

Guide to Reusable
Launch and Reentry
Vehicle Software and
Computing System
Safety

Version 1.0

July 2006

FAA
Commercial Space
Transportation

Guide to Reusable
Launch and Reentry
Vehicle Software and
Computing System
Safety

Version 1.0

July 2006

Federal Aviation Administration
Office of Commercial Space Transportation
800 Independence Avenue, Room 331
Washington, DC 20591

U
e
A

NOTICE

se of trade names or names of manufacturers in this document does not constitute an official
ndorsement of such products or manufacturers, either expressed or implied, by the Federal
viation Administration.

 iii

TABLE OF CONTENTS

1.0 INTRODUCTION... 1

1.1 Purpose .. 1
1.2 Background ... 1
1.3 Scope ... 1
1.4 Authority ... 1

2.0 DEFINITIONS AND ACRONYMS... 2
2.1 Definitions ... 2
2.2 Acronyms .. 4

3.0 SOFTWARE AND COMPUTING SYSTEMS IN RLV SAFETY.............................. 5
4.0 SOFTWARE AND COMPUTING SYSTEM SAFETY PROCESS............................ 7

4.1 Software Safety Planning .. 7
4.2 Safety-Critical Computer System Function Identification and Description 9
4.3 Hazard Analyses.. 11

4.3.1 Error Conditions.. 12
4.3.2 Risk Mitigation Measures ... 13

4.4 Validation and Verification ... 15
4.4.1 Analysis.. 16
4.4.2 Formal Inspections ... 17
4.4.3 Testing.. 17
4.4.4 Verification After Deployment .. 19

4.5 Software Safety Evolution - Updating Analyses... 19
5.0 ADDITIONAL CONSIDERATIONS .. 19

5.1 Development Standards... 20
5.2 Configuration Management and Control... 20
5.3 Quality Assurance ... 20
5.4 Anomaly Reporting and Tracking... 21
5.5 Previously Developed Software and Computing Systems.................................. 21
5.6 Training ... 21
5.7 Maintenance .. 22

6.0 LESSONS LEARNED.. 22
APPENDIX A: GENERIC SOFTWARE SAFETY REQUIREMENTS 25

A.1 General Computer System Requirements .. 25
A.2 Computing System Power .. 26
A.3 Anomaly and Failure Detection ... 27
A.4 Anomaly and Failure Response... 28
A.5 Maintenance, Inhibits, and Interlocks .. 29
A.6 Human-Computer Interface.. 30
A.7 Computing System Environment-Software Interface .. 30
A.8 Operations .. 31
A.9 Validation and Verification .. 31
A.10 Configuration Management.. 33
A.11 Quality Assurance .. 34
A.12 Security... 34

 iv

A.13 Software Design, Development, and Test Standards 34
A.14 Software Coding Practices ... 34
A.15 Software Reuse... 34
A.16 Commercial Off-The-Shelf (COTS) Software ... 35

APPENDIX B: SOFTWARE AND COMPUTING SYSTEM HAZARD ANALYSES. 36
B.1 Software Failure Modes and Effects Analysis .. 36
B.2 Software Fault Tree Analysis ... 43

APPENDIX C: SPACE VEHICLE FAILURES AND AIRCRAFT ACCIDENTS......... 47
C.1 Space Vehicle Failures ... 47
C.2 Commercial, Military, and Experimental Aircraft Accidents 53

REFERENCES.. 55

FIGURES

Figure 1. Software and computing system safety process 7
Figure 2. Fault tree for engine shutdown failure 45
Figure 3. Fault tree for software or computing system errors 46

TABLES

Table 1. Example classification of software and computing system errors 37
Table 2. Example software and computing system Failure Modes and Effects Analysis

worksheet .. 40
Table 3. Common fault tree logic and event symbols... 44

 1

1.0 INTRODUCTION

1.1 Purpose

This guide is designed to aid reusable launch vehicle (RLV) and reentry vehicle (RV)
operators in producing safe, reliable launch vehicles through the application of a
systematic and logical process for identification, analysis, and control of software and
computing system safety hazards and risks.

1.2 Background

The FAA, Office of Commercial Space Transportation (AST), regulates commercial
space transportation activities only to the extent necessary to ensure public health and
safety and the safety of property. In fulfilling its responsibilities, AST issues licenses for
expendable launch vehicle (ELV), RLV, and RV launch and reentry activities and
experimental permits for reusable suborbital rocket operations. Software and computing
systems are becoming increasingly important in assuring safe operations of launch and
reentry vehicles. Software and its associated computing systems (computer system
hardware and firmware) are used in on-board and ground systems to support safety-
critical functions, such as guidance, navigation, and health monitoring. Software is also
used to produce safety-critical data and to assist in mitigating system risks. Therefore,
analyses are required to identify, characterize, and evaluate the hazards and mitigate the
risks associated with the use of software and computing systems on commercial space
launch vehicles.

1.3 Scope

This guide provides assistance to launch vehicle operators in developing software and
computing system safety analyses to improve the safety of their operations. The guide is
not intended to cover all analysis methods to identify software and computing system
hazards and risks or all aspects of the methods identified here.

Reusable launch vehicles typically include ascent and descent phases of flight while RVs
include only a descent phase. Although RLVs and RVs could technically be different
types of vehicles, the software and computing system safety approaches described here
are the same for both types of vehicles. For the purposes of this document, the terms
“launch vehicle” and “RLV” are assumed to encompass both RLVs and RVs.

1.4 Authority

49 USC Title IX chapter 701, Commercial Space Launch Activities, section 70105

14 CFR part 431, subpart C, Safety Review and Approval for Launch and Reentry of a
Reusable Launch Vehicle

 2

14 CFR part 435, Reentry of a Reentry Vehicle Other Than a Reusable Launch Vehicle
(RLV)

2.0 DEFINITIONS AND ACRONYMS

2.1 Definitions

Anomaly An apparent problem or failure that occurs
during verification or operation and affects a
system, a subsystem, a process, support
equipment, or facilities.

Commercial off-the-shelf
software

Operating systems, libraries, applications, and
other software purchased from a commercial
vendor and not custom built for the operator’s
project.

Failure Modes and Effects
Analysis

System analysis by which each potential
failure in a system is analyzed to determine
the effects on the system and to classify each
potential failure according to its severity and
likelihood.

Failure Modes, Effects, and
Criticality Analysis

Failure Modes and Effects Analysis that
includes the relative mission significance or
criticality of all potential failure modes.

Fault Tree Analysis Deductive system reliability analysis that
provides qualitative and quantitative measures
of the probability of failure of a system,
subsystem, or event.

Firmware Software that resides in the central processing
unit’s read-only memory and manages the
hardware functions.

Flight Safety System System designed to limit or restrict the
hazards to public health and safety and the
safety of property presented by a launch
vehicle or reentry vehicle while in flight by
initiating and accomplishing a controlled
ending to vehicle flight.

Functional Hazard Analysis Systematic, comprehensive examination of
vehicle and system functions to identify
potentially hazardous conditions that may
arise as a result of a malfunction or failure.

Hazard Equipment, system, operation, or condition

 3

with an existing or potential condition that
may result in loss or harm.

Memory Parts of an electronic digital computer that
retain instructions and data for some interval
of time. Memory is the electronic holding
place for instructions and data that the
microprocessor of a computer can access
quickly.

Preliminary Hazard Analysis System analysis conducted to classify each
potential hazard in a system according to its
severity and likelihood of occurrence and to
develop mitigation measures to those hazards.

Preliminary Hazard List Initial list of potential system hazards,
compiled without regard to risk or possible
mitigation measures.

Risk Measure that takes into consideration the
probability of occurrence and the conse-
quence of a hazard to a population or
installation.

Risk mitigation Process of reducing either the likelihood or
the severity of a risk.

Safety critical Essential to safe performance or operation. A
safety-critical system, subsystem, condition,
event, operation, process, or item is one
whose proper recognition, control,
performance, or tolerance is essential to
system operation such that it does not
jeopardize public safety.

Safety-critical computer
system function

Any computer system function that, if not
performed, if performed out of sequence, or if
performed incorrectly, may directly or
indirectly cause a public safety hazard.

Software Digitally coded instructions that manage
computer system hardware. Software is a set
of instructions or parameters that controls the
operation of the computer and related
hardware. Operating system software that
controls the basic functions of the computer
system and application software that enables
the computer to perform tasks are included.

Validation An evaluation to determine that each safety
measure derived from a system safety process

 4

is correct, complete, consistent, unambiguous,
verifiable, and technically feasible.
Validation is the process that ensures that the
right safety measure is implemented.

Verification An evaluation to determine that safety
measures derived from a system safety
process are effective and have been properly
implemented. Verification provides
measurable evidence that a safety measure
reduces risk to acceptable levels.

2.2 Acronyms

AC Advisory Circular

AIAA American Institute of Aeronautics and Astronautics

AST Office of Commercial Space Transportation
COTS Commercial Off-The-Shelf

CPU Central Processing Unit

Ec Expected Average Number of Casualties

ELV Expendable Launch Vehicle

FAA Federal Aviation Administration

GOTS Government Off-The-Shelf

GPS Global Positioning System

FADEC Full Authority Digital Electronic Control

FHA Functional Hazard Analysis

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes, Effects, and Criticality Analysis

FSS Flight Safety System

FTA Fault Tree Analysis

FTS Flight Termination System

IEEE Institute of Electrical and Electronics Engineers

IIP Instantaneous Impact Point

JSSSC Joint Services Software Safety Committee

MCO Mars Climate Orbiter

MPL Mars Polar Lander

MSAW Minimum Safe Altitude Warning

 5

NASA National Aeronautics and Space Administration

NTSB National Transportation Safety Board

PHA Preliminary Hazard Analysis

PHL Preliminary Hazard List

RLV Reusable Launch Vehicle

RPM Revolutions Per Minute

RV Reentry Vehicle

SDP Software Development Plan

SFMEA Software Failure Modes and Effects Analysis

SFTA Software Fault Tree Analysis

SRM Solid Rocket Motor

SSPP System Safety Program Plan

3.0 SOFTWARE AND COMPUTING SYSTEMS IN RLV SAFETY

A launch operator uses a three-pronged approach to ensure that public health and safety
and the safety of property would not be jeopardized by the conduct of an RLV mission.
The three safety-related elements reflected in this strategy for RLV mission and vehicle
operations are as follows:

• Using a logical, disciplined system safety process to identify hazards and to
mitigate or eliminate risk.

• Establishing limitations of acceptable public risk as determined through a
calculation of the individual and collective risk, including the expected number of
casualties (Ec).

• Imposing mandatory and derived operating requirements.

A launch vehicle is a complex and integrated system comprised of hardware, software,
human interactions, environmental interactions, and so on. Therefore, a software and
computing system safety process should be considered as one part of the integrated
system safety process.

A system safety process consists of the structured application of system safety
engineering and management principles, criteria, and techniques to address safety within
the constraints of operational effectiveness, time, and resources throughout all phases of
the life cycle of a system or program. This process identifies and analyzes hazards and
risks, then reduces or controls such risks to acceptable levels, as described in FAA
Advisory Circular (AC) 431.35-2A, Reusable Launch and Reentry Vehicle System Safety
Process, July 2005.

 6

Although software safety is part of the launch vehicle system safety effort that includes
hardware, recognizing some key differences between hardware and software is important.
Hardware, including computer system hardware and associated equipment, fails most
often because of such factors as deficiencies and variability in design, production, and
maintenance. However, software does not fail in the conventional sense – software does
not break, wear out, or fall out of tolerance like hardware. Software faults are primarily
systematic, not random, and are primarily caused by design faults, particularly in defining
and interpreting requirements. Randomness can be introduced into software operation by
actions that interrupt the operation or by computer memory faults. For example, a user
performing an action to stop the software from processing normally may introduce
randomness. However, the majority of software problems can be traced to improper
design or improper implementation of that design. Therefore, the software and
computing system safety effort should focus on the fault avoidance, removal, detection,
and tolerance. The launch vehicle operator should

• prevent faults from entering the system through the development of valid safety
requirements (fault avoidance);

• find and correct faults within a system before it enters service, through the use of
a thorough verification process (fault removal);

• use techniques to detect problems in the operational system so that their effects
can be minimized (fault detection); and

• design the system to operate correctly even if faults are present (fault tolerance).

For an effective software and computing system safety effort, the operator should
consider using a combination of these approaches.

Software and computing system safety analyses should consider safety aspects of the
following items:

• Computer system hardware, which includes physical devices that assist in the
transfer of data and perform logic operations. Examples include central
processing units (CPU), busses, display screens, memory cards, and peripherals.

• Computer system firmware, which is resident software that controls the CPU’s
basic functioning.

• Computer system software, including operating system software and applications
programs.

In addition, because software safety is a systems issue, software and computing systems
must be considered with respect to other aspects of the system, such as the following:

• Physical entities whose function and operation are being monitored or controlled,
often called the application.

• Sensors (thermocouples, pressure transducers).

• Effectors that take an instruction from the computing system and impart an action
on the system (valves, actuators).

 7

• Data communication to other computers.

• Humans who will interact with the system.
Safety is enhanced through the use of layers of protection that include both software- and
hardware-specific safety measures.

4.0 SOFTWARE AND COMPUTING SYSTEM SAFETY PROCESS

Figure 1 shows the software and computing system safety process. Each of these steps
will be described below. Note that although this process is presented in a linear, one-pass
fashion for ease of discussion, the software and computing system safety process is in
fact iterative. Over the life of the project, analyses and processes are updated. Additional
information is obtained as the launch operator discovers new hazards, finds that certain
hazards no longer apply, makes changes to the system, and continues to improve methods
for defining and refining the system.

