
Managing the performance of large,
distributed storage systems

Scott A. Brandt
and

Carlos Maltzahn, Anna Povzner, Roberto Pineiro,
Andrew Shewmaker, and Tim Kaldewey

Computer Science Department
University of California Santa Cruz

and
Richard Golding and Ted Wong, IBM Almaden Research Center

LANL ISSDM Talk — July 10, 2008

Outline

• Problem: managing the performance of large,
distributed storage systems

• Approach: end-to-end performance
management

• General model: RAD

• Applying RAD to other resources: disk,
network, and buffer cache

• Moving forward: data center performance
management

Distributed systems need performance
guarantees

• Many distributed systems and applications need (or want) I/O
performance guarantees
• Multimedia, high-performance simulation, transaction processing,

virtual machines, service level agreements, real-time data capture,
sensor networks, ...

• Systems tasks like backup and recovery

• Even so-called best-effort applications

• Providing such guarantees is difficult because it involves:
• Multiple interacting resources

• Dynamic workloads

• Interference among workloads

• Non-commensurable metrics: CPU utilization, network
throughput, cache space, disk bandwidth

End-to-end I/O performance guarantees

• Goal: Improve end-to-end performance management in
large distributed systems
• Manage performance

• Isolate traffic

• Provide high performance

• Targets: High-performance storage (LLNL), data centers
(LANL), satellite communications (IBM), virtual machines
(VMware), sensor networks, ...

• Approach:
1. Develop a uniform model for managing performance

2. Apply it to each resource

3. Integrate the solutions

Our current target

• High-performance I/O
• From client, across network, through server, to disk

• Up to hundreds of thousands of processing nodes

• Up to tens of thousands of I/O nodes

• Big, fat, network interconnect

• Up to thousands of storage nodes with cache and disk

• Challenges
• Interference between I/O streams, variability of

workloads, variety of resources, variety of applications,
legacy code, system management tasks, scale

Stages in the I/O path

client

cache

network

transport

disk
storage

cache

network

transport

flow
control
with one
client

connection
management
between
clients

IO selection
and head
scheduling

prefetch and
writeback
based on
utilization, QoS

app

app

I/O

scheduler

client

cache

network

transport

app

app

integration
between
client and
server cache

1. Disk I/O

2. Server cache

3. Flow control across network

• Within one client’s session and between clients

4. Client cache

System architecture

Client

Storage
Server

QoS
Broker

Storage
Server

Storage
Server

Storage
Server

Request

Reservation

Utilization
reservations

1

2

3

4

Network
Server Caches

Disks
• Client: Task, host, distributed

application, VM, file, ...

• Reservations made via broker

• Specify workload: throughput,
read/write ratio, burstiness, etc.

• Broker does admission control

• Requirements + workload are
translated to utilization

• Utilizations are summed to see if
they are feasible

• Once admitted, I/O streams are
guaranteed (subject to workload
adherence)

• Disk, caches, network
controllers maintain guarantees

I/O

Achieving robust guaranteeable resources

• Goal: Unified resource management algorithms
capable of providing
• Good performance

• Arbitrarily hard or soft performance guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads

• All resources: CPU, disk, network, server cache, client
cache

➡Virtual resources indistinguishable from “real”
resources with fractional performance

Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth

should be indistinguishable from a disk with 20
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random

Epistemology of virtualization

• Virtual Machines and LUNs provide good HW
virtualization

• Question: Given perfect HW virtualization, how
can a process tell the difference between a virtual
resource and a real resource?

• Answer: By not getting its share of the
resource when it needs it

Observation

• Resource management consists of two
distinct decisions
• Resource Allocation: How much resources to

allocate?
• Dispatching: When to provide the allocated

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time

Separating them is powerful!

• Separately managing
resource allocation
and dispatching
gives direct control
over the delivery of
resources to tasks

• Enables direct,
integrated support
of all types of
timeliness needs

R
es

ou
rc

e
A

llo
ca

tio
n

Missed
Deadline

SRT

Dispatching
unconstrained

un
co

ns
tra

in
ed

co
ns

tra
in

ed

Resource
Allocation

SRTSoft
Real-
Time

Best
Effort

CPU-
Bound

 I/O-
Bound

Hard
Real-
Time

Rate-Based

constrained

The resource allocation/dispatching
(RAD) scheduling model

Rate

Deadlines

Dispatcher
Series of
jobs w/

budgets and
deadlines

Share of
resources

Times at
which allocation
must equal share

Process

Supporting different timeliness
requirements with RAD

Hard
Real-time

Rate-
based

Best-
effort

Soft
Real-time

Rate

Deadlines

Dispatcher

Scheduling
Mechanism

Runtime
System

Rate
Bounds

Period
WCET

Period
ACET

Priority

PiPiPiPi

Set of
jobs w/

budgets and
deadlines

Scheduling
Policy

Rate-Based Earliest Deadline (RBED) CPU scheduler

Rate

Deadlines

EDF +
timers

Scheduling
Policy

Scheduling
Mechanism

Runtime
System

Set of
jobs w/

budgets and
deadlines

• Processes have rate & period
• ∑rates ≤ 100%

• Periods based on processing
characteristics, latency needs, etc.

