Carnitine And The Heart: General

Carnitine is not produced by the heart but ...

- The heart is dependent on Carnitine as FFA are the major sources of myocardial energy (80% of oxygen consumption is used to oxide FFA).
- Carnitine from diet or from liver and kidney is actively transported to the heart across the sarcolemma.

Carnitine Deficiency

- 1973 Firstly described as cause of human myopathy.
- There are several forms:

- Primary muscular deficiencies.
- Primary systemic deficiencies.
- Secondary deficiencies.

PRIMARY MUSCULAR DEFICIENCIES

PHENOTYPE:

Progressive muscular myopathy with lipid accumulation.

CARNITINE LEVEL:

Low muscular Carnitine content.

TREATMENT:

Oral L-Carnitine improves muscle bulk, strength and performance.

Rarely unsuccessful \rightarrow likely to be a "Riboflavin-responsive multiple ACYL-COA dehydrogenoses deficiency".

PRIMARY SYSTEMIC DEFICIENCY

PHENOTYPE:

Recurrent episodes of hepatic encephalopathy, hypotonia, progressive myopathy and / or cardiomyopathy (leading to death) with multi-organ lipid accumulation.

CARNITINE ASSAY:

Low levels in plasma, liver, muscle and heart.

TREATMENT:

Oral L-Carnitine always successful.

SECONDARY DEFICIENCIES

Genetic organic aciduria.

Genetic defects of beta oxidation.

Prolonged haemodialysis.

Ischaemic heart and peripheral disease.

Secondary Carnitine deficiency causes:

- Cytosolic accumulation of ACIL COA.
- Excess ACIL COA further impairs metabolism and function of the ischaemic heart by causing:
 - Membrane damage -> arrhythmias.
 - Inhibition adenin mucleotide translocase → Compartimentalization of ATP in the mitochondria.
 - Alteration of calcium homeostasis -> Deterioration of mechanical function.
 - Depauperation of glutathione → Oxidative stress
 → Apoptosis.

METABOLICAL TOXICITY OF FFA

EFFECTS OF L-CARNITINE ON POSTISCHEMIC NECROTIC AND APOPTOTIC CARDIOMYOCYTE DEATH IN ISOLATED RAT HEARTS.

Ischaemia Induced Deficiencies In Man

- During attack of angina (A-Cs)
- In CAD patients subjected to heart surgery.
- After myocardial infarction.
- In CAD patients subjected to trombolysis (A-Cs).
- In patients heart failure (myocardial biopsy).
- In cardiogenic shock.

Data is scarce. High individual variations. Important area to invest.

Effects of L-Carnitine in CAD patients

 Haemodynamic and metabolic action at rest and during exercise and / or pacing induced ischaemia.

 Large clinical trials in angina and acute myocardial infarction.

EFFECT OF L-CARNITINE (40 mg / Kg) ON HAEMODYNAMIC PARAMETERS AT REST

	BEFORE	AFTER L-CARNITINE	
HEART RATE (beats / min)	79 ± 4	76 ± 3	N.S.
MEAN AORTIC SYSTOLIC PRESSURE (mmHg)	146 ± 4	144 ± 6	N.S.
MEAN AORTIC DIASTOLIC PRESSURE (mmHg)	76 ± 6	73 ± 2	N.S.
PULMONARY ARTERY PRESSURE (mmHg)	18 ± 1	18.2 ± 3	N.S.
CARDIAC OUTPUT (I / min)	5.9 ± 0.7	5.9 ± 0.6	N.S.
CORONARY SINUS BLOOD FLOW (ml / min)	127 ± 14	129 ± 12	N.S.
HEART RATE x SYSTOLIC BLOOD PRESSURE	11.53 ± 0.12	11.38 ± 0.14	N.S.

Study on 18 patients
R. Ferrari - O. Visioli - Journal of Molecular and cellular cardiology 1983

EFFECT OF L-CARNITINE (40 mg/Kg) ON MYOCARDIAL METABOLISM AT REST

STUDY ON 18 CAD PATIENT

R. FERRARI et al. - International Journal of Cardiology - 1984

EFFECT OF L-CARNITINE ON MYOCARDIAL OER %

THE OER FOR EACH SUBSTRATE BEING CALCULATED FROM THE A-CS DIFFERENCE

CORONARY SINUS ATRIAL PACING

- 140 b/m
- For 10 minutes or until the onset of chest pain

END DIASTOLIC PRESSURE

Phase IV open label study in 3500 CAD patients treated for 1 year with oral L-Carnitine (2gr daily):

No side effects.

 Reduction of concomitant anti-anginal treatment (β blockers, nitrates, CA²⁺ antagonists).

Fernandez et al JAMA 210, 1985

HIGH DOSES OF L-CARNITINE IN ACUTE MYOCARDIAL INFARCTION: METABOLIC AND ANTIARRHYTHMIC EFFECTS

P. Rizzon et al..... European Heart Journal, 1988

 i.v. ADMINISTRATION OF HIGH DOSES OF L-CARNITINE (100 mg/kg) IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION INCREASES URINARY EXCRETION OF ACYLCARNITINE AND REDUCES EARLY VENTRICULAR ARRHYTHMIAS Effects of L-Carnitine on LV remodelling after acute arterior myocardial infarction CEDIM I (JACC; 26, 1995)

Objectives:

Effects of L-Carnitine (9g / day iv for 5 days followed by oral dose for 12 months) on long term ventricular dilation in 472 patients with AMI

Methods:

High quality two dimensional echo cardiograms with 24 hour of onset of chest pain and at pre-discharge and 3,6,12 months later.