Figure 1. Software and computing system safety process

4.1 Software Safety Planning

Software safety planning defines the approach that will aid in producing software that
will satisfy system safety requirements. Planning helps ensure that safety is designed in
and incorporated from the beginning of the life cycle. Early hazard identification and
risk reduction will typically provide the most effective and lowest cost approach to
addressing safety concerns. Because software is one subsystem in the vehicle, an
operator should discuss the software and associated computing system safety process in
the System Safety Program Plan (SSPP). The SSPP describes the tasks and activities

Software Safety Planning

Safety-Critical Computer System Function Identification and Description

Hazard Analyses

Validation and Verification

Objectives, approaches,
activities, processes

Safety-critical computer system
functions, top-level safety requirements

Safety measures, design-level
safety requirements

 8

required to identify, evaluate, and control hazards and reduce risk. Often, the description
of software-specific tasks includes analyses, such as a Software Failure Modes and
Effects Analysis (SFMEA) or Software Fault Tree Analysis (SFTA). The SSPP should
also identify whether software considerations would be included as part of other system-
wide analyses, such as Preliminary Hazard Lists (PHL) or Preliminary Hazard Analyses
(PHA). Examples of software considerations in the SSPP are provided in AC 431.35-2A.

In addition to the SSPP, an operator should prepare a Software Development Plan (SDP).
Software safety is based upon (1) developing valid requirements as a result of efforts to
identify, characterize, and reduce the hazards and risks and (2) assuring the integrity of
the software and proper implementation of the safety requirements. Integrity here means
the likelihood of a safety-related system satisfactorily performing the required safety
functions under all stated conditions. The SDP describes the activities, methods, and
standards for the development of safety-critical software to reduce the software risks and
assure software integrity with respect to safety. The SDP should include both
management and engineering of the software safety effort. The following elements
should be included in the plan:

Software System Safety Management

• Purpose, scope, and objectives of the software safety program and its tasks.

• Organization and responsibilities.

• Schedule and critical milestones.

• Staff training requirements specific to the software design, development, testing,
implementation, and maintenance.

• Policy and procedures on the use of previously developed software, including
reused and Commercial Off-The-Shelf (COTS) software.

• Contract management.

• Tools approved for use on the project, such as compilers, computer-aided
software engineering products, editors, path analyzers, simulators, and automated
test equipment.

• Design, coding, and safety standards and guidance documents.

• Generic safety requirements and approaches to managing requirements.

Software System Safety Engineering

• Methods for identifying safety-critical computer system functions.

• Methods for performing software and computing system hazard analyses that
generate software safety requirements.

• Approaches to validation and verification of safety-critical software and
computing systems, including testing, analyses, and inspections.

• Software configuration management.

 9

• Software quality assurance.

• Installation processes and procedures.

• Maintenance activities.

• Anomaly reporting, tracking, root cause analysis, and corrective action processes.

• Training requirements.

Additional information about software safety planning can be found in IEEE 1228-1994,
IEEE Standard for Software Safety Plans, 1994.

4.2 Safety-Critical Computer System Function Identification and Description

Once the planning is completed, an operator should identify and describe safety-critical
computer system functions. The operator would normally do this in three steps:

1. Identify safety-critical vehicle functions.

2. Identify safety-critical computer system functions.

3. Describe safety-critical computer system functions.

When software is integrated as part of a system to command, control, or monitor safety-
critical functions, special measures are required to understand and mitigate safety risks.
Identifying those functions that are essential to safe performance or operation is the first
imperative. Isolating these safety-critical vehicle functions helps the operator determine
priorities within the safety effort, focus use of resources, and tailor activities based on the
most important safety concerns. Examples of safety-critical vehicle functions include,
but are not limited to, the following:

• Dynamic and static air data processing.

• Attitude, altitude, and heading sensing and display.

• Instantaneous Impact Point (IIP) tracking and display.

• Propulsion system control, including rocket engine start or shutdown operations.

• Propulsion system health monitoring and display, such as engine pressures and
temperatures.

• Propellant dumping.

• Propellant tank and fuel management system maintenance and sensing.

• Flight control actuation health monitoring and display.

• Fire detection and suppression.

• Environmental controls, such as oxygen supply, defogging, carbon dioxide
removal, and maintenance of cabin temperatures and pressures.

• Landing gear position and control.

 10

• Ground braking, steering, and deceleration.

• Electrical power distribution and control.

• Active and passive thermal control health monitoring and display.

• Structures health monitoring and display.

• Guidance.

• Navigation.

• Communications.

• Payload health monitoring and management.

• Preflight safety parameter determinations, such as trajectory and winds.

• Recovery system deployment, such as parachutes and emergency egress systems.

• Flight safety system monitoring and operation.

A Functional Hazard Analysis (FHA) is one common approach used to identify safety-
critical vehicle functions. An operator could also develop a Preliminary Hazard List
(PHL) to assist in defining safety-critical vehicle functions. Other approaches for
determining safety-critical functions include industry guidelines, such as the AIAA Guide
to the Identification of Safety-Critical Hardware Items for Reusable Launch Vehicle
(RLV) Developers, May 1, 2005; government guidance documents, such as FAA AC
23.1309, Equipment, Systems, and Installations in Part 23 Airplanes, March 1999;
mishap data; and experience with similar systems.

After identifying the safety-critical functions of the vehicle, the operator should identify
the safety-critical computer system functions. Safety-critical computer system functions
monitor, control, or provide data for the safety-critical vehicle functions. Safety-critical
computer system functions include the following:

• Transmission of safety-critical data, including time-critical data and data about
hazardous conditions through a computing system.

• Software used to detect faults in safety-critical computer hardware and software.

• Software that responds to the detection of a safety-critical fault.

• Software and computing systems used in a flight safety system.

• Processor-interrupt software associated with previously designated safety-critical
computer system functions.

• Software that computes safety-critical data.

• Software that accesses safety-critical data.

After identifying the safety-critical computer system functions, the operator should
describe each software function and associated computing system. Examples include, but
are not limited to, the following:

 11

• Interfaces between the software and other systems.

• Flow charts or diagrams that show data busses, hardware interfaces, data flow,
power systems, and operations of each safety-critical software and computing
system function.

• Logic diagrams and software designs.

• Operator consoles or displays.

• Operator user manuals and documentation.

The output from this step in the software and computing system safety process includes
identification of safety-critical computer system functions and description of the software
and computing system. Note that safety-critical computer system functions may not be
safety-critical during all phases of flight. In such cases, the operator may also identify
the phase of flight where the function is safety critical.

At this stage, the operator should define the top-level, or generic, requirements. In
general, these requirements are not tied to a specific hazard but rather are derived from
knowledge of the safety-critical functions, design standards, safety standards, mishap
reports, experience on similar software, and lessons learned from other programs.
Appendix A provides examples of generic software safety requirements assembled from
various sources that an operator can use in developing its own top-level safety
requirements.

4.3 Hazard Analyses

Once the safety-critical computer system functions have been identified, an operator
should perform analyses to identify the hazards, assess the risks, and identify risk
mitigation approaches associated with those functions. In software intensive systems,
mishaps often occur because of a combination of factors, including component failure
and faults, human error, environmental conditions, procedural deficiencies, design
inadequacies, and software and computing system errors. In such systems, software often
cannot be divorced from the system where it resides. The operator should, therefore, first
perform a preliminary analysis that considers software hazards on a system or subsystem
level. An example of such a system would be a flight display, which might include both
hardware and software components. An operator can perform these system-level hazard
analysis and risk assessments in a manner similar to that used for systems consisting only
of hardware. Typical approaches include PHA and Failure Modes, Effects, and
Criticality Analysis (FMECA). Often an operator will use the PHL or FHA as a starting
point. In developing this analysis, an operator should classify each hazard according to
its consequences and likelihood of occurrence. Advisory Circular 431.35-2A and MIL-
STD-882D, Standard Practice for System Safety, provide definitions that an operator can
use in the qualitative evaluation of severity and likelihood for the assessment of hazards.
The analysis will result in mitigation measures to reduce risk and system-level
requirements to implement those mitigation measures. For example, mitigation measures
for the loss of a flight control display might involve using a redundant display or aborting

 12

the mission and shutting down the propulsion system. A resulting safety requirement
may entail developing procedures that specify the abort and shutdown conditions.

In addition to the system or subsystem hazard analysis, the operator should perform
software specific hazard analyses. Software specific hazard analyses identify what can
go wrong, what are the potential effects, and what mitigation measures can be used to
reduce the risk. Note, however, because of the difficulties in assigning probabilities to
newly developed software, the software specific hazard analysis does not usually include
an assessment of the likelihood of a software fault. Typical software specific hazard
exploration techniques include SFMEA and SFTA. Appendix B provides examples of
SFMEA and SFTA. The analytical method and level of detail in the analysis should be
made based on the complexity of the system, intricacy of the operations, and scope of the
program.

An operator’s software specific hazard analyses should consider multiple error conditions
(see subparagraph 4.3.1). Subparagraph 4.3.2 describes potential risk mitigation
measures for those error conditions.

4.3.1 Error Conditions

Error Condition Examples
Calculation or computation errors

Incorrect algorithms The software may perform calculations
incorrectly because of mistaken
requirements or inaccurate coding of
requirements.

Calculation overflow or underflow The algorithm may result in a divide by
zero condition.

Data errors
Improper data The software may receive out of range or

incorrect input data, no data because of
transducer drop out, wrong data type or
size, or untimely data; produce incorrect or
no output data; or both.

Input data stuck at some value A sensor or actuator could always read
zero, one, or some other value.

Large data rates The software may be unable to handle large
amounts of data or many user inputs
simultaneously.

Logic Errors
Improper or unexpected commands The software may receive bad data but

continue to run a process, thereby doing the
right thing under the wrong circumstances.

Failure to issue a command The software may not invoke a routine.
Command out of sequence A module may be exercised in the wrong

sequence, or a system operator may

 13

Error Condition Examples
interrupt a process leading to an out of
sequence command.

Incorrect timing System operators can interrupt processes
causing a problem in timing sequences, or
processes may run at the wrong times.

Interface errors
Incorrect, unclear, or missing
messaging

A message may be incorrect or unclear,
leading to the system operator making a
wrong decision.

Poor interface design and layout An unclear graphical user interface can
lead to an operator making a poor decision.

Inability to start or exit processing
safely

A system operator may be unable to start or
stop a test of a flight safety system once the
automated routines have started.

Multiple events occurring
simultaneously

A system operator may provide input in
addition to expected automated inputs
during software processing.

Software development environment errors
Improper use of tools Turning on the compiler option to optimize

or debug the code in production software
may lead to a software fault.

Changes in the operating system or
commercial software module

Upgrades to an operating system may lead
to a software fault.

Hardware-related errors
Unexpected shutdown of the
computing system

Loss of power to the CPU or a power
transient may damage circuits.

Memory overwriting Improper memory management may cause
overwriting of memory space and
unexpected results.

Appendix B, table 1, provides an example of a classification scheme for software and
computing system errors that an operator can use to develop its hazard analysis.

4.3.2 Risk Mitigation Measures

The recommended order of precedence for eliminating or reducing risk in the use of
safety-critical software and computing system follows:

1. Design for minimum risk.

2. Incorporate safety devices.

3. Provide warning devices.

4. Develop and implement procedures and training.

 14

Software specific analysis should provide mitigation approaches for each potential hazard
identified. Dunn (2002) and Storey (1996) describe potential mitigation measures.
Mitigation measures include, but are not limited to, the following approaches:

Mitigation Measures Examples
Software fault detection Built-in tests, incremental auditing, and checks

for infinite loops.
Software fault isolation Isolating safety-critical functions from non-

safety-critical functions, implementing checks on
data input to a safety-critical function, and
assuring that a malfunctioning component does
not accidentally call a safety-critical module.

Software fault tolerance Recovery blocks that use multiple software
versions of progressively more reliable
construction should faults occur,
N-version programming in which multiple
versions of the software execute simultaneously,
and majority voting between different software
versions and architectures.

Real-time hardware and software
fault recovery

Incremental reboots or exception handling.

Memory management approaches Placing limits on the dynamic memory usage or
reverting to a safe system state if memory limits
are reached.

Task prioritization schemes Assuring that commands are issued in the proper
sequence and detecting if commands are
conducted out of sequence.

Defensive programming techniques Verifying pre- and post-conditions, such as the
ranges of certain variables; initiating a safe
response if a variable is out of range; preventing
branching into a safety-critical loop; and using
bounded time requirements.

Verified watchdog timers Using a device that perform a specific operation
after a certain period if something goes wrong
with an electronic system (and the system does
not respond on its own) to detect the loss of a
processor.

Checksums Using numbers representing the sum of the digits
in digital data, used to test whether data
transmission errors have occurred.

Parity bit checks Adding a binary digit to a group of bits (and
counting of those bits) to detect proper
communication between systems.

Interrupt scheduling Making sure that all interrupt priorities and
responses are defined.

Redundant functionality using Adding a manual shutdown capability in addition

 15

Mitigation Measures Examples
hardware devices to a software-driven shutdown system or

redundant input devices.
Redundant mission abort capability Implementing manual and automated mission

abort procedures in the event of a specified
software fault or computing system loss.

Redundant software reviews Implementing manual and automated review of
software written to memory.

The output from the software specific hazard analysis process includes design-level
safety requirements based on safety measures developed to mitigate hazards. These
design requirements could include specific hardware mitigation measures, such as
redundant functionality using hardware, or coding requirements that must be
implemented. Design requirements are statements that can be translated into code
without interpretation, or specific mitigations that must be implemented. Examples of
design requirements include the following:

• Time must not be less than zero.

• Total Mass = Mass Stage 1 + Mass Stage 2 + Miscellaneous Mass

• A software function must be developed and used to detect out of range
temperature and pressure conditions.

The launch vehicle operator should obtain input to the software requirements from
environmental requirements, program specifications, facility requirements, tailored
generic requirements, and system functionality.

Note that the software specific subsystem hazard analyses may also yield additional
hazards and mitigation measures. An operator should update system hazard analyses to
account for new hazards and mitigation measures identified in the software specific
hazard analysis process.

4.4 Validation and Verification

Software safety analyses generate top- and design-level safety requirements that are used
to meet the operator’s system safety goals. These requirements typically result from
implementation of mitigation measures, operational controls, or software coding
specifications to reduce risk. Other sources of requirements may include operating
practices, standard industry practices, and regulations. Regardless of the source, effective
management of the complete set of safety requirements is an essential component of
system safety engineering.

