CRUISE REPORT

ALPHA HELIX CRUISE 245

4 June 2001 to 25 June 2001

Project Title: Foraging Habitats of Steller Sea Lions in the Aleutian Islands: Bottom-up Controls of Prey Availability and the Presence of Killer Whales

Chief Scientist: George L. Hunt, Jr.
Department of Ecology and Evolutionary Biology
University of California, Irvine
Irvine CA 92697-2525
Phone: (949) 824-6322 NEW AREA CODE 18 April 824-6006 (message)
FAX: (949) 824-2181
28 June to 15 September: Phone (360) 378-6748
e-mail: glhunt@uci.edu
Support: NOAA: OAS/PMEL
National Marine Mammal Laboratory NMML

II. Scientific Purpose: Due to a continuing population decline, the western stock of Steller sea lions (Eumetopias jubatus) is listed as endangered. Hypotheses to explain declines in populations from Kodiak Island, the Alaskan Peninsula and the Aleutian Island Arc include: 1) Commercial fisheries are competitors for prey; 2) There is significant predation by killer whales (Orcinus orca); and 3) changes in climate have affected the productivity of sealion habitat, thus diminishing the abundance or availability of prey, particularly in the western portion of their range. Management actions necessary to mitigate the possible effects of fisheries have severely restricted the inshore portion of the commercial groundfish fishery. To improve the basis for future management decisions, more information is required about how killer whales and climate variations impact the ecosystem on which Steller sea lions depend. Therefore, we conducted an integrated multidisciplinary examination of the possible effects of killer whales and climate change on Steller sea lions in the Aleutian Islands. To this end, in Aleutian passes where sea lions continue to decline and in passes where their populations are stable or growing, we characterized and quantified 1) the physical regime, 2) nutrient availability, 3) primary production, 4) the distribution and abundance of zooplankton and micro-nekton, 5) the foraging ecology of marine birds as indicators of prey availability, and 6) the distribution and relative abundance of killer whales, and where possible, obtained identification-quality photographs and biopsy samples from them. This study is the first multidisciplinary, integrated examination of the ecosystem in the critical habitat of the western populations of Steller sea lions. It provides initial tests of two of three hypotheses most likely to explain the decline of the sea lions, and has the potential to provide information of
significant value for the future management of sea lion recovery and the fisheries of the region.

III. Personnel

George Hunt	Chief Sci.	UCI	USA	Ornithology
Steve Zeeman	Co-PI	U. New England	USA	Primary Production
Ken O. Coyle	Co-PI	U. AK, Fairbanks	USA	Zooplankton
Sue Moore	Co-PI	NMML	USA	Killer whales
Sigrid Salo	Res. Assoc. PMEL	USA	Phys. Oceanogr.	
Lucy Vlietstra	Student	UCI	USA Ornithology	
Jaime Jahncke	Student	UCI	PERU Ornithology	
Nancy Black	Assistant	NMML	USA	Killer Whales
Jack Swenson	Assistant	NMML	USA	Killer Whales
Joseph Sullivan.	Student	U. New England	USA	Primary production
Chris Stark	Technician	U. AK Fairbanks	USA	Zooplankton
Leandra DeSousa	Student	U. AK Fairbanks	USA	Zooplankton
Amy McKenzie	Techrician	U. AK Fairbanks	USA	Zooplankton

IV. Cruise Schedule and Activities

DATE

 ACTIVITY04-06 June In transit from Seward to the Study area
Mammal Surveys all daylight hours
4 June, 11:45, Resolution Bay: Killer Whale photography
4 June, 20:30, Lower Kenai Peninsula: Killer Whale photography
07-08 June South Side of Aleutians to Seguam Pass
7 June, 06:02, Station at KRES-2: CTD, CaIVET
7 June, 06:40, KRES-2 to KRES-3: Acoustic Survey, Bird and Mammal Survey
7 June, 08:51, Station at KRES-3: CTD, CaIVET
7 June, 09:24, KRES-3: Killer whale photography and biopsy
7 June, 13:30, KRES-3 to UNAS-2: Bird and Mammal Survey
7 June, 19:18, Station at UNAS-2: CTD, CaIVET
7 June, 20:06, UNAS-2 to UNAS-3: Acoustic Survey, Bird and Mammal Survey
7 June, 22:12, Station at UNAS-3: CTD, CaIVET
7 June, 22:34, Killer Whale photography
8 June, 04:03, Station at UMNS-1: CTD, CaIVET
8 June, 04:37, UMNS-1 to UMNS-2: Acoustic Survey

8 June, 06:29, Station at UMNS-2: CTD, CaIVET, Prod Water collected 8 June, 07:30, UMNS-2 to UMNS-3 to MT4S-1: Bird and Mammal Survey 8 June, 11:41, Station at MT4S-1: CTD, CaIVET
8 June, 12:42, MT4S-1 to MT4S-2: Acoustic Survey, Bird and Mammal Survey 8 June, 14:04, Station at MT4S-2: CTD, CaIVET
8 June, 14:20, MT4S-2 to YUNS-1: Bird and Mammal Survey
8 June, 17:23, Station at YUNS-1: CTD, CalVET
8 June, 18:06, YUNS-1 to YUNS-2: Acoustic Survey, Bird and Mammal Survey 8 June, 21:07, Station at YUNS-2: CTD, CaIVET

9-11 June Seguam Pass Region

9 June, 10:21, Seguam Pass: Killer Whale Photography
9 June, 15:15, Inshore Survey Seguam Island, north and west sides
9 June, 17:24, Seguam Pass X-line CTDs SGX01 to SGX-04
9 June, 20:51, 3 NIO deployments for Plastics
10 June, 00:10, MOCNESS Tows at SGY-09, SGY-11, SGY-13, SGY-15
10 June, 08:06, Seguam Pass Y-line, CTDs and CaIVETs, SGY-14 to SGY-01; Prod. Water at SGY-14; Bird and Mammal Surveys
10 June, 21:30: Ran south from SGY-01 for 15 nautical miles
10 June, 23:55: MOCNESS Tow at SGY-01
11 June, 01:17, MOCNESS Tows at SGY-03, SGY-05
11 June, 06:30, Seguam Pass: Killer Whale Photography
11 June, 10:38, Seguam Pass, Y-line, Acoustic Survey, Bird and Mammal Surveys, from SGY-15 to SGY-01

11-12 June Amukta Pass
11 June, 21:12, Amukta Pass: X-line, CTDs from AMX-05 to AMX-01

12 June, 07:05 Amukta Pass: Y-line, CTDs, CalVETs from AMY-14 to AMY-01; Bird and Mammal Surveys

13-14 June \quad North of Aleutians from Amukta Pass to Akutan Pass
12 June, 23:58, Station at YUNN-2: CTD, CaIVET
13 June, 01:04, YUNN-2 to YUNN-1: Acoustic Survey
13 June, 02:35, Station at YUNN-1: CTD, CaIVET
13 June, 05:44, Station at MT4N-2: CTD, CaIVET
13 June, 06:23, MT4N-2 to MT4N-1: Acoustic Survey, Bird and Mammal Surveys
13 June, 08:24, Station at MT4N-1: CTD, CaIVET
13 June, 09:00, MT4N-1 to UMNN-3: Bird and Mammal Surveys
13 June, 10:29 - 12:00: Killer Whale Photography
13 June, 15:00 - 16:27: Killer Whale Photography
13 June, 17:02, Station at UMNN-3: CTD, CaIVET

