Skip Standard Navigation Links
Centers for Disease Control and Prevention
 CDC Home Search Health Topics A-Z
peer-reviewed.gif (582 bytes)
eid_header.gif (2942 bytes)
Past Issue

Vol. 11, No. 8
August 2005

Adobe Acrobat logo

EID Home | Ahead of Print | Past Issues | EID Search | Contact Us | Announcements | Suggested Citation | Submit Manuscript

PDF Version | Comments Comments | Email this article Email this article



To the Editor (Vergnaud)
In Response (Raoult et al.)

Letter

Yersinia pestis Genotyping


Figure
Figure.

Click to view enlarged image

Figure. A) sequence-to-code correspondence (1 letter per 16-bp repeat unit). Differences from repeat unit "e" are shown...

To the Editor: Drancourt et al. (1) report the development of an original genotyping system for Yersinia pestis based on intergenic spacer sequencing. However, the approach appears to rely upon the characterization of polymorphisms due to tandem repeat variation. Eight spacers are used in the report, 7 of which contain tandem repeats, and the sequence variability used to produce the typing data and the strain clustering result from variation in the number of tandem repeats (and incorrect data analysis produces a dendrogram with 34 branches from only 19 different isolate types). Three of the spacers and associated polymorphisms were previously reported. Spacers YP3 and YP5 are, respectively, ms38 and ms56 (2); spacer YP10 is M61 (3). YP3 is later used to investigate ancient DNA samples, and 3 amplification products are described in detail. The sequences are compared to modern sequences by BLAST analysis, which is not relevant for tandem repeats. Instead, the Figure shows how internal variation within the array can be coded to facilitate interpretation. In this collection, Orientalis strains are "abcdeeef," whereas Antiqua strains from Africa are "abcdeef." All these different codes can be deduced one from the other by simple duplication and deletion events, with no need to invoke point mutations. The codes for all 3 ancient samples are identical to the Orientalis code "abcdeeef."

In conclusion, the data presented by Drancourt et al. do not appear to support their claim. They did not invent a new genotyping method but used the well-known multiple locus variable analysis (MLVA) number of tandem repeats approach. The finding that the "genotype Orientalis was involved in all three pandemics" is not valid since the Orientalis type is defined by a biochemical assay, resulting in all known Orientalis strains from a 93-bp glycerol-3-phosphate dehydrogenase microdeletion (4,5), which was not investigated here.

Gilles Vergnaud*Comments
*Centre d'Etudes du Bouchet, Vert le Petit, France

Suggested citation for this article:
Vergnaud G. Yersinia pestis genotyping [letter]. Emerg Infect Dis [serial on the Internet]. 2005 Aug [date cited]. Available from http://www.cdc.gov/ncidod/EID/vol11no08/04-0942_05-0568.htm

References

  1. Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, et al. Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis. 2004;10:1585–92.
  2. Le Flèche P, Hauck Y, Onteniente L, Prieur A, Denoeud F, Ramisse V, et al. A tandem repeats database for bacterial genomes: application to the genotyping of Yersinia pestis and Bacillus anthracis. BMC Microbiol. 2001;1:2.
  3. Klevytska AM, Price LB, Schupp JM, Worsham PL, Wong J, Keim P. Identification and characterization of variable-number tandem repeats in the Yersinia pestis genome. J Clin Microbiol. 2001;39:3179–85.
  4. Motin VL, Georgescu AM, Elliott JM, Hu P, Worsham PL, Ott LL, et al. Genetic variability of Yersinia pestis isolates as predicted by PCR-based IS100 genotyping and analysis of structural genes encoding glycerol-3-phosphate dehydrogenase (glpD). J Bacteriol. 2002;184:1019–27.
  5. Pourcel C, Andre-Mazeaud F, Neubauer H, Ramisse F, Vergnaud G. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis. BMC Microbiol. 2004;4:22.