Deficient requirements are the single largest factor in software and computing system
project failure, and deficient requirements have led to a number of software-related
aerospace failures and accidents (see appendix C). The applicant should implement a
process for managing requirements throughout the life cycle. The FAA/AST Guide to

 16

Reusable Launch Vehicle Safety Validation & Verification Planning and IEEE 1012-1998
provide examples of approaches that can assist in managing requirements. The IEEE
1228-1994 and NASA GB 8719.13 also provide methods for managing and analyzing
software safety requirements.

The validation and verification process is used to manage the set of safety requirements.
Validation determines that the correct requirements are implemented. To do this, the
validation effort ensures that each requirement is unambiguous, correct, complete,
consistent, testable, and operationally and technically feasible. In addition, the validation
process demonstrates that designers, programmers, and others implementing the
requirements understand them. Verification determines that safety requirements are
effective and have been properly implemented. Acceptable methods of verification
include analyses, formal inspections, and testing. These methods are often used in
combination. The acceptability of one method over another depends on the feasibility of
the method and the maturity of the vehicle and operations. Subparagraphs 4.4.1 through
4.4.4 describe specific areas of consideration in verification.

4.4.1 Analysis

Analyses to verify that the safety-critical software requirements are correctly
implemented may include, but are not limited to, the following:

Analysis Comments
Logic Evaluates the sequence of operations represented by the coded

program and detects programming errors that might create
hazards.

Data Evaluates the data structure and usage in the code to ensure each
is defined and used properly by the program. Analysis of the data
items used by the program is usually performed in conjunction
with logic analysis.

Interface Ensures compatibility of program modules with each other and
with external hardware and software.

Constraint Ensures that the program operates within the constraints imposed
upon it by requirements, design, and target computer. Constraint
analysis is designed to identify these limitations, ensure that the
program operates within them, and make sure that all interfaces
have been considered for out-of-sequence and erroneous inputs.

Programming style

Ensures that all portions of the program follow approved
programming guidelines.

Noncritical code Examines portions of the code that are not considered safety-
critical code to ensure that they do not cause hazards. As a
general rule, safety-critical code should be isolated from non-
safety-critical code. The intent of this analysis is to prove that
this isolation is complete and that interfaces between safety-
critical code and non-safety-critical code do not create hazards.

 17

Analysis Comments
Timing and sizing Evaluates safety implications of safety-critical requirements that

relate to execution time, clock time, and memory allocation.

Additional information about software analysis methods is available in IEEE 1228-1994,
the Joint Services Software Safety Committee (JSSSC) Software System Safety Handbook,
and appendix J of the FAA System Safety Handbook.

4.4.2 Formal Inspections

Formal inspections are well thought-out technical reviews that provide a structured way
to find and eliminate defects in software documentation products, ranging from a
requirements document to the actual source code. These inspections differ from informal
reviews or walkthroughs in that there are specified steps to be taken and roles assigned to
individual reviewers. Further information regarding formal inspections can be found in
NASA’s Software Formal Inspections Standard (NASA-STD-2202-93) and NASA’s
Software Formal Inspections Guidebook (NASA-GB-A302).

4.4.3 Testing

Tests may include, but are not limited to, the following:

Test Comments
Unit Demonstrates correct functioning of critical software elements.
Interface Shows that critical computer software units execute together as specified.
System Demonstrates the performance of the software within the overall system.
Stress Confirms the software will not cause hazards under abnormal

circumstances, such as unexpected input values or overload conditions.
Regression Demonstrates changes made to the software did not introduce conditions for

new hazards.

Software Testing in the Real World (Kit 1995), Testing Computer Software (Kaner et al.
1999), and Safety Critical Computer Systems (Storey 1996) provide additional
information about software testing.

Before verification testing begins, the operator should develop a test plan to show how
the results of software testing will be used to meet all software safety requirements. A
plan normally prescribes the scope, approach, resources, and schedule of the testing
activities. The operator’s plan should include a description of the test environments,
including software tools and hardware test equipment.

The operator should also define specific test cases. Test cases describe the inputs,
predicted results, test conditions, and procedures for conducting the test. The operator

 18

should design test cases to assure that all safety requirements are covered. These test
cases should include scenarios that demonstrate the ability of the software to respond to
both nominal and off-nominal inputs and conditions. Off-nominal and failure test
scenarios often come from the hazard analysis.

The operator should record the results of the tests; this is often done in a test log.
Anomalies discovered during testing should also be recorded (see paragraph 5.4). IEEE-
STD 829-1983 provides additional information on test documentation.

Testing has traditionally been relied on to verify that software requirements have been
met and have been implemented correctly. While testing should be used whenever
possible for verification, exhaustive testing of all possible conditions in complex software
systems is effectively impossible. The combinations of possible input conditions are
prohibitively large in all but the most trivial software programs. Therefore, the operator
should use a combination of verification approaches (analysis, inspection, and test). The
operator should also use proven methods to verify the software which include, but are not
limited to, the following types of tests:

Test Comments
Equivalence
partitioning

Identifying valid and invalid classes of input conditions. If, for
example, an input field calls for values between 1 and 10, inclusive,
then a valid equivalence class would be all values between and
including 1 and 10. Invalid equivalent classes would be values less
than 1 and values greater than 10.

Boundary
value

Testing at the extremes of an input condition, values close to those
extremes, and crossing those boundaries. If, for example, an input field
calls for values between 0 and 100, then test inputs could include 0,
100, 0.0001, and 99.9999.

Error guessing Using empty or null lists and strings, negative numbers, null characters
in a string, and incorrect entry types.

Statement
coverage

Assuring that each statement is executed at least once.

Decision
coverage

Assuring that each decision takes on all possible outcomes at least
once. For example, assuring that all “if” and “while” statements are
evaluated to both true and false.

Function
coverage

Determining whether each function or procedure was invoked.

Call coverage Verifying that each function call has been completed.

Software and computing system testing is conducted as part of a larger system and
vehicle verification program. Interlocks are often turned off, and inhibits are often
implemented during testing and maintenance to reduce the risks to operations personnel
and to facilitate testing. Interlocks are hardware or software safety functions that prevent
succeeding operations when specific conditions exist. An example of an interlock would

 19

be a key that controls a safe/arm switch. Inhibits prevent a specific event function from
occurring or a specific function from being available. For example, an operator may use
a software function to inhibit an audible alarm during sensor calibration testing. Failure
to properly manage interlocks and inhibits has contributed to accidents. In developing
and using interlocks and inhibits, an operator should consider lessons learned from
previous accidents and software development efforts (see appendix A).

4.4.4 Verification After Deployment

Changes to both the hardware and software after deployment can produce software and
computing system anomalies. A launch operator should identify a process for verifying
the integrity of the safety-critical software and computing system after deployment.
Examples of such verification methods include the use of checksums and parity bit
checks to assure proper data transfer, built-in or external measures for evaluating the
software and its data, inspections to detect unauthorized modification of the software or
its data, and regression testing.

4.5 Software Safety Evolution - Updating Analyses

Development of any system requires making changes throughout the life cycle of the
system. This need is especially true of software because changes are made to solve
problems encountered during verification or identified after deployment. Changes are
also the result of upgrades and product enhancements. The operator should implement a
process to update its analyses. In particular, as the life cycle progresses an operator
should

• determine whether changes have created any new safety-critical computer system
functions;

• determine whether the changes introduced new hazards;

• identify any hazards that no longer apply;

• identify new software safety requirements;

• determine whether any changes would circumvent safety measures;

• determine the need for new safety measures;

• determine whether previously identified mitigation measures require changes;

• determine whether verification approaches and test documentation need updates;
and

• determine the need for additional verification, including regression testing.

5.0 ADDITIONAL CONSIDERATIONS

Several additional factors should be considered in the management of the software and
computing system safety process. These factors include development standards,

 20

configuration management and control, quality assurance, anomaly reporting and
tracking, previously developed software and computing systems, training, and
maintenance (see paragraphs 5.1 through 5.7).

5.1 Development Standards

The launch vehicle operator should identify software development standards that define
the rules and constraints for the software development process. These standards should
enable uniformly designed and implemented software components and prevent the use of
methods that are incompatible with safety requirements. Software development
standards include requirements, design, coding, and safety standards, as follows:

• Requirements standards might include methods for developing requirements and a
description of how the requirements flow down to coding.

• Design standards might include restrictions on the use of scheduling and
interrupts or rules for conditional branches to reduce complexity.

• Coding standards might include requirements for the programming language;
naming conventions for modules, variables, and constants; and constraints on the
use of tools.

• Safety standards might include approaches for analyzing risk and classifying
hazards, such as MIL-STD-882.

5.2 Configuration Management and Control
Changes to the software, especially on safety-critical systems, can have significant
impacts on public safety. The launch vehicle operator should implement a software
configuration management and control process that will at a minimum:

• Identify components, subsystems, and systems.

• Establish baselines and traceability.

• Track changes to the software configuration and system safety documentation.
This software configuration management and control process should be in force during
the entire life cycle of the program, from initiation of development through software
retirement, and should include control of project documentation, source code, object
code, data, development tools, test tools, environments (both hardware and software), and
test cases.

5.3 Quality Assurance
Quality assurance is used to verify that objectives and requirements of the software
system safety program are being satisfied and to confirm that deficiencies are detected,
evaluated, tracked, and resolved. This function is usually performed through audits and
inspections of elements and processes, such as plans, standards, and problem tracking and
configuration management systems. In addition, the software quality assurance function
can evaluate the validity of system safety data. The launch vehicle operator should
perform quality assurance activities suitable to the objectives of the program. NASA’s

 21

Software Assurance Guidebook (NASA-GB-A201), Software Quality Assurance Audits
Guidebook (NASA-GB-A301), and Software Assurance Standard (NASA-STD-8739.8)
provide detailed information about software quality assurance.

5.4 Anomaly Reporting and Tracking

Software anomaly reports (also known as problem reports) are a means to identify and
record:

• Software product anomalous behavior and its resolution, including failure to
respond properly to nominal and off-nominal conditions.

• Process non-compliance with software, requirements, plans, and standards,
including improperly implemented safety measures.

• Deficiencies in documentation and safety data, including invalid requirements.

To help prevent recurrence of software safety-related anomalies, the launch vehicle
operator should develop a standardized process to document anomalies, analyze the root
cause, and determine corrective actions.

5.5 Previously Developed Software and Computing Systems

Using previously developed software can reduce development time because those
components have already undergone design and testing. However, analysis of accidents
where software was a contributing factor shows the risks in this approach. Previously
developed software includes commercial off-the-shelf software (COTS), government off-
the-shelf software (GOTS), and “reused” software. Although another vendor may have
developed the software, reducing the risks of using such software remains the
responsibility of the operator. These risk reduction efforts should include evaluating the
differences between how the software will be used within the new system and how it was
used in the previous system. Identifying the abilities and limitations of the previously
developed software and computing systems with respect to any safety requirements is
also necessary. In addition, an operator should identify the safety-critical computer
system functions, perform hazard analyses, and provide validation and verification data
in a manner similar to software developed specifically for its vehicle.

5.6 Training

Designing safety into the system requires that personnel involved in system development,
production, and operation understand and practice operations and procedures that protect
public safety. Training can help ensure that personnel can produce a safe system or
operation. In addition, training can be included as a risk mitigation measure; therefore,
training can be a critical element in helping to ensure the safety of the public. The launch
vehicle operator should develop plans that describe essential training. This training
should include, but is not limited to, development tools, software development
approaches, software installation, hazard analysis approaches, safety-critical software
use, and software maintenance.

 22

5.7 Maintenance

Maintenance engineering ensures that systems and subsystems will remain at the design
safety level by minimizing wear-out failures through replacement of failed items and
surveillance over possible degraded environments. Maintenance engineering personnel
also participate in analyzing the safety implications of proposed maintenance procedures
on the ground and in flight. Therefore, the launch vehicle operator should perform
activities to aid maintenance and repair of computing system hardware.

Software maintenance differs from hardware maintenance because software does not
wear out or degrade in the same way that hardware does. However, software is
maintained to correct defects; add or remove features and capabilities; compensate for or
adapt to hardware changes, wear-out, or failure; and accommodate changes in other
software components.

Because software changes can be expected over the life cycle of the product, a launch
vehicle operator should build maintainable software to facilitate those changes and
reduce the likelihood of introducing new hazards. The following are some considerations
for building maintainable software:

• Planning early for expected changes.

• Using a strong configuration management program.

• Using modular design, where appropriate, to minimize the overall impact of
changes.

• Implementing naming conventions for variables to improve code readability.

• Using comment and style coding standards to improve code readability.

• Implementing documentation standards to make important information easy to
find.

• Using a standardized set of development tools to reduce the chance of introducing
errors in code changes.

• Assuring that design and verification documentation, such as regression tests and
test cases, are updated and maintained.

NASA-GB-8719.13 provides additional information on software maintainability.

6.0 LESSONS LEARNED

Appendix C provides a compilation of some accidents and failures where software and
computing systems played a critical role. Researchers have studied many of the accidents
described here (Greenwell and Knight 2003, Holloway 1999, JSSSC 1999, Leveson
2001, Leveson 2004). The following are some of the broad lessons learned from the
study of those accidents:

 23

• Risks associated with software and automated processes are often
underestimated or misunderstood.

• Systems engineering efforts to identify problems related to interaction among
components, including hardware and software, are often insufficient.

• System safety efforts to identify hazards and risks, including the intended and
unintended operations of the software and computing systems, are often
insufficient.

• Requirements are often flawed and specifications are often missing.

• Software is often needlessly complex.

• Software is often reused without appropriate safety analyses.

• Software is often not adequately reviewed.

• Test and simulation environments often do not match the operational
environment.

• Software changes are often made without reassessing system safety.

• Configuration management processes are often inaccurate.

• Safety aspects of the graphical user interface are often not considered in the
system safety analyses.

• Cost and schedule overruns often lead to reduced testing, reduced system
understanding, and increased system risk.

• Software can be out of synch with its documentation, leading to
misunderstanding and increased risk.

Chan (2001) identified recommendations based on additional lessons learned from U.S.
military experience, including the following:

• Testing should take into account possible abuse or bypassing of expected
procedures.

• Design and implementation of software and computing systems must be
subject to the same safety analysis, review and quality control as other parts of
the system.

• An effective mechanism should be in place for documenting and
characterizing field problems involving software and computing systems.

• Programmer qualifications are as important as qualifications of any other
member of the engineering team.

