Abstract

The fact that the Universe is expanding has been known since the 1920's. If the Universe was filled The fact that the Universe is expanding has been known since the 1920 s. If the Universe
with ordinary matter, the expansion should be decelerating. Beginning in 1998 , however, observational evidencee has beena accumumatiting in favoro of an accelerating expansion of the
Universe. The unknown driver of the acceleration has been termed dark energy. The nature of Universe. The unknown driver of the acceleration has been termed dark energy. The nature of
dark energy can be investigated by studying its equation of state, that is the relationship of its dark energy can be investigated by studying its equation of state, that is the relationship of its
pressure to its density. The equation of state can be measured via a study of the luminosity pressure to its density. The equation of state can be measured via a study of the luminosity
distance-redshift relation for supernovae. In this study, we employ supernovae data, including distance-redshift relation for supernovae. In this study, we employ supernovae data, including
measurement errors, to determine whether the equation of state is constant or not. Our method is based on Bayesian analysis of a differential equation and modeling $\mathrm{w}(\mathrm{z})$ directly, where $\mathrm{w}(\mathrm{z})$ is the equation of state parameter. This work stems from collaboration between UCSC and Los Alamos National Laboratory (LANL) in the context of the Institute for Scalable Scientific Data Management (ISSDM) project.

Original Data

Equations and Parameters of Interest

The main parameter of interest is $\mathrm{w}(\mathrm{z})$ there are also two other unknown parameters: $\mathrm{H}_{0}=71.0 \pm 2.6$ and $\Omega_{m n}=0.265 \pm 0.03$. Where the uncertainty shown is one standard deviation.
The main equation of interest is a transformation:

$$
T\left(z, H_{0}, \Omega_{m}\right)=25+5 \log _{10}\left(\frac{c(1+z)}{H_{0}} \int_{0}^{n}\left(\Omega_{m}(1+s)^{3}+\left(1-\Omega_{m}\right)(1+s)^{3} e^{\frac{3}{5} \frac{5(v(1)}{1} d u}\right)^{-0.5} d s\right)
$$

To be able to use this equation we will need to specify a form for $\mathrm{w}(\mathrm{z})$. This also leads to a likelihood as follows:

To be able to use this likelihood we will need priors for $\sigma, \Omega_{m}, \mathrm{H}_{0}$, and whatever parameters we To be able to use this likelihood we will need priors for $\sigma, \Omega_{m}, H_{0}$, and w.
used to specify $w(z)$. As a note the τ 's are the standard deviations for μ.

Bayesian Modeling

For Bayesian modeling we will need priors for each of the parameters. σ will receive a rather straightforward Inverse-Gamma prior with mean about one. However, we want to examine six priors for w_{0} and their sensitivity. At first, we will hold Ω_{m} and H_{H} constant. We found that the
$\mathrm{N}(-1,1)$ Unif $(-2,0)$ and Unif(-25,0) had nearly identical posteriors; so we will conclude that the prior choice does not effect the posteriors significantly in this case (see Table 1).
Table 1- Posteriors for Three We also examined three other priors that included point

masses. The first one was a point mass at -1 and a Unif(-5,0); the second was a point mass at -2 and a Unif($-5,0$); and the third prior had three point masses at $-1 / 3,-2 / 3$, and -1 These were helpfuli in doing a type of Bayesian hypothesis
testing. In simulated data sets these priors gave in simulated testing. In simulated data sets these priors gave in simulated
data these priors produced posteriors with high posterior probabilities for the true values of w_{0}.

Conclusions

- Fitting models directly to $w(z)$ seems to work well; but requires all Metropolis-Hasting steps
in MCMC because of the double in MCMC because of the double integral
- $\Omega_{m 0}$ and H_{0} must be incorporated into the model as unknown parameters with priors
- The raw data is not being used directly and the fitted values of μ for the two datasets hav
- Thus far the choice of prior for model $w(z)=w_{0}$ does not greatly influence the posterior

Future Work

- Use a Gaussian process to model w(z).
- Fit a full Bayesian model with 4 unknown parameters for both datasets using Metropolis Hasting steps
- Set up an experimental design to find where more data is need (on the z axis). In the experimental design also test how shrinking uncertainty for $\mu, \Omega_{m 0}$, and H_{0} would help in drawing more conclusive statements about $w(z)$
- Look into which type of measurement error co
statements about the parameters of interest; especially the standard deviations associated with μ

References

Heitmann, Katrin. (2008). Cosmic Calibration: Reconstructing Dark Energy from Supernovae Los Alamos National Laboratory

Genovese, C.R., et al. (May 2008). Inference for the Dark Energy Equation of State Using Type IA Supernova Data. Carnegie Mellon University.
Gelman, A., Carlin, B., Stern, H., \& Rubin, D. (2004). Bayesian Data Analysis. New York Chapman and Hall.

Wood-Vasey, W.M. et al. Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey. http://cfa-www.harvard.edu\sim
wmwood-vasey/Papers/Wood-Vasey\ ESSENCE $_$darkenergy $\ A p J _$submitted.pdf, December wmwood-vasey/Papers/Wood-Vasey $\$ ESSENCE $_$darkenergy $_$ApJ $\$ submitted.pdf, December
2006. 2006.

Matheson, T. et al. Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Two Years. THE ASTRONOMICAL JOURNAL. http://arxiv.org/PSL_cache/astroph/pdf//441/0411357v1.pdf November 2004.
Kowalski et al. (The Supernova Cosmology Project), Ap.J., 2008

