

Outline Data reliability in sensor networks Analyzing energy-reliability tradeoffs in context of Choice of redundancy techniques Choice of nodes Frequency of integrity checks Optimizations Future experimental approach

Background: Storing Sensed Observations

- Storage operations are more energy-efficient than radio operations [Mathur '06 and Lin '06]
- Gigabyte storage is available on sensor nodes [Mitra '05]
- Storage cost is decreasing as storage gets denser [Ganesan '05]
- Want to reliably store data in local sensor network without base station

Energy Tradeoffs for Reliability

- Redundancy techniques
 - Mirroring vs. erasure coding
- Choice of nodes for replication
 Far vs. near nodes
- Frequency of remote storage verification
- Very frequent, infrequent, or piggy-back on other traffic

Sensor Network Assumptions

- Sensor nodes limited in CPU, power, and storage
- Battery-backed RAM and NAND flash at each node
- Transmission to distant nodes consumes more energy
- Transmission cost includes retransmission cost

Redundancy Techniques

- Trade-off between processing cost and reliability
- Reliability depends on technique:
 - Irregular XOR codes tolerate **most** j failure sets
 - Reed-Solomon (RS) tolerates any j failures
- Details of RS and XOR
 - (i,j) encodes i data with j parity nodes
 - · Both techniques encode same size of data
 - All encoding done by primary node
 - Data and parity chunks are distributed

RS and XOR Performance

Code Size	Energy Expenditure (mJ)		Throughput (MB/s)	
	RS	XOR	RS	XOR
(5, 3)	3.515	1.205	2.674	7.798
(6, 2)	3.133	0.6	3	15.654
(9, 3)	4.82	0.524	1.95	17.953
(10, 2)	3.92	0.653	2.4	14.4
(17, 3)	5.193	0.588	1.81	15.99
(18, 2)	4.36	0.589	2.156	15.972

- Experiments run on ARM9E 400MHz processor that consumes 94 mJ/s
- RS consumes 3-10 times more energy

	ime To Da	ata Loss	
	Mirror ₄	XOR ₂	XOR ₁
/ITTDL with epair	4.87 x 10 ¹¹ hours	6.50 x 108 hours	2.42 x 10 ⁶ hours
/TTDL without epair	4932 hours	2272 hours	1692 hours
differenti	at would be u al equations. ions	ised modelir	ig with

Frequency of Integrity Checks

- Each node must periodically verify its backups on remote nodes
- If such integrity checks are not conducted, then overall reliability reduces
- Use algebraic signatures to detect changes in backups
- Tradeoff: frequent verifications improves reliability but consumes more energy

- Use simulation to measure total energy expenditure for reliable sensor network storage
 - Measure energy expended at originating node and each back-up node
 - Determine network protocol for establishing nodes for reliability groups
 - Data transmission costs

Summary

17

• Mirror to nearby nodes to guard against individual node failures

....

18

- Use erasure coding for distant nodes to guard against correlated failures
- Use XOR-based codes instead of RS codes
- Store algebraic signatures for data integrity
- Use simulation to evaluate total energy