• The test, verification, and review processes must include end-to-end event
review and test.

• Reuse of software components must include review and testing of the
integrated components in the new operating environment.

 24

• Specified equations describing physical world phenomenon must be
thoroughly defined, with assumptions as to accuracies, ranges, uses,
environments, and limitations of the computation.

• Boundary assumptions should be used to generate test cases because the more
subtle failures caused by assumptions are usually not covered by ordinary test
cases.

• Training must describe the safety-related software functions, such as the
possibility of software overrides to operator commands.

Launch vehicle developers should take advantage of these broad lessons learned as well
as more specific design-level lessons learned reflected in the generic requirements in
appendix A to reduce the possibility of software and computing system failures and
mishaps.

 25

APPENDIX A: GENERIC SOFTWARE SAFETY REQUIREMENTS

This appendix provides generic software safety requirements that a launch vehicle
operator may use in the design and development of safety-critical software and
computing systems. These requirements represent best practices used in the aerospace
community. Additional information and requirements can be found in the following
references:

• FAA System Safety Handbook (2002)
• Joint Services Software Safety Committee Software System Safety Handbook

(1999)

• NASA Software Safety Guidebook (2004)

• Range Safety User Requirements Manual: Air Force Space Command Range
Safety Policies and Procedures (2004)

• System Safety Analysis Handbook (1997)

A.1 General Computer System Requirements

A.1.1 Computer systems should be validated for operation in the intended use and
environment. Such validation should include testing under operational conditions and
environments.

A.1.2 Under maximum system loads, CPU throughput should not exceed 80 percent of
its design value.

A.1.3 Computer system architecture should be single fault tolerant. No single software
fault or output should initiate a hazardous operation, cause a critical accident, or cause a
catastrophic accident.

A.1.4 Safety-critical computer system flight architecture that will be exposed to cosmic
radiation should protect against CPU single event upset and other single event effects. A
single event upset occurs when an energetic particle travels through a transistor substrate
and causes electrical signals within a component.

A.1.5 Sensitive components of computer systems should be protected against the
harmful effects of electromagnetic radiation, electrostatic discharges, or both.

A.1.6 The computer system should periodically verify that safety-critical computer
hardware and software safety-critical functions, including safety data transmission,
operate correctly.

A.1.7 The computer system should periodically verify the validity of real-time software
safety data, where applicable.

A.1.8 Software should process the necessary commands within the time-to-criticality of
a hazardous event.

A.1.9 Memory allocation should occur only at initialization.

 26

A.1.10 If the system begins to use areas of memory that are not part of the valid program
code, the system should revert to a safe state.

A.1.11 Memory partitions, such as RAM, should be cleared before loading software.

A.1.12 Prerequisite conditions for the safe execution of an identified hazardous command
should exist before starting the command. Examples of these conditions include correct
mode, correct configuration, component availability, proper sequence, and parameters in
range. If prerequisite conditions have not been met, the software should reject the
command and alert the crew, ground operators, or controlling executive.

A.1.13 Provisions to protect the accessibility of memory region instructions, data
dedicated to critical software functions, or both, should exist.

A.1.14 Software should provide proper sequencing, including timing, of safety-critical
commands.

A.1.15 Where practical, software safety-critical functions should be performed on a
standalone computer. If that is not practical, software safety-critical functions should be
isolated to the maximum extent practical from non-critical functions.

A.1.16 Documentation describing the software and computing system should be
developed and maintained to facilitate maintenance of the software.

A.1.17 The software should be annotated, designed, and documented for ease of analysis,
maintenance, and testing of future changes to the software.

A.1.18 Interrupt priorities and responses should be specifically defined, documented,
analyzed, and implemented for safety impact.

A.1.19 Critical software design and code should be structured to enhance comprehension
of decision logic.

A.1.20 Software code should be modular in an effort to reduce logic errors and improve
logic error detection and correction functions.

A.1.21 The software should be initiated and terminated in a safe state.

A.1.22 Critical hardware controlled by software should be initialized to a known safe
state.

A.2 Computing System Power

A.2.1 Computer systems should be powered up, restarted, and shutdown in a safe state.

A.2.2 A computer system should not enter a hazardous state as a result of an intermittent
power transient or fluctuation.

A.2.3 If a single failure of primary power to a computer system or computer system
component occurs, then that system or some cooperating system should take action
automatically to transition to a stable state.

A.2.4 Software used to power up safety-critical systems should power up the required
systems in a safe state.

 27

A.3 Anomaly and Failure Detection

A.3.1 Single event system failures should be protected against by employing mitigating
approaches, such as redundancy, error-correcting memory, and voting between parallel
CPUs.

A.3.2 Before initiating hazardous operations, computer systems should perform checks
to ensure that they are in a safe state and functioning properly. Examples include
checking safety-critical circuits, components, inhibits, interlocks, exception limits, safing
logic, memory integrity, and program loads.

A.3.3 Failure of software safety-critical functions should be detected, isolated, and
recovered from in a manner that prevents catastrophic and critical hazardous events from
occurring.

A.3.4 Software should provide error handling to support software safety-critical
functions. The following hazardous conditions and failures, including those from
multiple sources, should be detected:

• Input errors. Data or sequences of data passed to software modules, either
by human input, other software modules, or environmental sensors, that
are outside a specified range for safe operation.

• Output errors. Data output from software modules that are outside a
specified range for safe operation.

• Timing errors. The state when software-timed events do not happen
according to specification.

• Data transmission errors.

• Memory integrity loss.

• Data rate errors. Greater than allowed safe input data rates.

• Software exceptions. “Divide by zero” or “file not found.”

• Message errors. Data transfer messages corrupted or not in the proper
format.

• Logic errors. Inadvertent instruction jumps.
A.3.5 Watchdog timers or similar devices should be used to ensure that the
microprocessor or computer operates properly. For example, a watchdog timer should be
used to verify events within an expected time budget or to ensure that cyclic processing
loops complete within acceptable time constraints.

A.3.6 Watchdog timers or similar devices should be designed, so the software cannot
enter an inner loop and reset the timer or similar device as part of that loop sequence.

 28

A.4 Anomaly and Failure Response

A.4.1 Software should provide fault containment mechanisms to prevent error
propagation across replaceable unit interfaces.

A.4.2 All anomalies, software faults, hardware failures, and configuration
inconsistencies should be reported to the appropriate system operator, safety official, or
both, consoles in real time, prioritized as to severity, and logged to an audit file. The
display should

• distinguish between read and unread anomaly alerts,

• support reporting multiple anomalies,

• distinguish between anomaly alerts for which corrective action has been
taken and those that still require attention, and

• distinguish between routine and safety-critical alerts.
A.4.3 Upon detecting anomalies or failures, the software should

• remain in or revert to a safe state,

• provide provisions for safing the hardware subsystems under the control of
the software,

• reject erroneous input, and

• ensure the logging of all detected software safety-critical function system
errors.

A.4.4 Upon detecting a failure during launch vehicle processing, the software should
maintain the Flight Safety System (FSS) in its current state in addition to meeting the
requirements in paragraph 4.3 of this appendix. The software should maintain the FSS in
the safe state. After the FSS is readied, the software should retain the FSS in the readied
state. When the FSS receiver is on internal power, the software should maintain the FSS
receiver on internal power. During flight, all detected FSS-related system errors should
be transmitted to the safety official.

A.4.5 Details of each anomaly should be accessible with a single operator action.

A.4.6 Automatic recovery actions taken should be reported to the crew, operator, or
controlling executive. There should be no necessary response from crew or ground
operators to proceed with the recovery action.

A.4.7 Override commands should require multiple operator actions.

A.4.8 Software that executes hazardous commands should notify the initiating crew,
ground operator, or controlling executive upon execution or provide the reason for failure
to execute a hazardous command.

A.4.9 Hazardous processes and safing processes with a time-to-criticality such that
timely human intervention may not be available should be automated. Additionally, such
processes should not require human intervention to begin, accomplish interim tasks, or
complete.

 29

A.4.10 The software should notify the crew, ground operators, or controlling executive
during or immediately after completing an automated hazardous or safing process.

A.4.11 After correction of erroneous entry, the software should provide positive
confirmation of a valid data entry. The software should also provide an indication that the
system is functioning properly.

A.5 Maintenance, Inhibits, and Interlocks

A.5.1 Systems should include hardware and software interlocks and software
controllable inhibits, as necessary, to mitigate hazards when performing maintenance or
testing.

A.5.2 Interlocks should be designed to prevent an inadvertent override.

A.5.3 Interlocks that are required to be overridden should not be autonomously
controlled by a computer system, unless dictated by a timing requirement.

A.5.4 Interlocks that are required to be overridden and are autonomously controlled by
a computer system should be designed to prevent an inadvertent override.

A.5.5 The status of all interlocks should be displayed on the appropriate operator
consoles.

A.5.6 An interlock should not be left in an overridden state once the system is restored
to operational use.

A.5.7 A positive indication of interlock restoration should be provided and verified on
the appropriate operator consoles before restoring a system to its operational state.

A.5.8 Software should make available status of all software controllable inhibits to the
crew, ground operators, or controlling executive.

A.5.9 Software should accept and process crew, ground operator, or controlling
executive commands to activate and deactivate software controllable inhibits.

A.5.10 Software should provide an independent and unique command to control each
software controllable inhibit.

A.5.11 Software should incorporate the ability to identify and display the status of each
software inhibit associated with hazardous commands.

A.5.12 Software should make available current status on software inhibits associated
with hazardous commands to the crew, ground operators, or controlling executive.

A.5.13 All software inhibits associated with a hazardous command should have a
unique identifier.

A.5.14 If an automated sequence is already running when a software inhibit associated
with a hazardous command is executed, the sequence should complete before the
software inhibit is started.

A.5.15 Software should have the ability to resume control of an inhibited operation
after deactivation of a software inhibit associated with a hazardous command.

 30

A.5.16 The state of software inhibits should remain unchanged after the execution of an
override.

A.6 Human-Computer Interface

A.6.1 The system should be designed such that the operator may exit current
processing to a known stable state with a single action and have the system revert to a
safe state.

A.6.2 Computer systems should minimize the potential for inadvertent actuation of
hazardous operations.

A.6.3 Only one operator at a time should control safety-critical computer system
functions.

A.6.4 Operator-initiated hazardous functions should require two or more independent
operator actions.

A.6.5 Software should provide confirmation of valid command entries, data entries, or
both, to the operator.

A.6.6 Software should provide feedback to the operator that indicates command
receipt and status of the operation commanded.

A.6.7 Software should provide the operator with real-time status reports of operations
and system elements.

A.6.8 Error messages should distinguish safety-critical states and errors from non-
safety-critical states and errors.

A.6.9 Error messages should be unambiguous.

A.6.10 Unique error messages should exist for each type of error.

A.6.11 The system should ensure that a single failure or error cannot prevent the
operator from taking safing actions.

A.6.12 The system should provide feedback for any software safety-critical function
actions not initiated.

A.6.13 Safety-critical commands which require several seconds or longer to process
should provide a status indicator to the operator indicating that processing is occurring.

A.6.14 Safety-critical operator displays and interface functions should be concise and
unambiguous. Where possible, such displays should be duplicated using separate display
devices.

A.7 Computing System Environment-Software Interface

A.7.1 The developer should identify the situations in which the application can corrupt
the underlying computing environment.

A.7.2 The developer should check for system data integrity at startup.

 31

A.7.3 The system should provide for self-checking of the programs and computing
system execution.

A.7.4 Periodic checks of memory, instruction, and data busses should be performed.

A.7.5 Parity checks, checksums, or other techniques should be used to validate data
transfer.

A.8 Operations

A.8.1 Operational checks of testable software safety-critical functions should be made
immediately before performance of a related safety-critical operation.

A.8.2 Software should provide for flight or ground crew forced execution of any
automatic safing, isolation, or switchover functions.

A.8.3 Software should provide for flight or ground crew forced termination of any
automatic safing, isolation, or switchover functions.

A.8.4 Software should provide procession for flight or ground crew commands in return
to the previous mode or configuration for any automatic safing, isolation, or switchover
function.

A.8.5 Software should provide for flight or ground crew forced override of any
automatic safing, isolation, or switchover functions.

A.8.6 Hazardous payloads should provide failure status and data to core software
systems. Core software systems should process hazardous payload status and data to
provide status monitoring and failure annunciation.

A.8.7 The system should have at least one safe state identified for each logistic and
operational phase.

A.8.8 Software control of critical functions should have feedback mechanisms that give
positive indications of the function’s occurrence.

A.8.9 The system and software should ensure that design safety requirements are not
violated under peak load conditions.

A.8.10 The system and software should ensure that performance degradation caused by
factors, such as memory overload and counter overflow, does not occur over time.

A.9 Validation and Verification

A.9.1 A system safety engineering team should analyze the software throughout the
design, development, and maintenance process to verify and validate that the safety
design requirements have been correctly and completely implemented. Test results
should be analyzed to identify potential safety anomalies that may occur.

A.9.2 If simulated items, simulators, and test sets are required, the system should be
designed such that the identification of the devices is fail safe. The design should also

 32

assure that operational hardware can not be inadvertently identified as a simulated item,
simulator, or test set.

A.9.3 The launch vehicle operator should use a problem-tracking system to identify,
track, and disposition anomalies during the verification process.

A.9.4 The operator should have the ability to review logged system errors.

A.9.5 For software safety-critical functions, the developer should provide evidence that
testing has addressed not only nominal correctness but also robustness in the face of
stress. Such testing may involve stimulus and response pairs to demonstrate satisfaction
of functional requirements. This approach should include a systematic plan for testing
the behavior when capacities and rates are extreme. As a minimum, the plan would
identify and demonstrate the behavior of safety-critical software in the face of the failure
of various other components. Examples include having no or fewer input signals from a
device for longer periods than operationally expected or, conversely, receiving more
frequent input signals from a device than operationally expected.

A.9.6 The developer should provide evidence of the following:

• Independence of test planning, execution, and review for safety-critical
software; to that end, someone other than the individual developer
should develop, review, conduct, and interpret unit tests.

• Rate and severity of errors of software safety-critical functions
exposed in testing diminishes as the system approaches operational
testing.

