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Outline

• Problem: managing the performance of large, 
distributed storage systems

• Approach: end-to-end performance 
management

• General model: RAD

• Applying RAD to other resources: disk, 
network, and buffer cache

• Moving forward: data center performance 
management



Distributed systems need performance 
guarantees

• Many distributed systems and applications need (or want) I/O 
performance guarantees
• Multimedia, high-performance simulation, transaction processing, 

virtual machines, service level agreements, real-time data capture, 
sensor networks, ...

• Systems tasks like backup and recovery

• Even so-called best-effort applications

• Providing such guarantees is difficult because it involves:
• Multiple interacting resources

• Dynamic workloads

• Interference among workloads

• Non-commensurable metrics: CPU utilization, network 
throughput, cache space, disk bandwidth



End-to-end I/O performance guarantees

• Goal: Improve end-to-end performance management in 
large distributed systems
• Manage performance

• Isolate traffic

• Provide high performance

• Targets: High-performance storage (LLNL), data centers 
(LANL), satellite communications (IBM), virtual machines 
(VMware), sensor networks, ...

• Approach:
1. Develop a uniform model for managing performance

2. Apply it to each resource

3. Integrate the solutions



Our current target

• High-performance I/O
• From client, across network, through server, to disk

• Up to hundreds of thousands of processing nodes

• Up to tens of thousands of I/O nodes

• Big, fat, network interconnect

• Up to thousands of storage nodes with cache and disk

• Challenges
• Interference between I/O streams, variability of 

workloads, variety of resources, variety of applications, 
legacy code, system management tasks, scale



Stages in the I/O path
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System architecture
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• Client: Task, host, distributed 

application, VM, file, ...

• Reservations made via broker

• Specify workload:  throughput, 
read/write ratio, burstiness, etc.

• Broker does admission control

• Requirements + workload are 
translated to utilization

• Utilizations are summed to see if 
they are feasible

• Once admitted, I/O streams are 
guaranteed (subject to workload 
adherence)

• Disk, caches, network 
controllers maintain guarantees

I/O



Achieving robust guaranteeable resources

• Goal: Unified resource management algorithms 
capable of providing
• Good performance

• Arbitrarily hard or soft performance guarantees with
• Arbitrary resource allocations

• Arbitrary timing / granularity

• Complete isolation between workloads 

• All resources: CPU, disk, network, server cache, client 
cache

➡Virtual resources indistinguishable from “real” 
resources with fractional performance



Isolation is key

• CPU
• 20% of a 3 Ghz CPU should be indistinguishable 

from a 600 Mhz CPU

• Running: compiler, editor, audio, video

• Disk
• 20% of a disk with 100 MB/second bandwidth 

should be indistinguishable from a disk with 20 
MB/second bandwidth

• Serving:1 stream, n streams, sequential, random



Epistemology of virtualization

• Virtual Machines and LUNs provide good HW 
virtualization

• Question: Given perfect HW virtualization, how 
can a process tell the difference between a virtual 
resource and a real resource?

• Answer: By not getting its share of the 
resource when it needs it



Observation

• Resource management consists of two 
distinct decisions
• Resource Allocation: How much resources to 

allocate?
• Dispatching: When to provide the allocated 

resources?

• Most resource managers conflate them
• Best-effort, proportional-share, real-time



Separating them is powerful!

• Separately managing 
resource allocation 
and dispatching 
gives direct control 
over the delivery of 
resources to tasks

• Enables direct, 
integrated support 
of all types of 
timeliness needs
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The resource allocation/dispatching 
(RAD) scheduling model
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Supporting different timeliness 
requirements with RAD
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Rate-Based Earliest Deadline (RBED) CPU scheduler
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• Processes have rate & period
• ∑rates ≤ 100%

• Periods based on processing 
characteristics, latency needs, etc.

• Jobs have budget & deadline
• budget = rate * period

• Deadlines based on period or 
other characteristics

• Jobs dispatched via Earliest 
Deadline First (EDF)
• Budgets enforced with timers 

• Guarantees all budgets & 
deadlines = all rates & periods



Adapting RAD to disk, network, and buffer cache

• Guaranteed disk request scheduling
Anna Povzner

• Guaranteeing storage network 
performance
Andrew Shewmaker (UCSC and LANL) 

• Buffer management for I/O guarantees
Roberto Pineiro



Guaranteed disk request scheduling

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because disk I/O is:
• Stateful

• Non-deterministic

• Non-preemptable, and

• Best- and worst-case times vary by 3–4 orders of 
magnitude



Fahrrad

• Manages disk time instead 
of disk throughput

• Adapts RAD/RBED to 
disk I/O

• Reorders aggressively to 
provide good 
performance, without 
violating guarantees
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A bit more detail

• Reservations in terms of disk time utilization and 
period (granularity)

• All I/Os feasible before the earliest deadline in the 
system are moved to a Disk Scheduling Set (DSS)

• I/Os in the DSS are issued in the most efficient way

• I/O charging model is critical

• Overhead reservation ensures exact utilization
• 2 WCRTs per period for “context switches”