13 June, 17:38, UMNN-3 to UMNN-2: Acoustic Survey, Bird and Mammal Surveys 13 June, 19:33, Station at UMNN-2: CTD, CaIVET (2)

14 June, 01:32, Station at UNAN-2: CTD, CaIVET (2)
14 June, 02:41, UNAN-2 to UNAN-1: Acoustic Survey
14 June, 04:41, Station at UNAN-1: CTD, CaIVET
14 June, 06:30, UNAN-1 to AKY-18: Bird and Mammal Surveys
14-20 June Akutan Pass and Unimak Pass Region
14 June, 11:30, Akutan Pass Y-line: CTDs, CaIVETs, AKY-18 to AKY-08; Bird and Mammal Surveys
14 June, 18:15, South End Akutan Pass: Collecting Foraging Shearwaters 14 June, 19:28, AKY-08 to AKY-18: Acoustic Survey

15 June, 00:07, MOCNESS Tows at AKY-19, AKY-18, AKY-17, AKY-16, AKY-15, AKY-14
15 June, 06:55, Akutan Pass Y-line: CTDs, CalVETs, AKY-19 to AKY-06; Bird and Mammal Surveys
15 June, 14:30, North of Unalaska Island: Killer Whale photography
16 June, 00:44, MOCNESS Tows at AKY-11, AKY-10, AKY-09, AKY-08, AKY-07, AKY-06
16 June, 08:51, Akutan Pass: Acoustic Survey through foraging Shearwater flock 16 June, 15:05, Akutan Pass: Deployment of NIO net near foraging Shearwaters 16 June, 16:30, Akutan Pass: Collecting Shearwaters 16 June, 17:09, Akutan Pass to Makushin Bay: searching for Killer Whales

17 June, 06:55, Makushin Bay to Unimak Pass: Searching for Killer Whales
17 June, 09:30, North of Unalaska Island: Photographing Killer Whales
17 June, 15:32, North of Unalaska Island: Underway for KREN-3, Mammal Survey
17 June, 21:00, North of Akutan Island: Brief Diversion for Killer Whales
17 June, 22:00, Station at KREN-3: CTD, CaIVET
17 June, 23:43, KREN-3 to KREN-2: Acoustic Survey
18June, 02:00, Station at KREN-2: CTD, CaIVET
18 June, 02:25, KREN-2: NIO Tow for plastics
18 June, 03:57, MOCNESS Tows at UNY-28, UNY-30
18 June, 06:29, Unimak Pass Y-line: CTDs and CalVETs at UNY-30, 28, 27, 26, 24, 22, 20, 18, 16, 14, 12, 10, 08, with Bird and Mammal Surveys
18 June, 17:14, Unimak Pass Y-line: Acoustic Survey, UNY-12 to UNY-30, with Bird and Mammal Surveys until 22:00

19 June, 04:36, MOCNESS Tows at UNY-25, UNY-22
19 June, 06:30, Unimak Pass to Akutan Pass: Searching for Killer Whales
19 June, 16:00, Akutan Pass: Herring Ball, Deploy NIO for Neuston (3 runs)
19 June, 17:40, Akutan Pass to Unimak Pass: Looking for Killer Whales

19 June, 23:38, MOCNESS at UNY-20
20 June, 01:12, Unimak Pass: Work suspended because of fire in E-lab
20 June, 06:48, Unimak Pass: Collected Prod water at UNY-10
20 June, 07:00, Unimak Pass: Searching for Killer Whales

20-24 June In Transit to Seward

20 June, 09:45, Unimak Pass: broke off due to rough seas; Coastal Survey for Killer Whales along Alaska Peninsula
21 June, 07:45, Shumagin Islands: Survey for Killer Whales
21 June, 23:48, Shumagin Islands: MOCNESS in area with Fin Whales
22 June, 01:18, Shumagin Islands: CTD survey the length of trench where Fin Whales were foraging
23 June, 07:30, Shumagins to Mitrofania Island and Shelikof Strait: Mammal Survey
24 June, In Transit to Seward

V. Summary Of Results
 Overview

To accomplish our goals, we conducted 117 CTD casts for deterrnination of hydrographic structure and chlorophyll abundance, $9{ }^{14} \mathrm{C}$-based studies of primary production and $2{ }^{15} \mathrm{~N}$-based studies of new production, and collected 483 samples of phytoplankton for cell counts. Zooplankton sampling included 78 tows of a CaIVET net for zooplankton community composition, 26 deployments of a MOCNESS multiple opening-closing net for zooplankton abundance, and 400 km of acoustic surveys. In addition, we conducted 1,177 km of marine bird surveys, collected 16 short-tailed shearwaters for determination of food habits, completed 265 hours of marine mammal surveys, conducted photo-ID encounters with 10 pods of killer whales and obtained one biopsy sample from a killer whale in the study area.

In our investigations of bottom-up processes that might account for differences in population trends of Steller sea lions in the eastern and central/western Aleutian Islands, we found that water south of the Aleutian Islands west of Umnak Island (Samalga Pass) was colder than that east of the pass, and that standing stocks of chlorophyll and zooplankton were lower in the western than in the eastern portion of the study area. There was also an apparent shift in the species composition of both zooplankton and seabirds, suggesting structural differences in the ecosystems of the two regions. This interpretation fits with known changes in sea lion diets from haul outs in the eastern and western Aleutian Islands. In Akutan Pass, we observed balls of herring feeding at the surface on euphausiids and convergence zones in which euphausiids were concentrated at the surface. If herring and other forage fish regularly aggregate in areas of convergence in the passes and around the islands, these areas could be useful to foraging sea lions. In our investigations of killer whales, we found pods present from the region of Unimak Pass to Seguam Pass.

Physical Oceanography

To quantify the differences in the physical habitats of Steller sea lions in the eastern and central Aleutian Islands, we conducted conductivity, temperature, depth (CTD) casts along the north and south sides of the Aleutian Islands (Fig. 1-3), through four passes (Unimak [Fig. 4], Akutan [Fig. 5], Amukta [Fig. 6] and Seguam [Fig. 6]), and across two passes (Seguam and Amukta [Fig. 6]) to measure flow through the pass. Local tidal currents were taken into consideration in timing surveys through the passes (fig. 7-10).

Variability of near-island conditions:

During HX245 we measured temperature, salinity and fluorescence near the Aleutian Islands at five pairs of positions south of the islands and five pairs of positions north of them. Near-shore temperature and fluorescence were higher and salinity was lower near the eastern islands than the western islands. Temperature was lower and salinity generally higher north of the Aleutians than to the south.

