
The Davis data are a collection of 192 supernovae 

observations (SNe Ia.)  The data has a redshift (z) value for 

each supernova and a value for µ (observed distance 

modulus.) The first plot is of z vs µ.  The four colors mark 

different observers of the supernovae; some of the telescopes 

are looking for supernovae at particular values of redshift.

The second plot is of z vs the standard deviation of µ. µ has 

a standard deviation associated with it; µ is derived by 

astronomers by fitting light curves to raw data. We will use 

the inverse of the standard deviations as weights in our 

likelihood equations.  

The Kowalski data are 307 SNe Ia observations.  More 

supernova observations are included in the Kowalski data, in 

part this is due to the fact that Kowalski’s dataset is newer 

and has had more years to collect more supernova data.  

There are 177 supernovae observations in common in these 

two data sets. Different methods of light curve fitting result 

in different values of µ for the same supernova, this can be 

seen in the differences between the Davis and Kowalski 

datasets. 

This data plot shows some trend in the standard deviations 

coming from different observers.  This phenomena will be 

looked into as it is advantageous to the analysis to be able to 

reduce as much of the uncertainty as possible.  The hope 

would be that the observers with larger uncertainty 

associated with their measurements could possibly adjust for 

this.  

For Bayesian modeling we will need priors for each of the parameters. σ will receive a rather 

straightforward Inverse-Gamma prior with mean about one.  However, we want to examine six 

priors for w0 and their sensitivity.  At first, we will hold       and H0 constant. We found that the 

N(-1,1), Unif(-2,0), and  Unif(-25,0) had nearly identical posteriors; so we will conclude that the 

prior choice does not effect the posteriors significantly in this case (see Table 1). 
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Abstract

The fact that the Universe is expanding has been known since the 1920's.  If the Universe was filled 

with ordinary matter, the expansion should be decelerating.  Beginning in 1998, however, 

observational evidence has been accumulating in favor of an accelerating expansion of the 

Universe.  The unknown driver of the acceleration has been termed dark energy.  The nature of 

dark energy can be investigated by studying its equation of state, that is the relationship of its 

pressure to its density.  The equation of state can be measured via a study of the luminosity 

distance-redshift relation for supernovae.  In this study, we employ supernovae data, including 

measurement errors, to determine whether the equation of state is constant or not.  Our method is 

based on Bayesian analysis of a differential equation and modeling w(z) directly, where w(z) is the 

equation of state parameter.  This work stems from collaboration between UCSC and Los Alamos 

National Laboratory (LANL) in the context of the Institute for Scalable Scientific Data 

Management (ISSDM) project.
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In the full model we will allow all four parameters to be 

variables but for the graphical output we would just like to 

examine some of the two dimensional likelihood plots.

These likelihood plots are of the model where we assume that 

the form of w(z) is constant: w(z) = w0    This first plot is a 

likelihood plot for the two parameters w0 and H0.  For this 

plot we will hold                  and  σ = 1.  The maximum 

likelihood estimates are at w0 = -1.002 and H0 = 65.63. 

This second plot is for the likelihood of the two parameters  

and w0.  For this plot we will hold H0 = 71.0 and σ = 1. The 

maximum likelihood estimates are at w0 = -2.91 and        = 

0.41. 

The third and fourth plots are for the Kowalski data.   This 

one is a likelihood plot for the two parameters w0 and H0.  For 

this plot we will hold       = 0.265 and σ = 1 .  The maximum 

likelihood estimates are at w0 = -0.96 and H0 = 70.09. 

This final plot is for the likelihood of the two parameters     

and w0.  For this plot we will hold H0 = 71.0 and σ = 1.  The 

maximum likelihood estimates are at w0 = -1.47 and        = 

0.39. 

• Use a Gaussian process to model w(z).

• Fit a full Bayesian model with 4 unknown parameters for both datasets using Metropolis 

Hasting steps

• Set up an experimental design to find where more data is need (on the z axis).  In the 

experimental design also test how shrinking uncertainty for µ,       , and H0 would help in  

drawing more conclusive statements about w(z).

• Look into which type of measurement error could be reduced to help make conclusive 

statements about the parameters of interest; especially the standard deviations associated with µ

The main parameter of interest is w(z) there are also two other unknown parameters:

H0 and                            .  Where the uncertainty shown is one standard deviation.

The main equation of interest is a transformation:

To be able to use this equation we will need to specify a form for w(z).  This also leads to a 

likelihood as follows: 

To be able to use this likelihood we will need priors for       , H0, and whatever parameters we 

used to specify w(z).  As a note the τ’s are the standard deviations for µ.
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Bayesian Modeling
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We also examined three other priors that included point 

masses.  The first one was a point mass at -1 and a               

Unif(-5,0); the second was a point mass at -2 and a Unif(-5,0); 

and the third prior had three point masses at -1/3, -2/3, and -1.  

These were helpful in doing a type of Bayesian hypothesis 

testing.  In simulated data sets these priors gave in simulated 

data, these priors produced posteriors with high posterior 

probabilities for the true values of w0.
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Conclusions

• Fitting models directly to w(z) seems to work well; but requires all Metropolis-Hasting steps 

in MCMC because of the double integral

• and H0 must be incorporated into the model as unknown parameters with priors  

• The raw data is not being used directly and the fitted values of µ for the two datasets have 

systematic differences. 

• Thus far the choice of prior for model w(z) =  w0 does not greatly influence the posterior.
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(0.95, 1.08)(-1.11, -0.98)Unif(-25,1)

(0.95, 1.08)(-1.11, -0.98)Unif((-2,0)

(0.95, 1.08)(-1.11, -0.98)N(-1,1)
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