Back to top


In Response: We thank Dr. Vergnaud for his response (1). Since the time of our publication (2), 2 articles related to our paper were either submitted or published. One (3) reported identification of Yersinia pestis–specific genes in teeth from patients who died during the Justinian plague; another proposed identification of Y. pestis strains by using variable numbers of tandem repeats analysis (VNTR) (4). The authors concluded that isolates could easily be compared in their database by using 7 markers. As opposed to work with cultures where ample, high-quality DNA template is available, successful amplifications with 7 different primer sets cannot be achieved by using DNA extracted from ancient teeth (5). By comparing genome sequences, we evaluated short intergenic spacers that were more divergent. Divergences included mutations, deletions, and duplications (VNTR). Phylogenetically, an entire repeat unit has the same weight as that of a single nucleotide polymorphism. By sequencing, we have identified all events (single nucleotide polymorphism and VNTR). Sequencing is more versatile for use in strain identification (5), allows distinction at the species level, and can be applied directly on clinical and forensic samples.

Figure
Figure.

Click to view enlarged image

Figure. Unrooted tree showing the phylogenetic relationships between the sequence obtained from the YP3 spacer...

The discovery of a unique sequence is critical to authenticate results in such controversial areas as paleomicrobiology (5). Fortunately, we have identified a unique sequence that contains several mutations. These mutations do not exclude this strain from being Y. pestis (see Figure). Additionally, we doubt that our conclusions would have been accepted had we simply used the VNTR, demonstrating only an amplicon of the right size on a gel.

In conclusion, our results have been validated by others. The sequence is original and, therefore, authentic. Dr. Vergnaud agrees that the results we presented did represent a sequence associated with the Orientalis biovar. This finding may end the controversy.

Didier Raoult,*Comments Michel Drancourt,* Pierre Edouard Fournier,* and Hiro Ogata*
*Centre National de Reference, Marseille, France

Suggested citation for this article:
Raoult D, Drancourt M, Fournier PE, Ogata H. Yersinia pestis genotyping [in response]. Emerg Infect Dis [serial on the Internet]. 2005 Aug [date cited]. Available from http://www.cdc.gov/ncidod/EID/vol11no08/04-0942_05-0568.htm

References

  1. Vergnaud G. Yersinia pestis genotyping. Emerg Infect Dis. 2005;11:1317–8.
  2. Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, et al. Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis. 2004;10:1585–92.
  3. Weichmann I, Grupe G. Detection of Yersinia pestis DNA in two early medieval skeletal finds from Aschheim (Upper Bavaria, 6th century AD). Am J Phys Anthropol. 2005;126:48–55.
  4. Pourcel C, Andre-Mazeaud F, Neubauer H, Ramisse F, Vergnaud G. Tandem repeats analysis for the high resolution phylogenetic analysis of Yersinia pestis. BMC Microbiol. 2004;4:22.
  5. Drancourt M, Raoult D. Paleomicrobiology: current issues and perspectives. Nat Rev Microbiol. 2005;3:23–35.

Back to top

   
     
   
Comments to the Authors

Please contact the authors at the following addresses:

Gilles Vergnaud, Department of Analytical Microbiology, Centre d'Etudes du Bouchet 91710, Vert le Petit, France; fax: 33-1-69-15-66-78; email: gilles.vergnaud@igmors.u-psud.fr

Didier Raoult, Unité des Rickettsies, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 05, France; fax: 33-4-91-38-77-72; email: didier.raoult@medecine.univ-mrs.fr


Comments to the EID Editors
Please contact the EID Editors at eideditor@cdc.gov

Email this article

Please note: To prevent email errors, please use no web addresses, email addresses, HTML code, or the characters <, >, and @ in the body of your message.

Your email:

Your friend's email:

Message (optional):

 

 

 

EID Home | Top of Page | Ahead-of-Print | Past Issues | Suggested Citation | EID Search | Contact Us | Accessibility | Privacy Policy Notice | CDC Home | CDC Search | Health Topics A-Z

This page posted July 21, 2005
This page last reviewed July 21, 2005

Emerging Infectious Diseases Journal
National Center for Infectious Diseases
Centers for Disease Control and Prevention