South of the Aleutians, the transition between warm and cool water occurred quite abruptly where there was an increase in depth between Umnak Island and the Islands of Four Mountains. In the shallow region east of the transition, surface temperatures were usually greater than $7^{\circ} \mathrm{C}$, there was a thermocline near 20 or 25 m , and bottom temperature was near $5^{\circ} \mathrm{C}$. Salinity was 31.8% to 32.2% near the surface, and 32.3% to 32.6% at depth. West of the transition the water was well mixed and temperatures were $4-5^{\circ} \mathrm{C}$. By Yunaska Island, salinity was near 33.4% throughout the water column. Fluorescence was $3-4$ times greater in the surface layer east of the transition than to the west. The abrupt change in physical conditions south of the islands was similar to one observed in a composite SeaWiFS image from 11-12 September 2000 assembled by S. Salo of PMEL (Fig.11). This change between east and west may be the result of going from an area of large islands and small passes in the east to small islands and large passes in the west.

Unlike the area south of the islands, north of the Aleutians there wasn't a clear dividing point between eastern and western conditions. Instead, the depth of isotherms and isohalines gradually increases toward the east. In the north, the bottom drops off more steeply close to the islands, so few of the CTD positions were as shallow as the eastern stations south of the islands. Even at the shallowest sites, the water was not well mixed; although there generally wasn't a strong pycnocline; temperature gradually decreased and salinity gradually increased with depth.

Conditions within the Passes:

All assessments of oceanographic conditions, including geostrophic currents, in the passes must take into account that tidal currents in the passes are high. We do not have an estimate of current strength in Seguam Pass or Amukta Pass, but maximum currents in Yunaska Pass were roughly $1 \mathrm{~m} / \mathrm{s}(3.6 \mathrm{~km} / \mathrm{hr})$ and in Akutan Pass and Unimak Pass maximum current is greater than $2 \mathrm{~m} / \mathrm{s}(7.2 \mathrm{~km} / \mathrm{hr})$. These currents create strong mixing in the passes and at the edges of the passes, and displace water to one side or the other depending on the cycle of the tide.

Water structure in the passes was always distinct from conditions to either side of the pass, although a tongue of water from one side or the other was often present. This tongue, and a front associated with it, must move through the pass to the north and south during each tidal cycle. The surface water at Seguam Pass (Fig. 12,13) was colder than the surface water to the north or south, possibly because deeper water had been mixed in. Surface water in the other passes studied (Amukta [Fig. 14, 15], Akutan [16, 17] and Unimak [Fig. 18]) was warm, although lower layers in Amukta Pass did show signs of mixing with deeper water. The highest chlorophyll was generally not seen in the passes themselves; it was usually just to the Bering Sea side of the pass. A CTD section of a trench in the Shumagin Islands where fin whales were seen foraging was heavily stratified (Fig. 19).

To determine rates of water transport through the passes, we occupied transects across Seguam Pass (Fig. 13) and Amukta Pass (Fig. 15). Although we haven't done the actual calculations to determine transport, the density difference across Seguam Pass is small, suggesting that transport is also small, although the characteristics of the water in the pass resemble the water north of the pass. In Amukta Pass, the density surfaces suggest northward flow in the eastern part of the pass, but little transport in the west. Temperature and salinity agree, suggesting that water in the eastern channel is from the south, and water in the western channel is from the north. Phyllis Stabeno reported in an e-mail that the Alaska Stream was strong during the time of the cruise, with speeds of $60 \mathrm{~cm} / \mathrm{s}$. Based on satellite images and altimetry, she found no evidence of transport through the passes at the time of our measurements.

Productivity and Nutrient Studies

At each of the three main passes (Unimak, Akutan and Seguam), we performed primary production experiments at the south and north ends of each pass. Additional productivity experiments were conducted north and south of the Aleutian Islands at stations not associated with passes. Production was measured with both ${ }^{14} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ uptake experiments to determine new production as well as standard production. ${ }^{14} \mathrm{C}$ uptake experiments were conducted on triplicate subsamples, in an artificial light, sea-surface temperature incubator at 8 light intensities. The incubation times were 2 hrs . These measurements were made at 9 stations for a total of 486 samples. The ${ }^{15} \mathrm{~N}$ uptake experiments were made at 2 stations. Samples were collected from the 100, 50, 25, 12.5, $6.25,3$, and 1.5% light depths and incubated in a natural light, sea-surface temperature incubator with appropriate neutral density screening for 24 hours. These samples will be analyzed by mass spectrometry at the Colorado Plateau Stable Isotope Laboratory of Northern Arizona University (http://www2.nau.edu/~bah/cpsil.html). Nutrient concentrations will be determined at PMEL from samples collected by Sigrid Salo.

To determine the amount of chlorophyll present in the water column and to calibrate the fluorometer on the CTD, at 75 CTD stations we collected and processed 492 chlorophyll samples from representative depths. Chlorophyll was determined from 30 ml samples. Samples were filtered on GF/F glass fiber filters, the filters frozen for several hours, after which they were extracted in 90% acetone for eight hours in a dark freezer. The extracts were read with a Turner TD-700 fluorometer. Although the chlorophyll concentrations have not been calculated yet, the raw fluorescence values tended to be higher on the northern side
of the Aleutian Islands than south of them. Raw fluorescence numbers ranged upward of 600-700 at several of the northern stations, while remaining in the 100-200 values in the southern stations. There was also a trend of increasing chlorophyll fluorescence values from West to East. Seguam pass having the lowest fluorescence (around 200 raw fluorescence units) and increasing towards Unimak pass (around 700 raw fluorescence units).

We obtained 483 cell-count samples to assess the relative abundance of different species of phytoplankton. Cell count samples (50 ml) were preserved with neutral Lugol's solution for counting by inverted microscopy. The brownish coloration of the filters and plankton nets would indicate that diatoms were a large component of the communities on both sides of the Aleutians.

Satellite imagery will be obtained for the study period. If cloud-free areas are found they will be examined for frontal zone evidence and other oceanographic phenomena. This analysis will rely on the in situ optical measurements, and CTD data.

Zooplankton

The goal of the zooplankton and acoustics component of the Aleutian Passes Project was to characterize the abundance, biomass, species composition and distribution of major zooplankton and micronekton taxa in the region around the Aleutian passes. Since zooplankton are the primary food of forage fishes, characterization of the zooplankton resources is central to understanding processes influencing the concentration, distribution and composition of Steller sea lion forage species in critical sea lion habitat. Samples were taken both north and south of the passes as well as in the passes. In addition, acoustic and zooplankton samples were taken at selected sites on the north and south sides of the Aleutian ridge to characterize the habitat in Pacific and Bering Sea waters.

Zooplankton samples were collected with a CaIVET (CaICOFI vertical egg tow) net and a MOCNESS (Multiple Opening Closing Net and Environmental Sampling System) system. The CaIVETs were equipped with 0.15 mm mesh nets and General Oceanics digital flow meters to monitor volume filtered. The nets were fished vertically from 100 m depth to the surface or from 5 m above the bottom to the surface in shallower regions. The MOCNESS sensors measured volume filtered, net angle, depth, salinity, temperature and fluorescence. The MOCNESS was equipped with nine 0.500 mm mesh nets, which were fished at discrete depths to obtain depth distributions of the major taxa.