• Tests of software safety-critical functions represent a realistic
sampling of expected operational inputs.

A.9.7 Software testing should include the following:

• Hardware and software input failure modes.

• Boundary, out-of-bounds, and boundary crossing conditions.

• Minimum and maximum input data rates in worst-case configurations
to determine the system’s abilities and responses to these conditions.

• Input values of zero, zero crossing, and approaching zero from either
direction and similar values for trigonometric functions.

A.9.8 Interface testing should include operator errors during safety-critical operations to
verify safe system response to these errors. Issuing the wrong command, failing to issue
a command, and issuing commands out of sequence should be among the conditions
tested.

A.9.9 Software safety-critical functions in which changes have been made should be
subjected to complete regression testing. The regression tests should be maintained and
updated as necessary.

A.9.10 Where appropriate, software testing should include duration stress testing. The
stress test periods should continue for at least the maximum expected operating time for

 33

the system. Operators should conduct testing under simulated operational environments.
In addition, software testing should examine the following items:

• Inadvertent hardware shutdown and power transients.

• Error handling.

• Execution path coverage, with all statements completed and every
branch tested at least once.

A.9.11 The launch vehicle operator should evaluate equations and algorithms to ensure
that they are correct, complete, and satisfy safety requirements.

A.9.12 Non-operational hardware and software required for testing or maintenance
should be clearly identified.

A.9.13 Existing code compiled with a new compiler or new release of a compiler should
be regression tested.

A.9.14 Operators should not use beta test versions of language compilers or operating
systems for safety-critical functions.

A.9.15 A launch operator should document and maintain test results in test reports.

A.10 Configuration Management

A.10.1 Software safety-critical functions and associated interfaces should be put under
formal configuration control as soon as a software baseline is established.

A.10.2 A software configuration control board should be created to set up configuration
control processes and pre-approve changes to configuration-controlled software.

A.10.3 The software configuration control board should include a member from the
system safety engineering team, tasked with the responsibility of evaluating all proposed
software changes for potential safety impacts.

A.10.4 Object code patches should not be performed without specific approval.

A.10.5 All software safety-critical functions should be identified as “safety-critical.”

A.10.6 The software configuration management process should include version
identification, access control, and change audits. In addition, the ability to restore
previous revisions of the system should be maintained throughout the entire life cycle of
the software.

A.10.7 All software changes should be evaluated for potential safety impact, and the
FAA should be advised of proposed changes that impact safety.

A.10.8 All software changes should be coded with a unique version identification number
in the source code, then compiled and tested before introduction into operational
equipment.

A.10.9 All software safety-critical functions and associated interfaces should be under
configuration control.

 34

A.10.10 Appropriate safeguards should be implemented to prevent non-operational
hardware and software from being inadvertently identified as operational.

A.10.11 Test and simulation software should be positively identified as non-operational.

A.10.12 The run-time build should only include software that is built from contractor-
developed software source modules, COTS software object modules that are traceable to
a requirement, or derived requirement identified in the requirements or design
documentation.

A.11 Quality Assurance

A quality assurance function should be implemented to verify that objectives are being
satisfied and deficiencies are detected, evaluated, tracked, and resolved. This quality
assurance function includes audits; code walk throughs; and inspections of elements and
processes, such as plans, standards, problem-tracking systems, configuration management
systems, and system life cycles.

A.12 Security

A.12.1 The software should be designed to prevent unauthorized system or subsystem
interaction from initiating or sustaining a software safety-critical function sequence.

A.12.2 The system design should prevent unauthorized or inadvertent access to or
modification of the software (source or assembly) and object code. This security measure
includes preventing self-modification of the code.

A.13 Software Design, Development, and Test Standards

Software should be designed, developed, and tested in a manner that complies with IEEE
12207, Standard for Information Technology, or its equivalent.

A.14 Software Coding Practices

Software developers should apply the software coding practices described in appendixes
D and E of the Joint Services Software System Safety Committee, Software System Safety
Handbook, dated December 1999, or its equivalent.

A.15 Software Reuse

Reused software encompasses software developed for other projects by the developer as
well as any open source or public domain software selected for the project. Such
software should be evaluated to determine if it is a software safety-critical function.
Reused safety-critical software should comply with all safety-critical provisions required
of newly developed software. For example, a launch operator should analyze reused
software that performs a safety-critical function for the following items:

 35

• Correctness of new or existing system design assumptions and
requirements.

• Impacts on the overall system as the reused software runs on or interfaces
with replaced equipment, new hardware, or both.

• Changes in the environmental or operating conditions.

• Impacts to existing hazards.

• Correctness of the interfaces between system hardware; other software;
and crew, ground operators, or controlling executive.

• Safety-critical computing system functions compiled with a different
compiler.

A.16 Commercial Off-The-Shelf (COTS) Software

A.16.1 When employing commercial off-the-shelf software, a launch operator should
ensure that every software safety-critical function that the software supports is identified
and satisfies the requirements of this appendix.

A.16.2 Software hazard analyses should be performed on all COTS software used for
software safety-critical functions.

A.16.3 Software safety-critical functions identified in COTS software should comply
with all software safety-critical function requirements or be validated for intended use
and environment. Compliance, validation method, and evidence are subject to FAA
approval and should be documented.

 36

APPENDIX B: SOFTWARE AND COMPUTING SYSTEM HAZARD ANALYSES

This appendix describes two methods for conducting software and computing system
hazard analyses: Software Failure Modes and Effects Analysis (SFMEA) and Software
Fault Tree Analyses (SFTA). Examples of the use of SFMEA and SFTA are provided.
Other approaches may be acceptable to FAA. Note that the analysis method used and the
level of detail in that analysis will be made based on the complexity of the system,
difficulty of the operations, and scope of the program.

B.1 Software Failure Modes and Effects Analysis

As described in the FAA/AST Guide to Reusable Launch and Reentry Vehicle Reliability
Analyses, a Failure Modes and Effects Analysis (FMEA) is a bottom-up, inductive,
reliability and safety analysis method used to identify potential failure modes, effects on
the system, risk reduction measures, and safety requirements. Although the steps to
performing a SFMEA are similar to those of a hardware FMEA, an SFMEA differs in the
following ways:

• Hardware failure modes generally include aging, wear-out, and stress, while
software failure modes are functional failures resulting from software faults.

• Hardware FMEA analyzes both severity and likelihood of the failure, while an
SFMEA usually analyzes only the severity of the failure mode.

Software Failure Modes and Effects Analysis allows for systematic evaluation of
software and computing system failure modes and errors. In addition, this analysis helps
to prioritize the verification effort to focus on those functions that have the most
influence on the safety of the system. One procedure for performing an SFMEA is as
follows:

1. Define the system to be analyzed. The system definition includes identification of
modules. In addition, system definitions can include a description of interfaces
between software and other systems, flow charts describing data flow or
operations, logic diagrams, and user documentation.

2. Categorize the system into elements to be analyzed.

3. Identify the software and computing system failure modes or software error.

4. Identify the potential causes (specific faults leading to the error or failure).
Identifying the specific causes helps to define mitigation measures and test cases.

5. Identify the local and system effects of each failure mode or software error.

6. Identify controls and requirements to mitigate the risks for each failure mode.

7. Document the analysis using an SFMEA worksheet.

In the majority of cases, failure modes for hardware components are understood and can
be based on operational experience. A hardware FMEA can be based on the known

 37

hardware failures for a particular design or class of piece part, component, or subsystem.
These hardware failures often result from such factors as wear-out, unanticipated stress,
or operational variation. For software, such operational experience often does not exist.
Software does not break or fall out of tolerance in the same way hardware does;
therefore, software and computing system failure modes or software errors must be
identified using generalized classifications. Table B.1-1 shows one example of a
classification set derived from information in such standards as IEEE STD 1044-1993.
This table does not list all possible faults and failures; therefore, an operator should
consider these and others specific to its system when performing software hazard
analyses.

Table 1. Example classification of software and computing system errors

Software and
Computing System
Failure Mode
(Software Error) Class

Specific Software and Computing System Faults and Failures

Calculation • Inappropriate equation for a calculation.
• Incorrect use of parenthesis.
• Inappropriate precision.
• Round fault (or truncation fault).
• Lack of convergence in calculation.
• Operand incorrect in equation.
• Operator incorrect in equation.
• Sign fault.
• Capacity overflow, underflow, or both.
• Inappropriate accuracy.
• Use of incorrect instruction.

Data • Undefined data.
• Non-initialized data.
• Data defined several times.
• Incorrect adapt protection.
• Variable type incorrect.
• Range incorrect.
• Wrong use of data (bit alignment, global data).
• Fault in the use of complex data (record, array, pointer).
• No use of data.
• Data stuck at some value.

 38

Software and
Computing System
Failure Mode
(Software Error) Class

Specific Software and Computing System Faults and Failures

Interface • Data corruption.
• Bad parameters in call between two procedures.
• No or null parameters in the call between two procedures.
• Non-existent call between two procedures.
• Wrong call between two procedures.
• Inappropriate end-to-end numerical resolution.
• Wrong message communication (bad error handling).
• Empty or no message communication (bad or no error handling).
• Incorrect creation, deletion, or suspension of a task.
• Software responds incorrectly to no data.
• Wrong synchronization between tasks (task not invoked because of

its low priority).
• Incorrect task blocking.
• Wrong commands or messages given by the user, operator, or both.
• No commands given by the user, operator, or both.
• Commands not given in time by the user, operator, or both.
• Commands given at wrong time by the user, operator, or both.

Logic • Wrong order of sequences (modules called at wrong time).
• Wrong use of arithmetic or logical instruction.
• Wrong or missing test condition.
• Wrong use of branch instruction.
• Timing overrun.
• Missing sequence.
• Wrong use of a macro.
• Wrong or missing iterative sequence.
• Wrong algorithm.
• Shared data overwritten.
• Unnecessary function.
• Unreachable code.
• Dead code.

Environment • Compiler error.
• Wrong use of tools options (optimize, debug).
• Bad association of files during code link.
• Change in operating system leads to software bug.
• Change in third-party software leads to software bug.

 39

Software and
Computing System
Failure Mode
(Software Error) Class

Specific Software and Computing System Faults and Failures

Hardware • CPU overload.
• Memory overload.
• Unexpected shutdown of the computer.
• Wrong file writing.
• Wrong interrupt activation.
• Wrong data into register or memory.
• No file writing.
• No interrupt activation.
• No data into register or memory.
• Loss of operator visualization (loss of screen display).
• Untimely file writing.
• Untimely data into memory or register.
• Untimely interrupt activation.
• Untimely operator visualization.

Table 2 shows an SFMEA worksheet for functions and computing system hardware
components in a hypothetical RLV. While the analyses in these examples are focused on
software functions, an SFMEA can be performed at any level, for example, a software
package or module. Analyses at lower levels, such as at the code, provide the most
information but also require the most resources. The scope of the analysis will depend on
the particular software and development program. Examples of SFMEA developed for
other industries are provided in Czerny (2005), Dunn (2002), Feng and Lutz (2005),
Ozarin (2006), and Wood (1999).

Performing an SFMEA as early as possible in the development process is desirable.
Note, however, the software design is highly subject to change because designers
continually make beneficial modifications during development. Therefore, updating the
SFMEA throughout the development process to reflect these changes is important.

 40

Table 2. Example software and computing system Failure Modes and Effects Analysis worksheet

Item
No.

Software or
Computing System

Element

Failure Mode or
Software Error

Error Cause (Specific
Fault Type) Local Effect System Effect or

Hazard Risk Mitigation Measures

PS-1 Function:
PROP_SENS

Acquire temperature
and pressure sensor
inputs from
propulsion system,
and provide
information to flight
control modules and
automated shutdown
routines.

Function fails to
work or performs
incompletely
because of logic,
data, or interface
errors.

• Wrong use of
branch instruction.

• Data out of range.

• Missing data.

• Non-existent or
incorrect call
between procedures.

• Missing error-
handling routine.

• Function called at
wrong time.

No sensor
readings
obtained from
the propulsion
system.

• Continuing to
operate with last
sensor inputs.

• Failing to detect
out-of-range
condition.

• Failing to issue
proper abort and
propulsion
shutdown
commands.

• Using a separate software
execution monitoring
function to detect whether
the function was completed.

• Verifying sensors before
flight.

PS-2 Function:
PROP_SENS

Acquire temperature
and pressure sensor
input from propulsion
system and provide
information to flight
control modules and
automated shutdown
routines.

Function works
incorrectly
because of
calculation,
logic, data, or
interface errors.

• Incorrect conversion
calculation.

• Wrong use of
branch instruction.

• Wrong use of data.

• Data out of range.

• Missing data.

• Missing error-
handling routine.

• Function called at
wrong time.

Incorrect sensor
signals received
from the
propulsion
system.

• Using incorrect
input; therefore,
providing
incorrect output.

• Failing to issue
proper abort and
propulsion
shutdown
commands.

• Using a separate software
function to detect out of
range conditions for
temperature and pressure.

• Providing independent
temperature and pressure
readings to pilots to use for
manual shutdown purposes.

• Verifying sensors before
flight.

 41

Table 2. Example Software and Computing System Failure Modes and Effects Analysis worksheet (cont’d)

Item
No.

Software or
Computing System

Element

Failure Mode or
Software Error

Error Cause (Specific
Fault Type)

Local Effect System Effect or
Hazard

Risk Mitigation Measures

CV-1 Function:
CLOSE_VALVE

When limits are
exceeded command
the main fuel and
oxidizer valves to
close.

Function fails to
work or performs
incompletely
because of logic,
data, or interface
errors.

• Wrong use of
branch instruction.

• Data out of range or
incorrect.

• Non-existent or
incorrect call
between procedures.

• Missing error-
handling routine.

Signal is not
sent to the valve
actuators.

Failing to close
valves, resulting in
continued thrust,
flight outside of
operating area, or
possible loss of
vehicle.

• Using a separate software
execution monitoring
function to detect whether
the function was completed.

• Making manual shutdown
procedures available.

GPS-1 Function:

GPS_RECEIVE

• Acquire GPS
signal.

• Send vehicle
position to other
functions.

• Abort if location
data out of range.

Function fails to
execute or
executes
incompletely
because of logic,
data, or interface
errors.

• Wrong use of
branch instruction.

