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BACKGROUND AND PURPOSE 

In 1978, the National Science Foundation supported the American In-
stitute of Architects in the preparation of a document entitled Designing 
for Earthquakes. This document, which has long been out of print, was a 
compendium of papers presented at the 1978 Summer Seismic Institutes 
for Architectural Faculty, held at the University of Illinois and Stanford 
University. 

FEMA has long fostered a strong relationship with the architectural 
community. It was decided that Designing for Earthquakes, which had re-
mained for many years a major reference 
for architects and related professions, 
should to be updated to reflect advances 
in technology and understanding that had 
occurred since the original document was 
published. 

The need for updating this publication 
was prompted by the fact that literature 
on natural hazard mitigation directed 
towards the architectural profession is 
scarce, in spite of the fact that architects 
can make a significant contribution to 
hazard risk reduction. While many text-
books exist on the design of structures 
and the nature of earthquakes, they are of 
a specialist nature, directed to their own 
disciplines, and written in their own spe-
cial language. 

Currently no single publication exists that 
provides up-to-date information necessary 
to architects, presented in a form that is 
attractive, readable, and intelligible to a 
non-specialist audience. This revised pub-
lication will fill that gap. 
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The present publication, under the same title as the original document, 
is a completely new work. It follows the general approach of the original 
in that it consists of a series of chapters that provide the foundation for 
an understanding of seismic design, each authored by an expert in the 
field. The authors were given freedom to decide the scope of their chap-
ters; and thus this publication represents expert opinion rather than 
consensus. An outside expert review panel has reviewed two drafts of the 
publication to ensure that the selected topics are covered in an accurate, 
interesting, and useful way. 

Designing for Earthquakes: a Manual for Architects is intended to explain the 
principles of seismic design for those without a technical background in 
engineering and seismology. The primary intended audience is that of 
architects and includes practicing architects, architectural students, and 
faculty in architectural schools who teach structures and seismic design. 
For this reason, the text and graphics are focused on those aspects of 
seismic design that are important for the architect to know. 

Earthquakes in the United States are regional in their occurrence. While 
California is famous for its earthquake,, other states, such as Texas, have 
much less concern for the threat of temblors. However, architectural 
practice is becoming increasingly national and global, and the architect 
in Texas may find that the next project is in California. Thus it has be-
come necessary for the professional architect to have some knowledge of 
the earthquake problem and how design seeks to control it. 

Because of its non technical approach, this publication will also be useful 
to anyone who has an interest and concern for the seismic protection 
of buildings, including facility managers, building owners and tenants, 
building committee participants, emergency service personnel, and 
building officials. Engineers and engineering students will also gain from 
this discussion of seismic design from an architectural viewpoint. 

The principles discussed are applicable to a wide range of building types, 
both new and existing. The focus is on buildings that are designed by a 
team that includes architects, engineers and other consultants. 
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