The acoustic equipment consisted of an HTI (Hydroacoustics Technology Inc.) model 244 digital echosounder with transducer frequencies of $43,120,200$ and 420 kHz . The 43, 120 and 200 kHz transducers are split beam and therefore collected target strength data in addition to volume scattering. The transducer array was towed beside the vessel at 5-6 knots during surveys. In addition, acoustic data were taken during each MOCNESS tow to aid in scaling the acoustic data.

CaIVET samples were taken at the start and end of five transect lines run north and south of the Aleutian ridge. Approximately 20 km of acoustic transect data were collected between each pair of CaIVET tows. In addition, CaIVET samples were collected at CTD
(Conductivity Temperature Depth) stations taken on transect lines through Seguam, Akutan and Unimak passes. MOCNESS samples were taken at stations along the transect lines through Seguam and Akutan passes and on the north side of Unimak Pass. Acoustic transects were run through Sequam, Akutan and Unimak passes. The above sampling plan has generated sufficient material to provide an initial characterization of the zooplankton resources in the passes, on either side of the passes and on the north and south sides of the Aleutian ridges.

Attached are figures (Fig. 20-22) showing the distribution of volume scattering through the passes for each of the four frequencies. Preliminary observation of volume scattering suggests that considerably higher densities of sound scattering organisms may occur in the Akutan - Unimak regions relative to the Seguam-Amukta area. Much of the scattering in the Akutan - Unimak area appears to be from euphausiids, which were often the dominant organisms by weight in the MOCNESS samples. Zooplankton in the Seguam region seemed to be dominated by copepods. Zooplankton samples in both regions contained high amounts of phytoplankton.

The zooplankton samples will be returned to the laboratory for analysis. Information from the samples will include the species composition, life history stages of the copepod taxa, the abundance and wet weight biomass of all the taxa and stages. The acoustic data will be analyzed using analytical and empirical sound scattering models and correlation techniques. Statistical comparisons of the distribution, composition, abundance and biomass of the zooplankton in each of the passes should help document any consistent differences in zooplankton resources between the eastern and central Aleutian ridge and between the north and south sides of the ridge.

Marine Birds

The goal of the marine ornithology component was to use seabirds as indicators of the potential of different regions to support upper trophic level organisms, including Steller sea lions. The rationale was that birds, depending upon species, forage on the prey of sea lion prey, or share the use of small fishes consumed by sea lions. Thus regions or processes that support high densities of seabirds might be expected to also be favorable foraging areas for sea lions. Thus, the objective of the seabird component of this study was to assess whether there were greater numbers of foraging seabirds in Pacific versus Bering Sea waters, and whether passes with certain characteristics, such as those with shallow sills, might support more birds. We also wished to determine whether there were certain physical oceanographic processes that might enhance the foraging opportunities of top predators within or near the passes.

Seabird observations were made during daylight when the ship was underway at speeds of 5 knots or greater within the study area. All birds within an arc of 90° from the bow to the side with the best visibility were counted from the bridge, and were recorded on a laptop computer for analysis. Behaviors of all birds were recorded

Short-tailed Shearwaters were collected at two foraging aggregations (8 at each) in Akutan Pass. Stomach contents were removed from birds within 1 hour of collection, and
stored in 80% ETOH. Samples of tissue were obtained for stable isotope analyses. All birds had been eating euphausiids. Details of prey species and stage composition will be determined by microscopic examination in the laboratory.

During the cruise, we surveyed a total of 1,177.4 kilometers: 252.6 km on the northern side of the Aleutian Islands, 391 km on the southern side and 533.7 km within the passes. We counted a total of 42,654 seabirds between Seguam Pass (western survey limit) and Unimak Pass (eastern survey limit); 27,111 of them were feeding or sitting on the water. The most abundant seabird species were short-tailed shearwater (17,164 individuals, 63% of birds observed feeding or on the water), northern fulmar with (5,402 individuals, 20% feeding or on the water) and small auklets (whiskered, crested, least, Cassin's with 3,316 individuals and 12% feeding or on the water).

Seabird abundance was greater (39.1 birds $/ \mathrm{km}^{2}$) on the Pacific Ocean side of the Aleutians than on the Bering Sea side (10.0 birds $/ \mathrm{km}^{2}$) (Fig. 23). On both sides of the Aleutian Archipelago, northern fulmars and small auklets where the most common birds. The biggest concentrations occurred as we crossed tiderips associated with nearby passes. Thus these averages do not reflect the densities of seabirds in the shelf waters away from the influence of passes.

Within the passes surveyed, seabird abundance was higher in the shallower passes (Fig. 24-27). Mean seabird abundance in Akutan Pass (Fig. 25), the shallowest pass investigated was 425.5 birds $/ \mathrm{km}^{2}$, in Unimak Pass, 40.2 birds $/ \mathrm{km}^{2}$ (Fig. 24), and in Seguam Pass, 47.6 birds $/ \mathrm{km}^{2}$ (Fig. 27). In comparison, Amukta Pass, over 250 m deep at its shallowest, supported only 0.9 birds $/ \mathrm{km}^{2}$ (Fig. 26).

There was a marked difference in the species composition of the seabirds encountered in the passes. In the western passes (Seguam and Amukta Passes) fulmars were the dominant species, whereas in the eastern passes (Akutan and Unimak passes) short-tailed shearwaters were the dominant species. In Seguam and Amukta passes fulmars comprised 84.5 and 43.6% of the birds feeding or sitting on the water, while shearwaters represented only 0.2 and 0%, respectively. In Akutan and Unimak passes, fulmars represented only 0.1 and 0.7% the birds feeding or sitting on the water, while shearwaters represented 88.9 and 92.3%, respectively. The Tufted puffin, a piscivorous bird, also presented similar differences in its distribution with higher densities in the eastern passes than in the western passes.

Within the Seguam, Akutan and Unimak passes, both northern fulmars and shorttailed shearwaters were observed foraging at frontal regions that crossed the ends of the passes. These were presumably tidal fronts where either stratified Pacific Ocean or Bering Sea waters were interacting with the well-mixed waters of the passes. Shearwaters collected at these features in Akutan Pass were foraging on adult euphausiids (mostly or all Thysanoessa inermis?). Shearwaters and fulmars were also found foraging in patches along the sides of the passes with lines of foraging flocks parallel to the long axis of the pass. We were not able to determine if there was a physical mechanism that was organizing these foraging aggregations, although it seems possible that they may be the result of processes in
a shear zone that could be separating the fast moving water in the center of the pass from the slower flowing water at the sides. In Unimak Pass these foraging flocks were about 2 to 3 miles off Akun Island. Most of these side patches feel outside of our transect zone and were not included in the data set.