• Data out of range or
incorrect (loss of
GPS signal).

• Non-existent or
incorrect call
between procedures.

• Missing error-
handling routine.

Position
information is
not provided.

• Using incorrect
input or having
no GPS location
data; therefore,
providing
incorrect output.

• Failing to issue
proper abort and
propulsion
shutdown
commands.

• Using a separate software
function to detect out of
range conditions, including
location values and signal
strength.

• Having the main computer
initiate an abort if
conditions are out of range.

• Performing GPS checks
before flight.

 42

Table 2. Example Software and Computing System Failure Modes and Effects Analysis worksheet (cont’d)

Item
No.

Software or
Computing System

Element

Failure Mode or
Software Error

Error Cause (Specific
Fault Type)

Local Effect System Effect or
Hazard

Risk Mitigation Measures

CS-1 Main CPU. Loss of main
computer.

• Overload of CPU

• Loss of power from
on-board batteries.

• Inadvertent
shutdown.

Loss of all
safety-critical
computer and
software
functions.

• Continuing to
operate with last
sensor inputs.

• Failing to detect
out-of-range
condition,
causing failure to
issue proper
abort and
propulsion
shutdown
commands.

• Using a watchdog timer to
detect computing system
functionality and trigger a
reboot of the main CPU.

• Implementing CPU self-
tests and hardware
diagnostics to detect failure.

• Initiating abort sequences
using a separate on-board
CPU.

• Making manual shutdown
procedures available.

WD-1 Watchdog timer. Watchdog timer
failure.

• Loss of power.

• Mechanical or
electrical failure.

No system
available to
monitor CPU
loss.

• Failing to detect
loss of CPU.

• Failing to issue
proper abort
commands if
main CPU lost.

• Running watchdog
computer and main CPU off
separate power sources.

• Verifying watchdog timer
before flight.

• Making manual abort
procedures available.

 43

B.2 Software Fault Tree Analysis

A top-down, deductive study of system reliability, Fault Tree Analysis (FTA) graphically
depicts the sequence of events that can lead to an undesirable outcome. An FTA
generates a fault tree, which is a symbolic logic model of the failures and faults. As an
aid for system safety improvement, an FTA is often used to model complex processes.
For example, an FTA may be used to estimate the probability that a top-level or causal
event will occur, identify systematically possible causes leading to that event, and
document the results of the analytic process to provide a baseline for future studies of
alternate designs.

A Software Fault Tree Analysis (SFTA) is an extension of the system FTA in which
software and computing system contributors to an undesirable event are identified and
analyzed. While a hardware FTA can be quantitative or qualitative, an SFTA is rarely
quantitative because of the difficulties in obtaining failure probabilities for software. An
SFTA produces safety requirements that can then be implemented in the software life
cycle.

Standard logic symbols are used in constructing an SFTA to describe events and logical
connections. Table 3 shows the most common symbols. The FAA/AST Guide to
Reusable Launch and Reentry Vehicle Reliability Analyses provides additional symbols
and information on SFTA. The process for performing an SFTA is as follows:

1. Identify the undesirable events that require analysis. Usually these occurrences

are called pivotal events – events that could ultimately lead to failure of the
vehicle or system. Each pivotal event is a top event for the fault tree, and a new
tree is required for each top event. The top event is often determined from other
analyses, such as a hazard analysis, FMEA, or known undesirable event, such as a
mishap.

2. Define the scope of the analysis to determine the level of depth of the analysis
needed for each undesirable event. The level of depth may be determined based
on the application of the analysis. In some cases, for example, analyzing broad
functions may suffice. Other cases may require analyzing errors in specific
modules.

3. Identify causes leading to the undesirable event, known as first-level contributors
to the top event. Contributors must be independent of each other. For example,
for a top event of “Incorrect navigation data on flight control display,” the events
“data not calculated correctly” and “inappropriate equation used for calculations”
are not independent events. Use of an inappropriate equation may have led to
calculating the data incorrectly. To determine events and contributors, data
gathering may be required. Sources of this information include specifications,
drawings, and block diagrams.

4. Link the first-level contributors to the top event by a logic gate.
5. Identify the second-level contributors to the first-level events.
6. Link the second-level contributors to the first-level contributors.

 44

Table 3. Common fault tree logic and event symbols

Symbol Description

Top Event – Foreseeable, undesirable
occurrence (also used for an
intermediate event).

“OR” Gate – Any of the events below
gate will lead to an event above the
gate.

“AND” Gate – All events below gate
must occur for event above gate to
occur.

Undeveloped Event – An event not
further developed because of a lack of
need, resources, or information.

Initiator (Basic Event) – Initiating fault
or failure, not developed further (marks
limit of analysis).

7. Repeat until the analysis reaches a desired level. The bottom-most contributors
are known as initiators or basic events.

8. Evaluate the tree to determine the validity of the input and failure paths.
9. Identify specific safety requirements.
10. Document the SFTA results.

An SFTA allows for systematic evaluation of the risks of complex software and
computing systems. Using an SFTA helps to discover common cause failures and single-
point failures, critical fault paths, and design weaknesses and to identify the best places to
build in fault tolerance. In addition, an SFTA helps to prioritize the verification effort to
focus on those functions with a large amount of influence on the safety of the system.
Czerny (2005), Dunn (2002), Dehlinger and Lutz (2004), and Gowen (1996) provide
examples of SFTA developed for other industries.

In developing an SFTA, a developer normally starts with a general FTA that describes
the potential impacts of a safety-critical software function with respect to a large system.

OR

AND

 45

Figure 2 shows an example of a fault tree for engine shutdown failure that includes
hardware, software, and procedures. The contributing event, “Software or computing
system error,” can be expanded further. Figure 3 shows a portion of a fault tree
expanding this undesirable event. Note that the “logic error,” “data error,” and “data
input error” basic events could be expanded further if necessary to identify specific areas
of concern, such as out of range variables, logic sequences out of order, or other faults
identified in table 1.

Figure 2. Fault tree for engine shutdown failure

Incorrect
procedures

Improper
training

OR

Unable to shutdown engine
after cutoff

AND

OR

Valve 2 fails to
close

Automatic controller fails to
close valve (valve 1)

Failure to close manual valve
(valve 2)

OR

Software or
computing

system error

Valve 1 fails to
close

Mechanical
failure

OR

Mechanical
failure

Contami-
nation

OR

Operator fails
to close

Contami-
nation

 46

Figure 3. Fault tree for software or computing system errors

Software or computing
system error

OR

Shutdown module does not issue
command to actuator

Shutdown module does not
receive shutdown command

OR

OR

Power lost to
CPU

Backup
battery

loss

Main
battery

loss

AND

Logic
error

Data
error

Computer
system crash

Watchdog
timer/reboot

failure

Memory or
CPU

overflow

AND

Sensor
failure

Data
input
error

 47

APPENDIX C: SPACE VEHICLE FAILURES AND AIRCRAFT ACCIDENTS

C.1 Space Vehicle Failures

Software and its associated computing system hardware have played a significant role in
the root cause of several high-profile space vehicle failures, as described in various
accident investigation reports and studies. Although the following is not a
comprehensive list of all failures where software played a role, the descriptions help
provide an understanding of the types of failures that can be traced to software and
computing systems and provide lessons learned for the design of future systems.

Phobos 1. The Phobos 1 spacecraft was launched on July 7, 1988, on a mission to
conduct surface and atmospheric studies of Mars. The vehicle operated normally until
routine attempts to communicate with the spacecraft failed on September 2, 1988, and the
mission was lost. Examination of the failure showed that a ground control operator had
omitted a single letter in a series of digital commands sent to the spacecraft. The
computer mistranslated this command and started a ground checkout test sequence,
deactivating the attitude control thrusters. As a result, the spacecraft lost its lock on the
Sun. Because the solar panels pointed away from the Sun, the on-board batteries were
eventually drained, and all power was lost.

A lack of specifications taking the human and software interface into account contributed
to the failure. Additionally, error-checking functions had been turned off during the data
transfer operation.

Lesson Learned: Error checking and isolating test software from flight software are
important aspects of software assurance (Norman 1990, Perminov 1999).

Clementine. The Deep Space Program Science Experiment, also known as the
Clementine spacecraft, was launched on January 25, 1994. The spacecraft entered lunar
orbit, functioned flawlessly, and departed from the Moon on May 3, 1994, to rendezvous
with its target, asteroid 1620 Geographos. However, 4 days later, a flaw in the software
resulted in the computer firing the attitude control thrusters until the supply of propellant
had been exhausted. The malfunction left the spacecraft in a stable spin that, when
combined with the spacecraft’s heliocentric orbit, would ultimately prevent the
generation of adequate power to operate the spacecraft. This condition led to
abandonment of the mission.

Although the root cause of the problem could not be definitively determined, some
researchers have suggested that a floating-point exception may have caused the computer
to crash, allowing the thrusters to operate continuously. Inadequate testing, tight
schedule, and cost pressures also may have increased the chances of failure.

 48

Lesson Learned: A watchdog timer may have been used to automatically reset the
computer and avert failure (Chapman and Regeon 1996, Ganssle 2000, Harland and
Lorenz 2005).

Ariane 501. On June 4, 1996, the Ariane 5 launch vehicle veered off course and broke
up approximately 40 seconds into launch. The vehicle started to disintegrate because of
high aerodynamic loads resulting from an angle of attack greater than 20 degrees. This
condition led to separation of the boosters from the main stage, in turn triggering the self-
destruct system of the launcher. This improper angle of attack was caused by full nozzle
deflections of the solid boosters and the Vulcain main engine. The on-board computer
software commanded these nozzle deflections based on data received from the active
Inertial Reference System. Ultimately, these improper deflections resulted from
specification and design errors in the Inertial Reference System software, including
improper error handling. An unexpected horizontal velocity component led to an
overflow condition which was not handled properly by the software.

Reused software from the Ariane 4 program, including the exception handling code used
in the Inertial Reference System, contributed to the failure. The source of the fault
occurred in a function that was not required for Ariane 5, but rather was a function
carried over from the Ariane 4 software. The development team believed that faults
would be caused by a random hardware failure, handled by redundancy in the hardware.
However, because the problem was a requirements problem instead of a random
hardware failure, both the primary and backup Inertial Reference Systems shutdown
nearly simultaneously from the same cause. In addition, no end-to-end tests were
conducted to verify that the Inertial Reference System and its software would behave
correctly when subjected to the countdown sequence, flight time sequence, and trajectory
of Ariane 5.

Lesson Learned: Multiple factors can contribute to failure, including a misunderstanding
of the software risks, especially of reused software; complex software design; insufficient
system engineering efforts; flawed requirements and failure to fully analyze those
requirements; and insufficient testing (Lions 1996, O’Halloran 2005).

Delta III/Galaxy. On August 27, 1998, the first Boeing Delta III ever flown was
launched from Pad 17B at Cape Canaveral Air Station, Florida. Its mission was to place
the GALAXY X commercial communications spacecraft into a nominal transfer orbit.
At 65 seconds after liftoff, the air-lit Solid Rocket Motors (SRMs) ceased to swivel,
leaving two motors in positions that helped overturn the vehicle. The vehicle yawed
about 35 degrees. Approximately 71 seconds after lift-off, it began to disintegrate at an
altitude of about 60,000 feet. A destruct signal was sent 75 seconds into the flight, which
completed destruction of the vehicle. Analysis revealed that between 55 and 65 seconds
into the flight, roll oscillations around 4 Hz prompted the control system of the vehicle to
gimbal its three swiveling SRMs. The control system software commanded the system to
respond to the oscillation, and the SRMs gimbaled with these commands until the
hydraulic system ran out of fluid. Once the hydraulic fluid was expended, the oscillations
appeared to smooth out. Unfortunately, however, after the hydraulic fluid had been

 49

expended, two of the three swiveling SRMs were stuck in the wrong position, and wind
shear forced the Delta III to yaw and break up 7 seconds later.

The review team concluded that the flight would not have failed if the control system
software had not commanded the system to respond to the 4-Hz roll oscillations because
the vehicle oscillations would have smoothed out on their own. As a result of the
investigation, Boeing changed an instruction to the flight control system, so the software
would identify and ignore the 4-Hz roll oscillation in subsequent Delta III flights.

Lesson Learned: An inadequate understanding of the interactions between software and
hardware could lead to failure (Boeing 1998).

Zenit/Globalstar. On September 9, 1998, a two-stage Ukrainian-built Zenit 2 rocket,
carrying 12 Globalstar satellites, was launched from Baikonur, Kazakstan. According to
the National Space Agency of Ukraine, the second stage of the booster rocket shutdown
at approximately 276 seconds into flight. The nose cone carrying the 12 satellites
automatically disengaged from the booster rocket with the shutdown and fell to Earth in
remote southern Siberia. The booster rocket followed.

Although the root cause of the failure could not be definitively confirmed, a malfunction
of the flight control computers or software, which led to the premature shutdown of the
second stage, was the most likely cause. Telemetry data indicated that two of the three
primary flight computers shut down, a situation that left the third computer unable to
control the vehicle, resulting in the cutoff of the engine.

Lesson Learned: A lack of understanding of the risks associated with software and
computing systems can lead to failure (Wired News 1998, Woronowycz 1998).

Mars Climate Orbiter. The Mars Climate Orbiter (MCO) was launched on December
11, 1998, and was lost on September 23, 1999, as it entered the Martian atmosphere in a
lower than expected trajectory. The investigation board identified the failure to use
metric units in the coding of a ground software file used in the trajectory models as the
root cause. These trajectory models produced data ultimately used to define the vehicle
trajectory for the flight computer. Thruster performance data were in English units
instead of metric. As a result, an erroneous trajectory was calculated which led to the
vehicle crashing into the surface rather than entering into an orbit around Mars. Formal
acceptance testing failed to capture the problem because the test article used for
comparison contained the same error as the output file from the actual unit.

Incomplete specifications were a contributing factor. The specifications did not dictate
the units to be used. Also, a lack of warning marks in the original code, identifying the
potential problem, contributed to the failure. The MCO investigators also cited
inadequacies in risk identification, communication, management, and mitigation that
compromised mission success. In part, these inadequacies resulted from cost and
schedule pressures.

