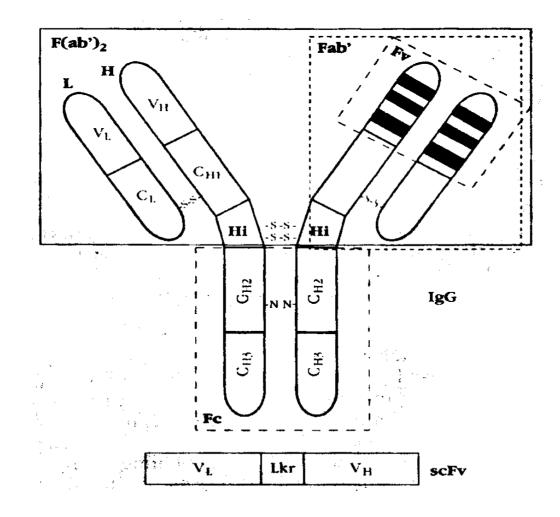
SERUM CONCENTRATION-TIME PROFILES FOR NON-GLYCOSYLATED VS. GLYCOSYLATED G-CSF

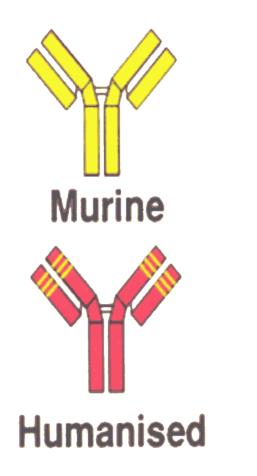

Watts et al. Br J Haematol 1997; 98:474-479

RELATIONSHIP BETWEEN G-CSF CLEARANCE AND ABSOLUTE NEUTROPHIL COUNT



Ericson SG et al. Exper Hematol 1997; 25:1313-1325


MONOCLONAL ANTIBODY PRODUCTION


HUMAN IgG

IgG and SINGLE-CHAIN Fv

CONCEPT OF ANTIBODIES

PROPOSED HUMAN PLASMA CLEARANCE of DIFFERENT ANTIBODY MOLECULES

Antibody Molecule	Molecular Weight (<u>kD</u>)	Relative Plasma Clearance (CI)
Native intact human IgG	150	≈ 21 days
Fully human/humanized	150	
Chimeric human- mouse IgG	150	
Whole mouse IgG	150	
F (ab) ₂	110	
Fab'	50	
Single chain FV (scFV)	25	≈ 1 day

DESIGN OF ANTIBODIES

- * Molecules that can be attached:
 - Enzymes
 - Toxins
 - Viruses
 - Cationic tails
 - Biosensors

CHARACTERISTICS THAT AFFECT THE PHARMACOKINETICS OF MACROMOLECULES

- * Physical characteristics
- * Post-translational modification
- * Binding
- * Route of administration
- * Duration of administration
- * Frequency of administration

PATIENT CHARACTERISTICS THAT AFFECT PHARMACOKINETICS OF MACROMOLECULES

- * Age
- * Gender
- * Disease
- * Concurrent drugs

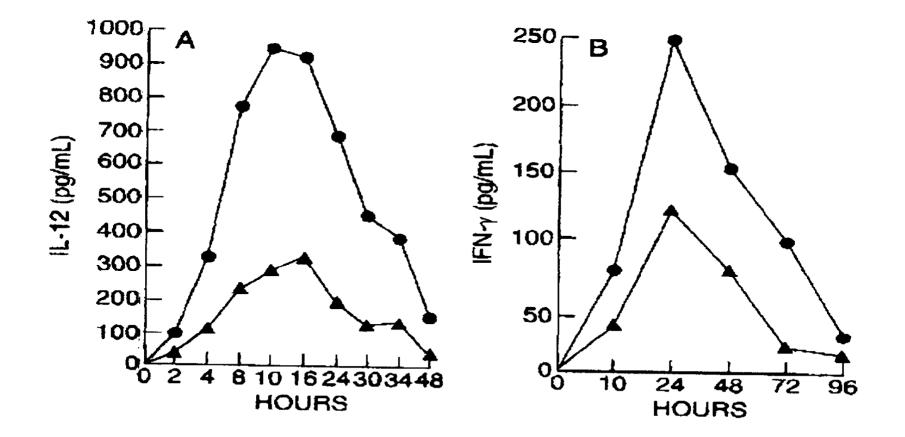
EFFECTS OF GENDER ON GROWTH HORMONE PK/PD