The charts of the distribution of foraging juvenile sea lions made available before the cruise showed many returns from animals foraging close to shore along the sides of Unimak and Akutan passes. It would be of interest to know whether they were taking advantage of prey that was concentrated in shear zones along the passes. On our last day in Akutan Pass, we encountered several large schools of herring foraging on euphausiids that were concentrated near the surface. There appeared to be convergence zones and a number of discrete patches, some of which seemed to be lined up more parallel to the current than perpendicular to it. Next year it might be profitable to investigate what happens along the long axis of the passes in terms of mechanisms that might concentrate zooplankton and thereby attract aggregations of fish. Similar shear zones may also occur along the north and south sides of the islands away from the passes.

Marine Mammal Studies

The decline of Steller sea lions (Eumatopeas jubatus) in the central and western areas of the North Pacific/Bering Sea has precipitated a number of research projects seeking to investigate possible causal factors. One of these is the Aleutians Passes project, focused on two fundamental goals: (1) examination of productivity near sea lion rookeries and haul outs and (2) documentation of the number and ecotype of killer whales (Orcinus orca) in waters between Unimak and Seguam Passes in the central Aleutian chain. Preliminary results of the first field season of marine mammal observations are presented here.

Marine mammal surveys were conducted en route to and from and within the study area (Fig. 28-33). As the name suggests, the study is focused on the relative productivity and occurrence of killer whales at four Aleutian passes: Seguam, Amukta, Akutan and Unimak (Fig. 34-38). Thus, surveys were focused on transect lines along and across the passes (Fig. 28). The four passes are distinctly different in physiography: Seguam - about 30 km wide by 134 m deep; Amukta - 68 km by 500 m ; Akutan - 7 km by 30 m ; Unimak - 19 km by 52 m . Thus, they provide a baseline for a suite of comparisons of hydrography and productivity at dynamic centers of seawater exchange between the North Pacific and the Bering Sea. The passes border Steller sea lion rookeries and haul outs where populations are either in decline or holding steady, none are increasing.

Marine mammal observers maintained a watch from the port and starboard sides of the bridge (height 9.67 m) of the RN ALPHA HELIX daily from early morning (0600-0700) to late evening (2000 to 2200; hours shifted depending on light conditions) when conditions were suitable (i.e. Beaufort <05; visibility > 1 km). Observers at port and starboard stations searched with naked eye and 7X (or higher) binoculars with reticules. Observers scanned for one hour at each station, followed by a one-hour break. The two primary observers were assisted in finding marine mammals by seabird researchers conducting surveys from either the port or starboard side (depending on glare) and by the ship's crew. Data were recorded by the starboard observer using WinCruz software on a laptop interfaced directly to the ship's

Global Positioning System (GPS). Positions along the cruise track were updated at 2-minute intervals. When marine mammals were seen, bearing and reticule to the sighting, species, number and the animals' course and speed were recorded. During the transit to the study area, only killer whales were approached for photographs from the ship's bow. All other sightings were recorded in passing mode. After reaching the study area, other cetaceans were sometimes approached for positive identification.

When killer whales were seen within the study area, the marine mammal team moved to the bow of the ALPHA HELIX to photograph whales as the ship was maneuvered as close to the whales as possible. During calm sea conditions, a rigid hull inflatable boat (RHIB) was deployed to provide close access to the whales for high-quality photographs and biopsy attempts using a cross bow. To obtain standard identification photographs of their dorsal fins and saddle patches, whales were approached from behind on their left sides. On two occasions, close approaches were made from the RHIB to obtain biopsy tissue samples using a crossbow to deliver a hollow-tipped dart. A tissue sample was obtained on the first occasion, and on the second, the whales proved elusive. Attempts were made to biopsy individuals that were distinctive, but this was not accomplished due to the tight spacing of the whales. The tissue biopsy was split to two samples: a skin sample, stored in DMSO for DNA and isotopic analysis; and a blubber sample, frozen for analysis of contaminants. Attempts to biopsy whales were limited to two occasions by several factors: (1) sea conditions, at times when oceanographic work was not underway, limited work from the RHIB to two occasions; (2) emphasis was placed on obtaining identification-quality photographs prior to biopsy attempts from the bow of the ALPHA HELIX, which required biopsy efforts to be moved to the end of the encounter when whales were harder to approach closely; (3) the need to pass on killer whale sightings made while oceanographic work was underway.

Provisional Results:
A total of 265 hours of survey for marine mammals was completed, including transit to (81.5 h) and survey in (183.5 h) the study area (Table 1; Fig. 28). Viewing conditions were usually good to excellent, with little disruption to surveys by rain or fog. Ten marine mammal species were seen, with Stellers sea lions the most common pinniped (when animals hauled out on land were included) and Dalls porpoise (Phocoenoides dalli) the cetacean seen most often (Table 2). Fin whales (Balaenoptera physalus) were seen during transits to and from the study area, but not in the study area (Figs. 29, 31, 33). Regions of high fin whale sighting rates included waters near the Semidi Islands on the outbound leg, and at the Shumagin Islands on the return passage. Fin whales usually were seen in groups of 2-10 whales and were often near humpback whales (Megaptera novangliae), although the two species did not appear to interact. While seen with fin whale, humpbacks were also seen as singletons and pairs, often along the coast, or near islands (Fig. 31-34). Minke whales were seen as singletons throughout the cruise; two to three animals that seemed "resident" in Akutan pass. Although ubiquitous, Dalls porpoise were particularly common near Samalga Pass, where counts were an order of magnitude higher than in any other region (Fig. 36). Surprisingly, sperm whales (Physeter macrocephalus) were common north of Seguam Island and in Seguam Pass, but were not seen elsewhere (Fig. 38).

Killer Whale Encounters and Sightings:

There were 40 sightings of roughly 295 killer whales (summation of best estimates of group size) over the course of the cruise (Table 2; Fig. 29, 34). Fifty killer whales were seen as the ship was departing Seward (Resurrection Bay and Kenai Peninsula), with the remaining 245 whales counted in the study area. Overall, when "best" and "high" counts were tallied, the number of killer whales seen ranged from 295-332 for the cruise and from 245-276 whales for the study area. These provisional counts likely under-represent the total number of animals present because the counts made while in passing-mode are probably low. Both when going to and returning from the study area, there was a clear hiatus of sightings between the Kenai Peninsula and Unimak Pass.

There were 10 encounters with killer whales where the cruise schedule permitted approach and focused efforts to obtain identification photographs, and 10 sightings where counts-only were obtained while the ship was in passing-mode (Table 3). Fifty-five rolls of black and white film, and three 90"digital video tapes were shot during the 10 encounters. Each encounter usually started with the sighting of a comparatively small group of animals (25 whales, often including one adult male), but after approach of the first-identified animals, additional whales were usually seen. The first two encounters occurred as the ship was leaving Seward, and likely involved whales that are well known to Alaskan researchers that have been photographing whales offshore the Kenai Peninsula and in Prince William Sound for $10-15$ years. The remaining eight encounters occurred in the study area, at locations ranging from Seguam to Unimak Pass.