• 1 WCRT per period to ensure last I/Os

• 1 WCRT for the process with the shortest period due 
to non-preemptability



Fahrrad guarantees utilization, isolation, throughput

• 4 SRT processes, sequential I/Os, reservations = 20%

• 3 w/period = 2 seconds

• 1 with period 125 ms to 2 seconds

• Result: perfect isolation between streams

Utilization Throughput



Fahrrad also bounds latency

• Period bounds latency
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Fahrrad outperforms Linux

• Workload
• Media 1: 400 sequential I/Os per second (20%)

• Media 2: 800 sequential I/Os per second, (40%)

• Transaction: short bursts of random I/Os at random times (30%)

• Background: random (10%)

• Result: Better isolation AND better throughput

Linux Linux w/Fahrrad



Guaranteeing storage network performance

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Good I/O performance

• Challenging because network I/O is:
• Distributed

• Non-deterministic (due to collisions or switch 
queue overflows)

• Non-preemptable

• Assumption: closed network
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What we have

• Switched fat tree w/full bisection bandwidth

• Issue 1: Capacity of shared links

• Issue 2: Switch queue contention



Radon—RAD on the Network

• RAD-based network reservations ~ disk 
reservations
• Network utilization and period

• Fully decentralized

• Two controls:
• Window size w = # of network packets per transmission 

window

• Offset = delay before transmitting window

• Two pieces of information:
• Dropped packets (TCP)

• Forward delay (TCP Santa Cruz)



Flow control and congestion control

• Flow control determines how much data is 
transmitted
• Fixed window sizes (TCP)

• Adjust window size based on congestion (TCP 
Santa Cruz)

• Congestion control determines what to do 
when congestion is detected
• Packet loss ➔ backoff then retransmit (TCP)

• ∆ Forward delay ➔ ∆ window size (TCP Santa 
Cruz)



Packet loss based congestion control (TCP)

Improving TCP Congestion Control Over Internets with Heterogeneous Transmission Media (1999)! 
Christina Parsa, J.J. Garcia-Luna-Aceves.  Proceedings of the 7th IEEE ICNP 

Bottleneck Switch Queue Overflows 

Client Observes Packet Loss 



Performance vs. offered load (w/nuttcp)

• The switch performs well below 800 Mbps
• Regardless of the # of clients

• Each client is limited to 600 Mbps due to SW/NIC 
issues

Achieved vs. Offered Load Packet Loss vs. Offered Load



Delay based congestion control (TCP SC)

Queue Settles At Operating Point 

Client Observes Increased Delay 



The incast problem

• On Application-level Approaches to Avoiding TCP Throughput 
Collapse in Cluster-based Storage Systems (2007).  Elie Krevat, Vijay 
Vasudevan, Amar Phanishayee, David G. Andersen, Gregory R. Ganger, 
Garth A. Gibson, Srinivasan Seshan.  Proceedings of the PDSW



Three approaches

1.Fixed window size w/out offsets
• Clients send data as it is available, up to per-period budget

• Expected result: lots of packet loss due to incast/queue 
overflow

2.Fixed window size w/per-window offsets
• Clients transmit each window with random offset in [0, 

laxity / num_windows]

3.Less Laxity More
• Distributed approximation to Least Laxity First

• No congestion ➔ increase window size

• Congestion ➔ move toward wopt = (1-%laxity)*wmax



Early results

• Congestion detection

• Congestion response



Buffer management for I/O guarantees

• Goals
• Hard and soft performance guarantees

• Isolation between I/O streams

• Improved I/O performance

• Challenging because:
• Buffer is space-shared rather than time-shared

• Space limits time guarantees

• Best- and worst-case are opposite of disk

• Buffering affects performance in non-obvious ways



Buffering in storage servers

• Staging and de-staging data
• Decouples sender and receiver

• Speed matching
• Allows slower and faster devices to communicate

• Traffic shaping
• Shapes traffic to optimize performance of 

interfacing devices

• Assumption: reuse primarily occurs at the 
client



Approach

• Partition buffer cache based on 
worst-case needs
• 1–3 periods worth

• Use slack to prefetch reads 
and delay writes

• Period transformation: period 
into cache may be shorter 
than from cache to disk

• Rate transformation: rate into 
cache may be higher than disk 
can support 



Data center performance management

• Data center perf. mgmt. is currently relatively 
ad hoc and reactive

• RAD gives us both tools and metrics for 
managing the performance of large distributed 
systems
• CPU, client cache, network, server cache, disk

• Predict, provision, guarantee, measure, monitor, 
mine

• By job, node, resource, I/O stream, etc.



Goals

1. A first-principles model for data center perf. mgmt. 

2. Full-system metrics for measuring performance in 
client processing nodes, buffer cache, network, server 
buffer cache, and disk

3. Performance visualization by application, client node, 
reservation, or device

4. Application workload profiling and modeling

5. Full system performance provisioning and 
management based on all of the above

6. Online machine-learning based performance 
monitoring for real-time diagnostics



Conclusion

• Distributed I/O performance management 
requires management of many separate 
components

• An integrated approach is needed

• RAD provides the basis for a solution

• RAD has been successfully applied to several 
resources: CPU, disk, network, and buffer cache

• We are on our way to an integrated solution

• There are many useful applications: Data 
centers, TorMesh, virtualization, ...


