
Abstract

There is a new generation of analysis-based tools to assist programmers in assuring software at
scale. These tools emphasize program properties that tend to defy traditional testing and
inspection—typically properties that involve non-determinism or that may have a non-local
character, in the sense that there may be no single place in the code associated with errors.
Concurrency errors are the perfect storm of non-determinism and non-locality, and so have
received attention from analysis and verification researchers for some time. Additionally,
concurrency is of increasing importance because software exploitation of multicore processors is an
emerging gateway to continued movement up the curve of Moore's Law.

In this talk, we survey some recent progress in advanced software assurance tools, with emphasis
on concurrency, including both static and dynamic analysis. Our focus is on the effective
exploitation of design intent to assist developers in achieving verification related to state
consistency and thread confinement. We consider lock-based approaches, using both lexical-style
locking, as with Java's “synchronized,” and dynamic lock acquisition and release, as with Doug
Lea’s java.util.concurrent library. We also consider policy-based approaches that avoid explicit
locking, as used in most GUI frameworks and in many simulation and data management systems.

We summarize the results of a number of field trials in major commercial companies to assess our
ideas related to adoptability by working developers and scalability to realistic large systems.