- * Daily rhGH dose/kg required to normalize IGF-1 response in GH deficient women is higher than in men
 - Estrogen replacement also significantly increases rhGH dose requirement

Drug-Drug Interactions

The Journal of Clinical Pharmacology

Drug Interaction Studies of Therapeutic Proteins or Monoclonal Antibodies

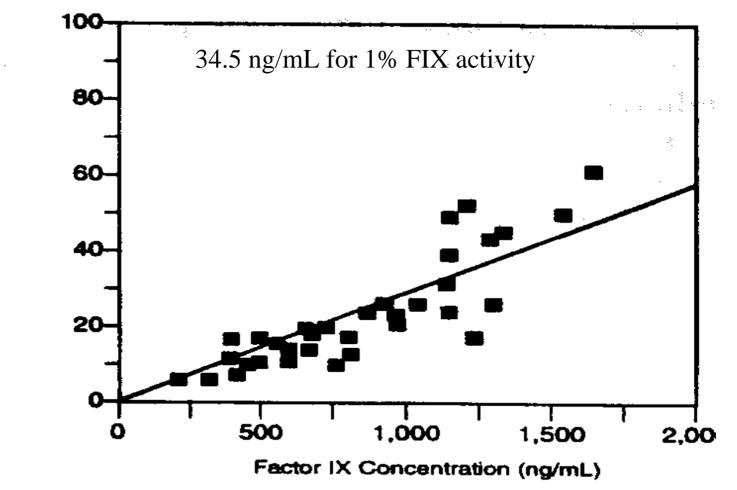

Iftekhar Mahmood and Martin David Green J. Clin. Pharmacol. 2007; 47; 1540 originally published online Oct 25, 2007; DOI: 10.1177/0091270007308616

> The online version of this article can be found at: http://www.jclinpharm.org/cgi/content/abstract/47/12/1540

PHARMACODYNAMICS OF MACROMOLECULES

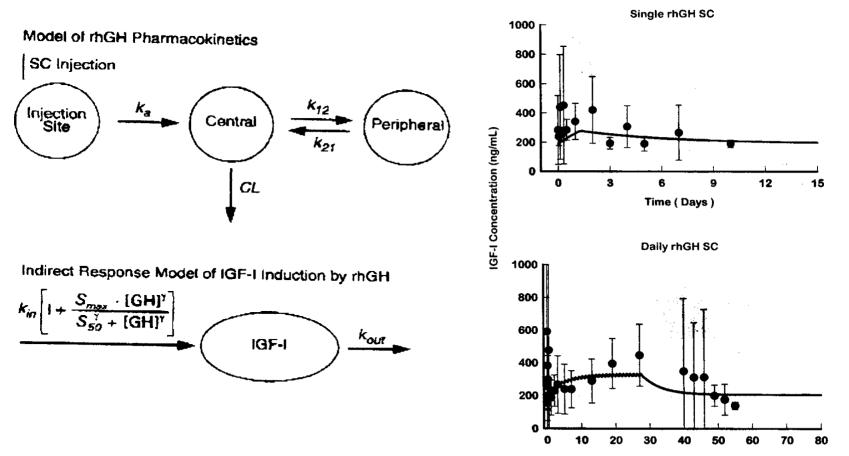
- * Important considerations
 - Regimen dependency
 - Endpoints
 - Models

REGIMEN DEPENDENCY OF IL-12 PHARMACOKINETICS AND IFN-γ STIMULATION



Motzer RJ et al. Clin Cancer Res 1998;4:1183-1191

PHARMACODYNAMIC ENDPOINTS


- * Easy replacement proteins - rFIX
- * Difficult- casade of events
 - IGF-1

RELATIONSHIP BETWEEN rFIX CONCENTRATION AND ACTIVITY

Schaub et al. Seminars in Hematology 1998; 35:28-32

PK-PD MODEL OF rhGH WITH MEASURED VS. PREDICTED [IGF-1] AFTER SINGLE AND DAILY SC rhGH INJECTIONS

Time (Days)

Sun YN et al. JPET 1999; 289:1523-1532

PHARMACODYNAMIC ENDPOINTS

Omalizumab: Free IgE levels Clinical outcomes Basiliximab: Soluble IL-2 receptor CD25+ T lymphocytes 1%

Summary

- * Use scientific judgement and good sense in the interpretation of PK/PD results with macromolecules
- * Application of PK principles that have been developed work with macromolecules
- * Difficult to select the most appropriate pharmacodynamic endpoint

Acknowledgements

Genetic Institute PK/PD Sciences Dr. Joyce Mordenti Dr. Art Atkinson Dr. Juan Lertora