Killer whales were often seen in regions where they previously had been photographed during the 1992 and 1993 surveys, including Makushin Bay along the north coast of Unalaska Island, where the largest group was encountered (Fig. 34). Waters southwest of Unimak Pass and north of Seguam Island also appeared to be areas of concentration for killer whales. While there was no concerted attempt to cross-match killer whales seen on our cruise to those photographed in the study area in 1992 and 1993 (Dahlheim, 1997), we observed at least 4 whales (AK 160-163) that appeared to be individuals photographed during the earlier surveys. In addition, several males had very distinctive dorsal fins that should aide in group identification on surveys later this summer

Killer Whale Predation:
We did not witness an attack by killer whales on any marine mammal. Nor did we see killer whales near Steller sea lion haul outs. We did see killer whales swimming near Dall's porpoise on two occasions, and on one of these a large male made a lunging leap that seemed directed at the porpoise. On both these occasions we were in passing-mode and did not watch the encounter in detail. Thus, no conclusions should be drawn from these observations other than killer whales may have been pursuing Dall's porpoise. In Unimak Pass, three humpbacks near Akun island were seen repetitively flipper slapping as a killer whale group passed them and one male killer whale turned back for a closer approach. Again, no attack was witnessed. While fish eating by killer whales could not be determined with certainty, whales encountered north of Seguam Island (Encounter 3) appeared to be feeding on fish, as determined by tracks on the ship's echosounder when they dived.

Acknowledgments

We thank the Captain and crew of the RN Alpha Helix for excellent support throughout the cruise. Their expertise and willingness to go the extra mile added greatly to the success of this research project. The marine technicians, Dave Aldrich and Brian Rowe were indispensable. We also thank the NOAA National Marine Mammal Laboratory and the NOAA Pacific Marine Environmental Laboratory for financial support of this study.

Reference Cited

Dahlheim, M.E. 1997. A photographic catalog of killer whales, Orcinus orca, from the central Gulf of Alaska to the Southeastern Bering Sea. NOAA Technical Report NMFS 131, 54 pp.

Table 1. Aleutians Passes Cruise: Marine Mammal Survey Effort

DATE 6/04/01	$\begin{aligned} & \hline \text { BEGIN-END } \\ & 1300-2000 \end{aligned}$	HOURS 7	
6/05/01	0530-2000	14.5	Transit to study area
6/06/01	0600-2000	14.	
6/07/01	0600-2000	14	Study area
6/08/01	0630-2100	14.5	
6/09/01	0700-2030	13.5	
6/10/01	0700-2030	13.5	
6/11/01	0630-2130	15	
6/12/01	0800-2100	14	
6/13/01	0700-2100	14	
6/14/01	0630-2230	16	
6/15/01	0630-2200	15.5	
6/16/01	0700-2000	10.5*	
6/17/01	0700-2200	15	
6/18/01	0630-2030	14	
6/19/01	0630-2030	14.	
6/20/01	0900-2100	10.5**	Transit from study area
6/21/01	0700-2330	16.5	
6/22/01	0700-2100	14	
6/23/01	0700-1900	12	
TOTAL HOURS		265	$81.5=$ transit; $183.5=$ study area

Table 2. Aleutian Passes Cruise: Marine Mammal Sightings. Number of Sightings:Number of Animals Counted

DATE	KW	DP	HP	SP	FW	HW	MW	UnID-L	UnID-S	FS	HS	SSL	Comment
4 June	4:50	4:26	0	0	0	4:19	0	0	0	0	0	2:16	leaving Seward/Kenai
5 June	0	10:49	0	0	9:16	1:2	0	8:24	0	11:11	0	3:3	Shelikof St./Semidi is.
6 June	0	4:19	3:3	0	3:10	1:1	0	2:9	1:1	2:2	0	0	AK Penin.IFalse Pass
7 June	2:43	1:2	1:2	0	0	4:7	1:1	0	0	1:1	0	0	Krenitzin is.
8 June	0	10:61	0	0	0	0	1:1	2:2	0	3:3	0	0	S. Umnak Is.
9 June	5:34	4:14	0	2:4	0	0	0	1:2	0	0	0	2:400	Seguam is.
10 June	1:8	5:29	0	1:1	0	0	2:2	0	0	0	0	0	Seguam Pass/CTD
11 June	6:13	9:45	0	6:11	0	0	0	0	0	0	0	0	Seguam Pass HTI Tow
12 June	0	1:5	0	3:7	0	0	0	0	0	0	0	0	Amukla Pass
13 June	6:37	42:306	0	0	0	0	5:5	0	0	0	0	0	Samalga-N Umnak is.
14 June	2:5	12:60	1:1	0	0	0	0	0	0	0	0	2:400	Akutan Is./Pass
15 June	5:23	4:24	0	0	0	2:2	4:4	0	0	1:1	0	2:401	Akutan Is.IPass
16 June	0	2:5	0	0	0	0	2:2	0	0	0	0	0	Akutan Pass/shearwater day
17 June	5:65	14:75	0	0	0	1:1	0	0	0	0	4:8	0	Unalaska/Makushin Bay
18 June	4:17	3:10	0	0	0	4:7	0	0	0	1:1	0	1:1	Unimak Pass/CTD
19 June	0	9:35	0	0	0	2:6	1:1	2:2	0	0	0	1:350	Akun Is./Akutan Bay \& Pass
20 June	0	0	0	0	0	0	0	0	0	0	0	2:2	Unimak-to-Volcano Bay
21 June	0	1:4	0	0	7:31	9:19	0	0	0	4:4	0	0	Shumagin is.
22 June	0	5:19	1:2	0	12:18	2:5	1:1	2:4	0	6:6	0	0	Shumagins - Mitrofania
23 June	0	9:32	0	0	7:10	0	0	1:1	0	2:2	1:1	1:1	Shelikof Strait-AK Peninsula
TOTALS 40:295	149:820	6:8	12:23	38:85	30:69	17:17	18:44	1:1	31:31	5:9			

Table 3. Aleutians Passes Cruise: Killer Whale Encounters (E) and Sightings (SI).

* $=$ encounter truncated

DATE	*E \#	LOCATION	NO. WHALES	\#PHOTOS
4 JUNE	1	Resurrection Bay	12-14	1 roll+
4 JUNE	2	Gore Pt./S. Kenai Penin.	38-42	6 rolls
7 JUNE	SI	Kres \#1-Kres \#2 HTI tow	1-male	None
7 JUNE	3	Krenitzin Is.	42-46	15 rolls
9 JUNE	4	NW Seguam Is.	34-38	8 rolls
10 JUNE	SI	Seguam Pass/CTD line	8 whales	None
11 JUNE	5	NW Seguam Is.	4 whales	2 rolls
11 JUNE	6	Seguam Pass	7 whales	1 roll
11 JUNE	SI	Seguam Pass/HTI tow	2 whales	None
13 JUNE	*7	Samalga Pass	22-25	4 rolls
13 JUNE	*8	NW Umnak Is.	5-6	2 rolls
13 JUNE	SI	N Umnak Is./HTI tow	10-12 (min)	None
14 JUNE	SI	N. Akutan Pass/CTD line	4 whales	None
14 JUNE	SI	Akutan Pass/CTD line	1-male	None
15 JUNE	$\begin{gathered} \mathrm{SI} \\ 9 \end{gathered}$	N. Akutan Pass/CTD line Unalaska Bay - Dutch	$\begin{aligned} & 5 \text { whales } \\ & 18-22 \end{aligned}$	None 4 rolls
17 JUNE	10	Unalaska/Makushin Bay	50-55	12 rolls
17 JUNE	SI	N. Akutan Is.	15-18	None
18 JUNE	SI	Unimak Pass/CTD line	12-15	None
	SI	Unimak Pass/CTD	5-7	6 frames (male)
TOTAL	10-E		295-332	55 rolls+
	10-SI	Study Area:	245-276	