 50

Lesson Learned: Multiple factors can lead to failure, including inadequate testing,
incomplete specifications, and inadequate risk management (Leveson 2004, Stephenson
1999).

Mars Polar Lander. The Mars Polar Lander (MPL) was launched on January 3, 1999.
Upon arrival at Mars, communications ended according to plan as the vehicle prepared to
enter the Martian atmosphere. Communications were scheduled to resume after the
Lander and the probes were on the surface. However, repeated efforts to contact the
vehicle failed. The cause of the MPL loss was never fully identified, but the most likely
scenario was that the problem involved deployment of the three landing legs during the
landing sequence. Each leg was fitted with a Hall Effect magnetic sensor that generated a
voltage when the leg contacted the surface of Mars. A command from the flight software
was to shutdown by the descent engines when touchdown was detected. The MPL
investigators believed that the software interpreted spurious signals generated at leg
deployment as valid touchdown events, leading to premature shutdown of the engines at
40 meters above the surface of Mars, resulting in the vehicle crashing into the surface.

Although a possible failure mode whereby the sensors would falsely detect that the
vehicle had touched down was known to exist, the software requirements did not account
for this failure mode. Therefore, the software was not programmed to avoid such an
occurrence. Although the verification and validation program was well planned and
executed, the MPL failure report noted, analysis was often substituted for testing to save
costs. Such analysis may have lacked adequate fidelity. Also, the touchdown sensing
software was not tested with the Lander in the flight configuration. The MPL
investigators specifically recommended that system software testing include stress testing
and fault injection in a suitable simulation environment to determine the limits of
capability and search for hidden flaws.

Lesson Learned: Multiple factors can lead to failure, including insufficient system
engineering efforts, insufficient testing, flawed review processes, and flawed
requirements (JPL 2000, Leveson 2004).

Titan/Centaur-Milstar. On April 30,1999, a Titan IV B vehicle (Titan IV B-32), with a
Titan Centaur upper stage (TC-14) was launched from Space Launch Complex 40 at
Cape Canaveral Air Station, Florida. The mission was to place a Milstar satellite into
geosynchronous orbit. The flight performance of the Titan solid rocket motors and core
vehicle was nominal, and the Centaur upper stage separated properly from the Titan IV
B. The vehicle began experiencing instability about the roll axis during the first Centaur
burn. That instability was greatly magnified during Centaur’s second main engine burn,
resulting in uncontrolled vehicle tumbling. The Centaur tried to compensate for those
attitude errors by using its Reaction Control System. Such attempts ultimately depleted
available propellant during the transfer orbit coast phase. The third engine burn ended
early because of the tumbling vehicle motion. As a result of the anomalous events, the
Milstar satellite was placed in a low elliptical final orbit instead of the intended
geosynchronous orbit.

 51

The Accident Investigation Board concluded that a failed software development, testing,
and quality assurance process for the Centaur upper stage caused the failure of the Titan
IV B-32 mission. That failed engineering process did not detect nor did it correct a
human error in the manual entry of the roll rate filter constant entered in the Inertial
Measurement System flight software file. Evidence of the incorrect constant appeared
during launch processing and the launch countdown, but its impact was insufficiently
recognized or understood. Consequently, this error was not corrected before launch. The
incorrect roll rate filter constant zeroed any roll rate data, resulting in the loss of control.
The Board noted that the manually input values were never formally tested in any of the
simulations before launch, and simulator testing was not performed as the system was
supposed to be flown.

Lesson Learned: Flawed engineering processes, underestimation of the software risks,
and inadequate software reviews can lead to failure (Leveson 2004, Pavlovich 1999).

Sea Launch/ICO F1. On March 12, 2000, a Sea Launch lifted off from the Odyssey
launch platform positioned on the Equator in the Pacific Ocean. The vehicle was
carrying the ICO Global Communications F-1 satellite. Shortly before the launch,
however, the ground software failed to close a valve in the pneumatic system of the
second stage of the rocket. This system performed several actions, including operation
and movement for the steering engine of this stage. Loss of more than 60 percent of the
pneumatic system’s pressure reduced the capability of the engine; therefore, the rocket
did not gain the altitude and speed necessary to achieve orbit. About 8 minutes into the
flight, as the Zenit's second stage was nearing the completion of its firing, the launch was
aborted under command of the on-board automatic flight termination system. The rocket
issued the command once it sensed a deviation in attitude. Both the rocket and its
satellite cargo crashed into the Pacific Ocean about 2700 miles southeast of the launch
site.

The software error was traced back to a change of a variable name in the ground
operations software. This name change resulted in a change to the software logic such
that the valve failed to close before launch. Ultimately, Sea Launch discovered flaws in
their configuration management and software engineering processes, including
identifying changes in the system and verifying proper operation after those changes.

Lesson Learned: Flawed configuration management and software engineering processes
can lead to failure (AW&ST 2000, Ray 2000).

Cosmos/Quickbird 1. On November 28, 2000, the QuickBird 1 satellite was launched
aboard a Russian Cosmos-3M rocket from the Plesetsk Cosmodrome. However, ground
stations did not detect signals from the satellite after launch. Investigators suggested that
a computer error inside the satellite might have caused the U.S.-built spacecraft to deploy
its electricity-generating solar arrays while the rocket was still climbing through the
atmosphere. The computer error may have resulted from a hold in the launch, which was
delayed 1-hour because a Norwegian tracking station was not ready to monitor the
satellite.

 52

Russian officials proposed that an operator forgot to reset the satellite computer to
account for the new launch time. As a result, the flight command sequence of the
spacecraft began at the original launch time and, following its preprogrammed time line,
tried to deploy the solar panels while the satellite was still attached to the rocket during
the early phase of the flight.

Lesson Learned: Failure to understand software risks can lead to mission failure (Clark
2000).

Mar Rover Spirit. NASA’s Mars Exploration Rovers, Spirit and Opportunity, landed on
Mars on January 4 and 25, 2004. On January 21, 2004, Spirit abruptly ceased
communications with mission control. When contact was re-established, mission control
found that Spirit could not complete any task that requested memory from the flight
computer. Examination of the problem showed that the file system was consuming too
much memory, causing the computer to reset repeatedly. The root cause of the failure
was traced to incorrect configuration parameters in two operating system software
modules that controlled the storage of files in memory. Effects of overburdened memory
were not recognized or tested during ground tests.

Mission operations personnel recovered Spirit by manually reallocating system memory,
deleting unnecessary files and directories, and commanding the computer to create a new
file system. Although the rover was recovered, the malfunction took 14 days to diagnose
and fix, thereby reducing the nominal mission duration.

A post-anomaly review showed that memory management risks were not understood. In
addition, schedule pressures prevented extensive testing and understanding of software
functions.

Lesson Learned: Memory management strategies are important for software assurance
(Reeves and Neilson 2005).

CryoSat. On October 8, 2005, a Russian-built Rockot launch vehicle, carrying the
CryoSat satellite, blasted off from Russia's northwestern Plesetsk Cosmodrome. Analysis
of the telemetry data indicated that the first stage performed nominally. The second stage
performed nominally until main engine cut-off was to occur. However, the second stage
main engine failed to shutdown at the proper time, and continued to operate until
depletion of the remaining fuel. As a consequence, the second stage was not separated
from the third stage, and the third stage engine was not ignited. This lack of engine
capability resulted in unstable flight, causing the vehicle flight angles to exceed allowable
limits. The on-board computer automatically ended the mission at 308 seconds into
flight. For the second stage shutdown to succeed, pressurization of the low-pressure tank
of the third stage had to have been completed before issuance of the shutdown command.

Failure analysis showed that the command to shutdown the second stage engine was
generated correctly. However, the completion time for the pressurization sequence was

 53

erroneously specified; therefore, pressurization completed after the shutdown command
was generated. This failure case had not been identified in development and was not
tested. No built-in tests existed for the pressurization time.

Lesson Learned: Adequate consideration must be given to off-nominal inputs and
conditions during design and verification (Briggs 2005, Eurocket 2005).

C.2 Commercial, Military, and Experimental Aircraft Accidents

The space vehicle failures described here discuss incidents resulting in mission failures or
anomalies without impacts to the uninvolved public. However, such incidents illustrate
the importance of software and computing systems in the operation of space and launch
vehicles. Unfortunately, software has been a cause of several accidents resulting in
injury and loss of life in commercial and military aircraft. Some of those accidents are
described next.

Lufthansa A320. On Sept. 14, 1993, a Lufthansa Airbus A320-200 was landing in bad
weather at the airport in Warsaw, Poland. The pilots had been warned of gusting
crosswinds, rain, and possible wind shear conditions. To compensate for the bad weather
problems, the crew added 20 knots of speed to the landing approach and used a standard
crosswind landing technique, keeping the right wing low and landing first on the right
gear. However, because of the gusting winds and heavy rains, the wheels aquaplaned
during the first 9 seconds on the ground. The extra wind and water combined to fool the
Airbus computer, indicating the jet had not landed. The computer responded by disabling
the aircraft braking systems. With no brakes, the Lufthansa jet skidded off the end of the
runway and struck a hill, killing the first officer and one passenger and injuring 45 others.
The A320 airplane was totally destroyed in the crash.

Lesson Learned: Misunderstanding of the software risks and flawed software
requirements can lead to an accident (Ladkin 1996).

Chinook Helicopter. In June 1994, a British Royal Air Force Chinook helicopter
ZD576 crashed on the Mull of Kintyre, Scotland, killing 29 people. Although pilot error
was originally suggested as the cause, further investigation revealed that the Full
Authority Digital Electronic Control (FADEC) software triggered the accident. The
FADEC software maintains a correct balance between the two engines for the flow of
fuel; therefore, it is critical for the power output. In test flights, the helicopter would
increase power to one or more engines for no apparent reason. Unexplained illumination
of warning lights in the helicopter cockpit was another commonly reported fault. Both
problems appeared to result from faulty FADEC software. These problems could have
been factors in the Mull of Kintyre crash.

Lesson Learned: Understanding and mitigating software risks are critical aspects of
software safety (BBC News 1999).

 54

X-31. An X-31 U.S. government research aircraft was destroyed when it crashed in an
unpopulated area just north of Edwards Air Force Base while on a flight originating from
the NASA Dryden Flight Research Center, Edwards, California, on January 19, 1995.
The crash occurred when the aircraft was returning after completing the third research
mission of the day. The pilot safely ejected from the aircraft but suffered serious injuries,
including two fractured vertebrae and a broken ankle and rib.

A mishap investigation board studying the cause of the X-31 accident concluded that an
accumulation of ice in or on the unheated pitot-static system of the aircraft provided false
airspeed information to the flight control computers. The resulting false reading of total
air pressure data caused the flight control system of the aircraft to automatically
misconfigure for a lower speed. The aircraft suddenly began oscillating in all axes,
pitched up to over 90 degrees angle of attack and became uncontrollable, prompting the
pilot to eject.

The mishap investigation board also faulted the safety analyses, performed by Rockwell
and repeated by NASA, which underestimated the severity of the effect of large errors in
the pitot-static system. Rockwell and NASA had assumed that the flight software would
use the backup flight control mode if this problem occurred.

Lesson Learned: Estimating and mitigating software risks, including software used to
mitigate hardware anomalies, are critical aspects of software safety (Dornheim 1995,
Haley 1995).

V-22 Osprey. On December 11, 2000, four Marines were killed in the crash of a V-22
aircraft near Camp Lejeune, North Carolina. According to published reports, the left-
hand nacelle titanium hydraulic line developed a leak during flight. As a result, the
hydraulic line reservoir was depleted, and the V-22 experienced a total loss of the
hydraulic system. The pilots responded to the master alert and primary flight control
system annunciation by depressing the flight control alert and resetting the flight controls.
When the primary flight control reset button was pressed in accordance with established
procedures, a software anomaly caused significant pitch and thrust changes in both prop
rotors. These fluctuations resulted in decreased airspeed; reduced altitude; and incorrect
pitch, roll, and yaw motions that eventually accompanied increasing rates of descent and
angle of attack. Essentially, the vehicle swerved out of control, stalled, then crashed.
The crew had pressed the reset button to reset the primary flight control logic 8 to 10
times in an attempt to reset the system and regain control during the emergency.
However, each primary flight control system reset aggravated the situation until the
aircraft entered a stall condition. The software anomaly was found in a previously
overlooked path in the flight control laws associated with the propeller rotor governor.
This anomaly allowed large torque and RPM changes to be introduced when multiple
failure conditions existed.

Lesson Learned: Estimating and mitigating software risks are critical aspects of software
safety (Murray 2001).

 55

REFERENCES

“12 Satellites Go Down in Russia.” 1998. Wired News, 10 September.
http://www.wired.com/news/politics/0,1283,14929,00.html (accessed May 19, 2006).

American Institute of Aeronautics and Astronautics. 2005. Guide to the Identification of
Safety-Critical Hardware Items for Reusable Launch Vehicle (RLV) Developers (May 1,
2005). Reston, Virginia. http://www.aiaa.com/pdf/industry/rlvguide.pdf (accessed May
23, 2006).

Benediktsson, O., R. B. Hunter, and A. D. McGettick. 2001. “Processes for Software in
Safety Critical Systems.” Software Process: Improvement and Practice, vol. 6, no. 1, pp.
47-62.

Briggs, Helen. 2005. “Cryosat Rocket Fault Laid Bare.” BBC News, 27 October.
http://news.bbc.co.uk/1/hi/sci/tech/4381840.stm (accessed May 19, 2006).

Chan, Steven. 2001. System Safety Lessons Learned Handbook, U.S. Army
Communications–Electronics Command, CECOM-TR-01-4.
http://www.armymars.net/ArmyMARS/Safety/Resources/system-safety-lessons-
learned.pdf (accessed May 24, 2006).

Chapman, R. Jack and Paul A. Regeon. 1995. “The Clementine Lunar Orbiter Project.”
Unpublished paper presented at the Austrian Space Agency Summer School. 26 July– 3
August. Alpbach, Germany.

Clark, Stephen. 2002. “Commercial Eye-In-The-Sky Appears Lost in Launch Failure.”
Spaceflight Now, 21 November. http://spaceflightnow.com/news/n0011/20quickbird/
(accessed May 19, 2006).

