Structure and function of carnitine acyltransferases

Liang Tong

Department of Biological Sciences
Columbia University
New York

Structural studies of carnitine acetyltransferase (CRAT)

• G. Jogl & L. Tong, Cell, 112, 113-122, (2003)

Wu, et al. J. Biol. Chem. 278, 13159, (2003)

Reaction catalyzed by carnitine acyltransferases

Acylcarnitines are activated acyl groups

Carnitine acyltransferases

- Carnitine palmitoyltransferases (CPTs)
 - Specific for long-chain fatty acids
 - L-CPT-I (CPT-1a), M-CPT-I (CPT-1b), and CPT-1c, associated with the outer membrane of mitochondria
 - CPT-II, in the mitochondrial matrix
 - The activities of CPT-Is are controlled exquisitely by malonyl-CoA
- Carnitine octanoyltransferase (COT)
 - Specific for medium-chain fatty acids
- Carnitine acetyltransferases (CAT, CRAT)
 - Specific for short-chain fatty acids

Carnitine acyltransferases and human diseases

- Inherited recessive mutations of CPT-I and CPT-II are linked to hypoglycemia
- CPT-II deficiency is the most common cause of abnormal lipid metabolism in skeletal muscle
- Inherited deficiency in CRAT activity is linked to neurological and heart problems
- Alzheimer's patients also have reduced CRAT activity

Carnitine acyltransferases and drug discovery

- L-CPT-I is a target for drug development against NIDDM (type 2 diabetes)
- A covalent inhibitor of L-CPT-I, etomoxir, can lower blood glucose levels in diabetic animals and humans
- Clinical use limited by the toxic side effects

An agonist of CPT-I can lower body weight

Thupari et al. PNAS, 99, 9498, (2002)

Carnitine acyltransferases

- Contains about 600 to 700 amino acid residues, 70kD
- Strongly conserved among various living organisms
- About 35% sequence identity between CPT-I and CRAT
- No detectable sequence homology to other proteins in the database
- No structural information

Sequence conservation of carnitine acyltransferases

Crystals of mouse CRAT

a=158.9 Å b=89.6 Å c=119.4 Å $\beta=127.5 ^{\circ}$

Z=2

Structure determined by Se-Met SAD phasing (40 Se sites)

1.8 Å

Structures of mouse CRAT

Complex Resolution (Å)	Free enzyme 1.8	Carnitine 1.9	CoA 2.3
Free R factor (%)	21.1	24.7	36.1

Structure of mouse CRAT: two domains with the same topology

The two domains of CRAT are arranged similar to two subunits of CAT

CAT is a trimer

The two domains of CRAT are arranged similar to two subunits of CAT

The substrate binding sites of CRAT

Carnitine binding site

Carnitine binding mode

The catalytic mechanism: substrate-assisted catalysis

The positive charge is not required for binding, but is required for catalysis.

CoA binding site

Binding mode of CoA to CRAT is different from that to CAT

Possible binding site for long-chain acyl-CoAs

5 560 5 570 5

Human CRAT QVPAKTDCVMFFGPVVPDGYG

Mouse CRAT OVPAKTDCVMFFGPVVPDGYG

Human L-CPT-I NNPEYVSSGGGFGPVADDGYG
Mouse L-CPT-I KYPDYVSCGGGFGPVADDGYG

Human M-CPT-I QHPNHLGAGGGFGPVADDGYG
Mouse M-CPT-I QYPNHLGAGGGFGPVADDGYG
Drosophila CPT-I KHPNCISAGGGFGPVADDGYG

Human CPT-II TLSSPAVNLGGFAPVVSDGFG
Mouse CPT-II TLSSPAVSLGGFAPVVPDGFG

Human COT SLVGYLRVQGVVVPMVHNGYG Bovine COT SLVGYLRVQGVMVPMVHNGYG

Disease-causing mutations reduce the activity of the enzymes

QuickTime™ and a Photo decompressor are needed to see this picture

Future research directions

- Determine the binding mode of the acyl groups to the enzyme
- Structural studies of other carnitine acyltransferases (CPT-I, CPT-II, COT)
- Understand the molecular basis for the malonyl-CoA inhibition of CPT-I
- Understand the molecular basis for the disease-causing mutations in CPT-I and CPT-II
- Identify inhibitors against L-CPT-I
- Identify agonists for L-CPT-I

Summary

- Carnitine acyltransferases have the same backbone fold as CAT
- The active site is at the interface of two domains of the enzyme
- The substrate binding channel extends through the middle of the enzyme
- The carboxylate of carnitine is bound tightly by the enzyme
- Carnitine helps the catalysis by the enzyme

Acknowledgements

ME Project

Zhiru Yang Xiao Tao Hailong Zhang Charles Lanks

Gu-Gang Chang W.W. Cleland

NSF MCB99-74700

CRAT project

Gerwald Jogl Stephanie Hsiao

ACC Project

Hailong Zhang Benjamin Tweel Jiang Li Yang Shen Zhiru Yang

NIH DK67238

NSLS X4A

Randy Abramowitz Xiaochun Yang