APPENDIX I: List of Stations and Activities

		6/10/01	8:10	6/9/01	00:10	52	09.3	172	32.4	end MOCNESS 1
	SGY09	6/10/01	9:41	6/10/01	01:41	52	10.5	172	44.1	start MOCNESS
		6/10/01	10:16	6/10/01	02:16	52	8.9	172	39.7	d MOCNESS 2
	SGY11	6/10/01	11:42	6/10/01	03:42	52	14.6	172	50.3	start MOCNESS 3
		6/10/01	12:15	6/10/01	04:15	52	13. -	172	48.2	end MOCNESS 3
	SGY13	6/10/01	13:19	6/10/01	05:19	52	19.0	172	55.9	start MOCNESS
		6/10/01	13:48	6/10/01	05:48	52	18.81	172	54.9	end MOCNESS 4
	SGY15	6/10/01	14:34	6/10/01	06:34	52	23.29	173	1.71	start MOCNESS
		6/10/01	14:58	6/10/01	06:58	52	24.09	173	00.65	end MOCNESS 5
19	SGY14	6/10/01	16:07	6/10/01	8:07	52	21.05	172	59.06	847 North SGY
	SGY14	6/10/01	16:30?	6/10/01	8:30?	52	21.05	172	59.06	847 Calvet 12
20	SGY14	6/10/01	16:47	6/10/01	8:47	52	21.31	172	59.62	847 Prod Stn
	SGY14	6/10/01	16:53	6/10/01	8:53	52	21.30	172	59.58	start Bird study
21	SGY13	6/10/01	17:23	6/10/01	9:23	52	18.93	172	56.28	595
	SGY13	6/10/01	17:50	6/10/01	9:50	52	18.98	172	56.27	595 CalVET 13
22	SGY12	6/10/01	18:28	6/10/01	10:28	52	16.78	172	53.43	287
	SGY12	6/10/01	18:45	6/10/01	10:45	52	16.77	172	53.42	287 CalVET 14
23	SGY11	6/10/01	19:17	6/10/01	11:17	52	14.E1	172	50.58	172
	SGY11	6/10/01	19:30	6/10/01	11:30	52	14.88	172	50.59	172 CalVET 15
24	SGY10	6/10/01	20:04	6/10/01	12:04	52	12.74	172	48.01	178
24	SGY10	6/10/01	20:15	6/10/01	12:15	52	12.72	172	48.03	178 CalVET 16
25	SGY09	6/10/01	20:51	6/10/01	12:51	52	10.76	172	45.06	159
	SGY09	6/10/01	21:10	6/10/01	13:10	52	10.76	172	45.06	159 CalVET 17
26	SGY08	6/10/01	21:38	6/10/01	13:38	52	8.53	172	42.35	154
	SGY08	6/10/01	21:50	6/10/01	13:50	52	8.54	172	42.30	154 Calvet 18
27	SGY07	6/10/01	22:25	6/10/01	14:25	52	6.49	172	39.65	132
	SGY07	6/10/01	23:00	6/10/01	15:00	52	6.50	172	39.56	132 CalVET 19
28	SGYO6	6/10/01	23:15	6/10/01	15:15	52	4.48	172	36.89	125
	SGY06	6/10/01	23:29	6/10/01	15:29	52	4.48	172	36.84	125 CalVET 20
29	SGY05	6/11/01	00:15	6/10/01	16:15	52	2.27	172	34.61	133
	SGY05	6/11/01	00:20	6/10/01	16:20	52	2.33	172	34.30	133 CalVET 21
30	SGY04	6/11/01	01:13	6/10/01	17:13	52	0.42	172	31.33	135
	SGY04	6/11/01	01:30	6/10/01	17:30	52	0.42	172	31.29	135 CalVET 22
31	SGY03	6/11/01	02:07	6/10/01	18:07	51	58.43	172	28.36	240
	SGY03	6/11/01	02:20	6/10/01	18:20	51	58.43	172	28.38	240 CalVET 23
32	SGY03	6/11/01	02:38	6/10/01	18:38	51	59.11	172	29.72	184 Prod Stn
33	SGY02	6/11/01	03:17	6/10/01	19:17	51	56.36	172	25.55	566
	SGY02	6/11/01	03:40	6/10/01	19:40	51	56.41	172	25.75	566 CalVET 24
34	SGY01	6/11/01	04:27	6/10/01	20:27	51	54.25	172	22.73	195 South SGY
	SGY01	6/11/01	05:00	6/10/01	21:00	51	54.45	172	22.60	195 CalVET 25
		6/11/01	06:08	6/10/01	22:08	51	48.06	172	16.14	end Bird Study
	SGYO1	6/11/01	07:55	6/10/01	23:55	51	54.26	172	27.75	start MOCNESS 6
		6/11/01	08:32	6/11/01	00:32	51	54.54	172	21.79	end MOCNESS 6
	SGY03	6/11/01	09:20	6/11/01	01:20	51	58.57	172	28.04	start MOCNESS 7
		6/11/01	09:52	6/11/01	01:52	51	59.76	172	26.30	end MOCNESS 7
	SGY05	6/11/01	10:37	6/11/01	02:37	52	02.69	172	33.24	start MOCNESS 8
		6/11/01	11:09	6/11/01	03:09	52	03.60	172	30.41	end MOCNESS 8
	SGY15	6/11/01	18:38	6/11/01	10:38	52	23.17	173	02.00	start HTI
	SGY15	6/11/01	18:38	6/11/01	10:38	52	23.17	173	02.00	start Bird study
	SGY01	6/12/01	02:39	6/11/01	18:39	51	54.07	172	22.52	end Bird study
	SGY01	6/12/01	02:39	6/11/01	18:39	51	54.07	172	22.52	end HTI
		6/12/01	02:49	6/11/01	18:49	51	54.18	172	22.56	start Bird study
		6/12/01	05:21	6/11/01	21:21	52	21.78	172	14.10	end Bird study
35	AMX05	6/12/01	05:24	6/11/01	21:24	52	21.89	172	14.17	313 West AMX
36	AMX0 4	6/12/01	06:29	6/11/0.1	22:29	52	22.91	172	2.27	419
37	AMX03	6/12/01	07:33	6/11/01	23:33	52	23.75	171	49.99	282
38	AMX02	6/12/01	08:29	6/12/01	0:29	52	24.56	171	38.02	470