Covault, Craig. 1998. “Boeing Delta III Explodes; Commercial Debut Ruined.” Aviation
Week & Space Technology, 31 August, vol. 23.

Czerny, Barbara J., et al. 2005. “Effective Application of Software Safety Techniques
for Automotive Embedded Control Systems.” Paper presented at the Society of
Automotive Engineers World Congress, 11-14 April at Detroit, Michigan. SAE Technical
Series Paper 2005-01-0785.

Dehlinger, Josh and Robyn R. Lutz. 2004 . “Software Fault Tree Analysis for Product
Lines.” Paper presented at the 8th IEEE International Symposium on High Assurance
Systems Engineering (HASE ’04), 24-26 March at Tampa, Florida.

Department of Defense. 2000. Standard Practice for System Safety. MIL-STD-882D.

Dornheim, Michael A. 1995. “X-31 Board Cites Safety Analyses, But Not All Agree.”
Aviation Week & Space Technology, 4 December, pp. 81-86.

Dunn, William R. 2002. Practical Design of Safety-Critical Computer Systems,
Solvang, California: Reliability Press.

EUROCKOT Launch Services GmbH. 2005. “CryoSat Failure Analyzed – KOMPSAT-
2 Launch in Spring 2006.” Eurocket Press Release. 21 December, Bermen, Germany.
http://www.eurockot.com/alist.asp?cnt=20040862 (accessed May 19, 2006).

http://www.wired.com/news/politics/0,1283,14929,00.html
http://www.aiaa.com/pdf/industry/rlvguide.pdf
http://news.bbc.co.uk/1/hi/sci/tech/4381840.stm
http://www.armymars.net/ArmyMARS/Safety/Resources/system-safety-lessons-learned.pdf
http://www.armymars.net/ArmyMARS/Safety/Resources/system-safety-lessons-learned.pdf
http://spaceflightnow.com/news/n0011/20quickbird/
http://www.eurockot.com/alist.asp?cnt=20040862

 56

Federal Aviation Administration (FAA). 1999. Equipment, Systems, and Installations in
Part 23 Airplanes, Washington, D.C. Advisory Circular 23.1309-1A.

-----. 2000. FAA System Safety Handbook. Washington, D.C.
http://www.asy.faa.gov/Risk/SSHandbook/cover.htm (accessed May 19, 2006).

-----. Associate Administrator for Commercial Space Transportation. 2003. Guide to
Reusable Launch Vehicle Safety Validation & Verification Planning. Version 1.0.
Washington, D.C.

-----. Associate Administrator for Commercial Space Transportation. 2005. Guide to
Reusable Launch and Reentry Vehicle Reliability Analysis. Version 1.0. Washington,
D.C.

-----. 2005. Reusable Launch and Reentry Vehicle System Safety Process. Washington,
D.C. Advisory Circular 431.35-2A.

Feng, Qian and Robyn R Lutz. 2005. “Bi-Directional Safety Analysis of Product Lines.”
J. Systems and Software, vol. 78, no. 2. pp. 111-127.

Ganssle, Jack G. 2000. “Crash and Burn.” Embedded Systems Programming,
http://www.embedded.com/2000/0011/0011br.htm (accessed May 30, 2006).

Gowen, Lon D. 1996. “Using Fault Trees and Event Trees as Oracles for Testing
Safety-Critical Software Systems,” Professional Safety. American Society of Safety
Engineers. April, pp. 41-44.

Gowen, Lon D. and James S. Collofello. 1995. “Design-Phase Considerations for
Safety-Critical Software Systems.” Professional Safety. American Society of Safety
Engineers, April, pp. 20-25.

Greenwell, William S. and John C. Knight. 2003. SAFECOMP 2003: “What Should
Aviation Safety Incidents Teach Us?” Paper presented at the 22nd International
Conference on Computer Safety, Reliability and Security, September at Edinburgh,
Scotland.

Haley, Don. 1995. “Ice Cause of X-31 Crash.” NASA Dryden Flight Research Center,
Edwards, California. NASA Press Release 95-203.

Harland, David M. and Ralph D. Lorenz. 2005. Space System Failures: Disasters and
Rescues of Satellites, Rockets, and Space Probes. Berlin: Praxis Publishing Ltd.

Holloway, C. Michael. 1999. “From Lessons to Bridges, Lessons for Software
Systems.” Proceedings of the 17th International System Safety Conference, 16-21
August at Orlando, Florida. pp. 598-607.

Herrmann, Debra S. 2000. Software Safety and Reliability: Techniques, Approaches,
and Standards of Key Industrial Sectors. Los Alamitos, California: Wiley-IEEE
Computer Society Press.

Institute of Electrical and Electronics Engineers, Inc. 1983. IEEE Standard for Software
Test Documentation. New York. IEEE STD 829-1983.

-----. 1993. IEEE Standard Classification for Software Anomalies. New York. IEEE
STD 1044-1993.

http://www.asy.faa.gov/Risk/SSHandbook/cover.htm
http://www.embedded.com/2000/0011/0011br.htm

 57

��������1998. IEEE Standard for Software Verification and Validation. New York. IEEE
STD 1012-1998.

-----. 2002. IEEE Standard for Software Safety Plans, 1994. New York. IEEE STD
1228-1994 (R2002).

Joint Services Software Safety Committee (JSSSC). 1999. Software System Safety
Handbook: A Technical & Management Team Approach.

NASA, Jet Propulsion Laboratory. 2000. Report on the Loss of the Mars Polar Lander
and Deep Space 2 Missions. JPL D-18709

Kaner, C., J. Faulk, and H. Q. Nguyen. 1999. Testing Computer Software. 2nd ed.,
Wiley and Sons.

Kit, Edward. 1995. Software Testing in the Real World: Improving the Process. Boston:
Addison-Wesley.

Ladkin, P. 1996. Report on the Accident to Airbus A320-211 Aircraft in Warsaw on 14
September 1993. Main Commission Aircraft Accident Investigation Warsaw.

Leveson, Nancy G. 1986. “Software Safety: Why, What, and How.” Computing
Surveys, vol. 18, no. 2, pp.125-163.

������ 1995. Safeware: System Safety and Computers, A Guide to Preventing Accidents
and Losses Caused by Technology. Boston: Addison-Wesley.

-----. 2001. “The Role of Software in Recent Aerospace Accidents.” Paper presented at
the 19th International System Safety Conference, 10-14 September at Huntsville,
Alabama.

������ 2004. “The Role of Software in Spacecraft Accidents.” AIAA Journal of
Spacecraft and Rockets, vol. 41, no. 4, pp. 564-575.

Lions, J. L. 1996. Ariane5: Flight 501Failure Report by the Inquiry Board. Paris:
European Space Agency.

“Magazine Disputes Chinook Tragedy Cause.” 1999. BBC News Online, 26 May.
http://news.bbc.co.uk/1/hi/uk/353063.stm (accessed May 19, 2006).

American National Standards Institute (ANSI), Inc., and U.S. Department of Defense.
1983. Military Standard (MIL-STD): Ada Programming Language. ANSI/MIL-STD-
1815A.

Murray, Bill. 2001. “Corps Cites Software Failure in Osprey Crash.” Federal Computer
Week, 9 April. http://www.fcw.com/fcw/articles/2001/0409/news-osprey-04-09-01.asp
(accessed May 19, 2006).

NASA. 1990. NASA Software Quality Assurance Audits Guidebook. NASA-GB-A301.

----- . 1993. NASA Software Formal Inspections Guidebook. NASA-GB-A302.

----- . 1993. NASA Software Formal Inspections Standard. NASA-STD-2202-93
(Revalidated March 29, 2001).

http://news.bbc.co.uk/1/hi/uk/353063.stm
http://www.fcw.com/fcw/articles/2001/0409/news-osprey-04-09-01.asp

 58

----- . 1997. NASA Software Assurance Guidebook. NASA-GB-A201.

----- . 2004. NASA Software Assurance Standard. NASA-STD-8739.8 w/Change 1.

----- . 2004. NASA Software Safety Guidebook. NASA-GB-8719.13.

----- . 2004. NASA Software Safety Standard. NASA-STD-8719.13B w/Change 1.

Norman, Don A. 1990. “Commentary: Human Error and the Design of Computer
Systems.” Communications of the ACM, vol. 33, pp. 4-7.

O’Halloran, Colin, et al. 2005. “Ariane 5: Learning from Failure.” Proceedings of the
23rd International System Safety Conference, August at San Diego, California.

Ozarin, Nathaniel. “Planning and Performing Failure Mode and Effects Analysis on
Software.” 2006. Paper presented at the 52nd Annual Reliability and Maintainability
Symposium, 23-26 January at Newport Beach, California.

Pavlovich, J. Gregory. 1999. Formal Report of Investigation of the 30 April 1999 Titan
IVB/Centaur TC-14/Milstar-3 (B-32) Space Launch Mishap. Washington, D.C.: U.S. Air
Force.

Perminov, V. G. 1999. The Difficult Road to Mars: A Brief History of Mars Exploration
in the Soviet Union. NASA Monographs in Aerospace History, no. 15. NP-1999-06-
251-HQ.

Ray, Justin. 2000. “Sea Launch Malfunction Blamed on Software Glitch.” Spaceflight
Now, 30 March. http://spaceflightnow.com/sealaunch/ico1/000330software.html
(accessed May 22, 2006).

Reeves, Glenn and Tracy Neilson. 2005. “The Mars Rover Spirit FLASH Anomaly.”
Paper presented at the IEEE Aerospace Conference, March at Big Sky, Montana.

RTCA, Inc. 1992. Software Considerations in Airborne Systems and Equipment
Certification. Washington, D.C. RTCA/DO-178B.

“Sea Launch Poised to Fly with PAS-9.” 2000. Aviation Week & Space Technology, 3
July. http://www.aeronautics.ru/nws002/awst050.htm (accessed May 22, 2006).

Stephenson, Arthur, et al. 1999. Mars Climate Orbiter: Mishap Investigation Board
Phase I Report, 10 November, Washington, D.C.: NASA.

Storey, Neil. 1996. Safety Critical Computer Systems, Addison-Wesley Longman.

System Safety Society. 1997. System Safety Analysis Handbook. 2nd ed., Unionville,
Virginia.

The Boeing Company. 1998. “Boeing Pinpoints Cause of Delta 3 Failure, Predicts
Timely Return to Flight.” Boeing Press Release, http://www.boeing.com/defense-
space/space/delta/delta3/d3results.htm (accessed May 19, 2006).

U.S. Air Force Space Command. 2004. Range Safety User Requirements Manual: Air
Force Space Command Range Safety Policies and Procedures. Air Force Space
Command Manual 91-710, vol. 1. Peterson Air Force Base, Colorado.

http://spaceflightnow.com/sealaunch/ico1/000330software.html
http://www.aeronautics.ru/nws002/awst050.htm
http://www.boeing.com/defense-space/space/delta/delta3/d3results.htm
http://www.boeing.com/defense-space/space/delta/delta3/d3results.htm

 59

Wood, Bill J. 1999. “Software Risk Management for Medical Devices.” Medical Device
& Industry Magazine, January. http://www.devicelink.com/mddi/archive/99/01/013.html
(accessed May 22, 2006).

Woronowycz, Roman. 1998. “Crash of Ukrainian Rocket Imperils Space Program.” The
Ukrainian Weekly, 20 September, vol. 66, no. 38.

http://www.devicelink.com/mddi/archive/99/01/013.html

	TABLE OF CONTENTS
	FIGURES
	TABLES

	1.0 INTRODUCTION
	1.1 Purpose
	1.2 Background
	1.3 Scope
	1.4 Authority

	2.0 DEFINITIONS AND ACRONYMS
	2.1 Definitions
	2.2 Acronyms

	3.0 SOFTWARE AND COMPUTING SYSTEMS IN RLV SAFETY
	4.0 SOFTWARE AND COMPUTING SYSTEM SAFETY PROCESS
	4.1 Software Safety Planning
	4.2 Safety-Critical Computer System Function Identification and Description
	4.3 Hazard Analyses
	4.3.1 Error Conditions
	4.3.2 Risk Mitigation Measures

	4.4 Validation and Verification
	4.4.1 Analysis
	4.4.2 Formal Inspections
	4.4.3 Testing
	4.4.4 Verification After Deployment
	4.5 Software Safety Evolution - Updating Analyses

	5.0 ADDITIONAL CONSIDERATIONS
	5.1 Development Standards
	5.2 Configuration Management and Control
	5.3 Quality Assurance
	5.4 Anomaly Reporting and Tracking
	5.5 Previously Developed Software and Computing Systems
	5.6 Training
	5.7 Maintenance

	6.0 LESSONS LEARNED
	APPENDIX A: GENERIC SOFTWARE SAFETY REQUIREMENTS
	A.1 General Computer System Requirements
	A.2 Computing System Power
	A.3 Anomaly and Failure Detection
	A.4 Anomaly and Failure Response
	A.5 Maintenance, Inhibits, and Interlocks
	A.6 Human-Computer Interface
	A.7 Computing System Environment-Software Interface
	A.8 Operations
	A.9 Validation and Verification
	A.10 Configuration Management
	A.11 Quality Assurance
	A.12 Security
	A.13 Software Design, Development, and Test Standards
	A.14 Software Coding Practices
	A.15 Software Reuse
	A.16 Commercial Off-The-Shelf (COTS) Software

	APPENDIX B: SOFTWARE AND COMPUTING SYSTEM HAZARD ANALYSES
	B.1 Software Failure Modes and Effects Analysis
	B.2 Software Fault Tree Analysis

	APPENDIX C: SPACE VEHICLE FAILURES AND AIRCRAFT ACCIDENTS
	C.1 Space Vehicle Failures
	Phobos 1.
	Clementine.
	Ariane 501.
	Delta III/Galaxy.
	Zenit/Globalstar.
	Mars Climate Orbiter.
	Mars Polar Lander.
	Titan/Centaur-Milstar.
	Sea Launch/ICO F1.
	Cosmos/Quickbird 1.
	Mar Rover Spirit.
	CryoSat.

	C.2 Commercial, Military, and Experimental Aircraft Accidents
	Lufthansa A320.
	Chinook Helicopter.
	X-31.
	V-22 Osprey.

	REFERENCES