• Jobs have budget & deadline
• budget = rate * period

• Deadlines based on period or
other characteristics

• Jobs dispatched via Earliest
Deadline First (EDF)
• Budgets enforced with timers

• Guarantees all budgets &
deadlines = all rates & periods

Adapting RAD to disk, network, and buffer cache

• Guaranteed disk request scheduling
Anna Povzner

• Guaranteeing storage network
performance
Andrew Shewmaker (UCSC and LANL)

• Buffer management for I/O guarantees
Roberto Pineiro

Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of
magnitude

Fahrrad

• Manages disk time instead
of disk throughput

• Adapts RAD/RBED to
disk I/O

• Reorders aggressively to
provide good
performance, without
violating guarantees

A B C BE

Disk

I/O streams

Fahrrad

A bit more detail

• Reservations in terms of disk time utilization and
period (granularity)

• All I/Os feasible before the earliest deadline in the
system are moved to a Disk Scheduling Set (DSS)

• I/Os in the DSS are issued in the most efficient way

• I/O charging model is critical

• Overhead reservation ensures exact utilization
• 2 WCRTs per period for “context switches”

• 1 WCRT per period to ensure last I/Os

• 1 WCRT for the process with the shortest period due
to non-preemptability

Fahrrad guarantees utilization, isolation, throughput

• 4 SRT processes, sequential I/Os, reservations = 20%

• 3 w/period = 2 seconds

• 1 with period 125 ms to 2 seconds

• Result: perfect isolation between streams

Utilization Throughput

Fahrrad also bounds latency

• Period bounds latency

Fr
ac

tio
n

of
 I/

O
s

Latency (ms)

Latency bounds
(period)

Fahrrad outperforms Linux

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad

Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch
queue overflows)

• Non-preemptable

• Assumption: closed network

What we want

Client

Client

Client

Server

Server

Server

30%

50%

20%

What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention

Radon—RAD on the Network

• RAD-based network reservations ~ disk
reservations
• Network utilization and period

• Fully decentralized

• Two controls:
• Window size w = # of network packets per transmission

window

• Offset = delay before transmitting window

• Two pieces of information:
• Dropped packets (TCP)

• Forward delay (TCP Santa Cruz)

Flow control and congestion control

• Flow control determines how much data is
transmitted
• Fixed window sizes (TCP)

• Adjust window size based on congestion (TCP
Santa Cruz)

• Congestion control determines what to do
when congestion is detected
• Packet loss ➔ backoff then retransmit (TCP)

• ∆ Forward delay ➔ ∆ window size (TCP Santa
Cruz)

Packet loss based congestion control (TCP)

Improving TCP Congestion Control Over Internets with Heterogeneous Transmission Media (1999)!
Christina Parsa, J.J. Garcia-Luna-Aceves. Proceedings of the 7th IEEE ICNP

Bottleneck Switch Queue Overflows

Client Observes Packet Loss

Performance vs. offered load (w/nuttcp)

• The switch performs well below 800 Mbps
• Regardless of the # of clients

• Each client is limited to 600 Mbps due to SW/NIC
issues

Achieved vs. Offered Load Packet Loss vs. Offered Load

Delay based congestion control (TCP SC)

Queue Settles At Operating Point

Client Observes Increased Delay

The incast problem

• On Application-level Approaches to Avoiding TCP Throughput
Collapse in Cluster-based Storage Systems (2007). Elie Krevat, Vijay
Vasudevan, Amar Phanishayee, David G. Andersen, Gregory R. Ganger,
Garth A. Gibson, Srinivasan Seshan. Proceedings of the PDSW

Three approaches

1.Fixed window size w/out offsets
• Clients send data as it is available, up to per-period budget

• Expected result: lots of packet loss due to incast/queue
overflow

2.Fixed window size w/per-window offsets
• Clients transmit each window with random offset in [0,

laxity / num_windows]

3.Less Laxity More
• Distributed approximation to Least Laxity First

• No congestion ➔ increase window size

• Congestion ➔ move toward wopt = (1-%laxity)*wmax

Early results

• Congestion detection

• Congestion response

Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways

Buffering in storage servers

• Staging and de-staging data
• Decouples sender and receiver

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of

interfacing devices

• Assumption: reuse primarily occurs at the
client

Approach

• Partition buffer cache based on
worst-case needs
• 1–3 periods worth

• Use slack to prefetch reads
and delay writes

• Period transformation: period
into cache may be shorter
than from cache to disk

• Rate transformation: rate into
cache may be higher than disk
can support

Data center performance management

• Data center perf. mgmt. is currently relatively
ad hoc and reactive

• RAD gives us both tools and metrics for
managing the performance of large distributed
systems
• CPU, client cache, network, server cache, disk

• Predict, provision, guarantee, measure, monitor,
mine

• By job, node, resource, I/O stream, etc.

Goals

1. A first-principles model for data center perf. mgmt.

2. Full-system metrics for measuring performance in
client processing nodes, buffer cache, network, server
buffer cache, and disk

3. Performance visualization by application, client node,
reservation, or device

4. Application workload profiling and modeling

5. Full system performance provisioning and
management based on all of the above

6. Online machine-learning based performance
monitoring for real-time diagnostics

Conclusion

• Distributed I/O performance management
requires management of many separate
components

• An integrated approach is needed

• RAD provides the basis for a solution

• RAD has been successfully applied to several
resources: CPU, disk, network, and buffer cache

• We are on our way to an integrated solution

• There are many useful applications: Data
centers, TorMesh, virtualization, ...