CEDIM 1 (JACC 1995)

35

Furthermore:

- No significant differences in left ventricular ejection fraction
- A trend towards a reduction of the combined incidence of death and CHF after discharge:
 - 14 (6%) in L-Carnitine group
 - 23 (9.6%) in placebo group

CEDIM-2

- Population:2047 patients with acute anterior infarct .
- Randomization:
 Within 12 hours from symptom.
- Primary end point:
 CV mortality and HF at six months.
- Secondary end point:
 Early mortality (7 and 30 days).
- Treatment: as in CEDIM-1.

CEDIM-2 CONCOMITANT TREATMENT

PRIMARY END-POINT (mortality and HF)

Cumulative Number of deaths

Relative Risk (of death)

DAY 7

CONCLUSION:

- L-Carnitine treatment is useful in all primary deficiencies.
- In secondary deficiencies and particularly in ischaemic heart disease it improves cardiac metabolism.
- This results in an improvement of angina symptoms, reduced early mortality after MI and improvement of left ventricular remodelling.

PROPIONYL – L - CARNITINE

- Propionyl-L-Carnitine is a carnitine derivative able to improve muscle metabolism:
 - it is highly specific for muscle carnitine transferase
 - it increases cellular carnitine content, allowing FFA transport across the mitochondria
 - it carries propionate, an anaplerotic substrate for Kreb's cycle
- Propionyl-L-Carnitine has been shown to:
 - improve cardiac muscle function in several experimental models of heart failure
 - improve maximal walking distance in patients with peripheral arterial disease (9 parallel, randomized, double-blind studies; 1406 patients totally, in pubbl.)
 - improve exercise capacity and oxygen consumption in patients with heart failure (doubleblind, placebo controlled study in 80 pts, European Heart J, 1995 and parallel study in 20 pts, Cardiovasc. Drugs & Ther, 1996)
 - improve exercise capacity of CAD patients (double-blind study, in 32 patients, Am J Cardiol, 1994)

Propionyl-L-Carnitine in Chronic Heart Failure

type of study: phase-III, double-blind, randomized, parallel, multicentre, comparing Propionyl-L-Carnitine and placebo

primary end-point: maximum exercise duration at day 180

🔞 study design: 🔹 🛮 14 days run-in with placebo

6 months randomized double-blind treatment period

evaluation at 2 and 6 months

study population:

 NYHA class II or III; EF < 40%

 under stable mandatory therapy with ACE-inhibitors and diuretics, with or without digitalis

6 centres involved: 49 centres in 8 European countries

6 study duration: 29 months

Primary Endpoint - Maximal Exercise Duration

INTENTION TO TREAT ANALYSIS (n = 537)

MEAN CHANGES FROM BASELINE

(mean of percent changes)

EFFICACY ANALYSIS

$$(n = 353)$$

MEAN CHANGES FROM BASELINE

(mean of percent changes)

Primary Endpoint stratified by baseline ejection fraction-

INTENTION TO TREAT ANALYSIS (n = 537)

Interaction Test: p<0.05 EF ↑30% p<0.05 EF ↓ 30% NS

MEAN CHANGES FROM BASELINE (mean of percent changes) --□-- PLACEBO (EF↑ 30%) = -6.7 sec (-2.4 %); N = 99 --□-- PLC (EF↑ 30%) = 33.2 sec (9.4 %); N = 112 --○-- PLACEBO (EF↓ 30%) = 5.6 sec (2.4 %); N = 167 --□-- PLC (EF↓ 30%) = -16.6 sec (-3.4 %); N = 159

EFFICACY ANALYSIS (n = 353)

Interaction Test: p<0.05
EF ↑30% p<0.05
EF ↓ 30% NS

MEAN CHANGES FROM BASELINE

(mean of percent changes)

— PLC (EF
$$\downarrow$$
 30%) = 7.7 sec (2.9 %); N = 104

Primary Endpoint stratified by baseline exercise duration and EF (Exploratory Analysis, not described in the statistical plan)

MEAN CHANGES FROM BASELINE

(mean of percent changes)

-- PLACEBO (
$$\uparrow$$
419 sec; EF \uparrow 30%) = 3.4 sec (0.1 %); N = 51

PLC (
$$^{\uparrow}$$
419 sec; EF $^{\uparrow}$ 30%) = 26.0 sec (5.6 %); N = 64

--O-- PLACEBO (
1
419 sec; EF $^{\downarrow}$ 30%) = -5.7 sec (-0.9 %); N = 80

PLC (
$$^{\uparrow}419 \text{ sec}$$
; EF $\downarrow 30\%$) = -30.4 sec (-6.1 %); N = 71

MEAN CHANGES FROM BASELINE

(mean of percent changes)

-
$$\diamondsuit$$
 - PLACEBO (↓419 sec; EF↑ 30%) = -17.6 sec (-5.0 %); N = 48

PLC (
$$\sqrt{419}$$
 sec; EF \uparrow 30%) = 42.9 sec (14.5 %); N = 48

-
$$-$$
 PLACEBO (↓419 sec; EF↓ 30%) = 16.1 sec (5.4 %); N = 87

PLC (
$$\sqrt{419}$$
 sec; EF $\sqrt{30\%}$) = -5.4 sec (-1.3 %); N = 88

Primary Endpoint stratified by baseline exercise duration and EF — (Exploratory Analysis, not described in the statistical plan)