39	AMXO1	6/12/01	09:34	6/12/01	1:34	52	25.46	171	26.07	382	East AMX
40	AMY14	6/12/01	15:06	6/12/01	7:06	52	37.14	171	50.15	797	North AMY
	AMY14	6/12/01	15:20	6/12/01	7:20	52	37.16	171	50.15	797	Calvet 26
41	AMY14	6/12/01	15:45	6/12/01	7:45	52	36.89	171	50.60	818	Prod Stn
	AMY14	6/12/01	15:53	6/12/01	7:53	52	36.84	171	50.64	sta	Bird Study
42	AMY13	6/12/01	16:10	6/12/01	8:10	52	34.66	171	49.52	697	
	AMY13	6/12/01	16:35	6/12/01	8:35	52	34.50	171	49.71	697	Calvet 27
43	AMY12	6/12/01	17:04	6/12/01	9:04	52	32.02	171	48.86	649	
	AMY12	6/12/01	17:20	6/12/01	9:20	52	32.02	171	48.86	649	Calvet 28
44	AMY11	6/12/01	18:14	6/12/01	10:14	52	29.34	171	48.47	578	
	AMY11	6/12/01	18:30	6/12/01	10:30	52	29.34	171	48.47	578	CalVET 29
45	AMY10	6/12/01	19:07	6/12/01	11:07	52	26.69	171	47.50	542	
	AMY10	6/12/01	19:45	6/12/01	11:45	52	26.69	171	47.64	542	Calvet 30
≤ 6	AMY09	6/12/01	20:13	6/12/01	12:13	52	24.01	171	46.80	297	
	AMYO9	6/12/01	20:20	6/12/01	12:20	52	24.02	171	46.80	297	CalVET 31
47	AMY08	6/12/01	21:08	6/12/01	13:08	52	21.28	171	46.25	257	
	AMY08	6/12/01	21:20	6/12/01	13:20	52	21.24	171	46.20	257	Calvet 32
48	AMY07	6/12/01	21:58	6/12/01	13:58	52	18.58	171	45.65	312	
	AMY07	6/12/01	22:00?	6/12/01	14:00?	52	18.97?	171	45.57	312	Calver 33
49	AMYO6	6/12/01	22:47	6/12/01	14:47	52	15.88	171	44.93	373	
	AMY06	6/12/01	23:20	6/12/01	15:20	52	15.89	171	44.93	373	Calvet 34
50	AMYO5	6/12/01	23:40	6/12/01	15:40	52	13.24	171	44.34	403	
	AMYO5	6/13/01	00:07	6/12/01	16:07	52	13.32	171	44.34	403	Calvet 35
51	AMYO4	6/13/01	0:37	6/12/01	16:37	52	10.58	171	43.85	484	
	AMY04	6/13/01	1:02	6/12/01	17:02	52	10.37	171	44.27	487	Calvet 36
52	AMY04	6/13/01	1:18	6/12/01	17:18	52	10.28	171	44.55	491	Prod Stn
53	AMYO3	6/13/01	1:43	6/12/01	17:43	52	7.93	171	43.00	618	
	AMY03	6/13/01	2:10	6/12/01	18:10	52	7.80	171	43.18	618	CalVET 37
54	AMY02	6/13/01	2:36	6/12/01	18:36	52	5.32	171	42.45	751	
	AMY02	6/13/01	3:00	6/12/01	19:00	52	5.32	171	42.44	751	Calvet 38
	AMYO1	6/13/01	3:27	6/12/01	19:27	52	2.82	171	41.82	end	Bird study
55	AMYO1	6/13/01	3:31	6/12/01	19:31	52	2.66	171	41.94	497	South AMY
	AMYO1	6/13/01	3:56	6/12/01	19:56	52	2.68	171	41.87	497	CalVET 39
56	YUNN2	6/13/01	7:59	6/12/01	23:59	52	38.15	171	10.70	513	
	YUNN2	6/13/01	8:40	6/13/01	00:40	52	38.22	171	10.08?	513	CalVET 40
	YUNN2-YUNN1						HTI, Bird, Mammal transect				
57	YUNN1	6/13/01	10:37	6/13/01	2:37	52	40.07	170	52.93	241	
	YUNNI	6/13/01	11:05	6/13/01	3:05	52	40.13	170	53.00	241	CalVET 41
58	MT4N2	6/13/01	13:45	6/13/01	5:45	52	56.02	170	12.85	200	
	MT 4N2	6/13/01	14:00	6/13/01	6:00	52	56.06	170	12.79	200	Calvet 42
		6/13/01	15:31	6/13/01	7:31	52	57.72	170	2.64		t Bird study
	MT4N2-MT4N1						HTI, Bird, Mammal transect				
59	MT4N1	6/13/01	16:27	6/13/01	8:27	52	58.90	169	54.91	126	
	MT 4N1	6/13/01	16:38	6/13/01	8:38	52	58.96	169	54.74	126	CalVET 43
60	UMNN3	6/14/01	1:03	6/13/01	17:03	53	17.07	168	43.73	182	
	UMNN3	6/14/01	1:18	6/13/01	17:18	53	17.18	168	43.56	182	Calvet 44
	UMNN3-UMNN2						HTI, Bird, Mammal transect				
61	UMNN2	6/14/01	3:35	6/13/01	19:35	53	24.98	168	30.96	88	
	UMNN2	6/14/01	4:08	6/13/01	20:08	53	25.02	168	30.92	88	Calvet 45
	UMNN2	6/14/01	5:50	6/13/01	21:50	53	25.02	168	30.92	end	Bird study
62	UNAN2	6/14/01	9:33	6/14/01	1:33	53	57.61	167	9.77	592	
	UNAN2	6/14/01	10:00	6/14/01	2:00	53	57.94	167	9.38	592	Calvet 46
	UNAN2-UNAN1						HTI, Bird, Mammal transect				
63	UNAN1	6/14/01	12:42	6/14/01	4:42	54	3.13	166	53.42	647	
	UNAN1	6/14/01	13:15	6/14/01	5:15	54	3.28	166	53.22	647	CalVET 47
64	AKY18	6/14/01	19:31	6/14/01	11:31	54	8.00	166	26.41	794	N Akutan
	AKY18	6/14/01	19:56	6/14/01	11:56	54	7.99	166	25.67	794	CalVET 48

List Of Figures

Fig. 1. Cruise Track and Stations: Krenitzin Islands to Unalaska Island
Fig. 2. Cruise Track and Stations: Unalaska Island to Islands of Four Mountains
Fig. 3. Cruise Track and Stations: Islands of Four mountains to Amlia Island
Fig. 4. Stations in Unimak Pass
Fig. 5. Stations in Akutan Pass
Fig. 6. Stations in Amukta and Seguam Passes
Fig. 7. Tidal Currents in Unimak Pass for 18 June 2001
Fig. 8. Tidal Currents in Akutan Pass for 14 June 2001
Fig. 9. Tidal Currents in Akutan Pass for 15 June 2001
Fig. 10. Tidal Currents in Akutan Pass for 16 June 2001
Fig. 11. SeaWiFS Composite Image of Sea Surface temperature from 11-12 September 2000, courtesy of S. Salo, PMEL
Fig. 12. Profiles of Temperature, Salinity, Density and Fluorescence, Seguam Pass Y-line, 10 June 2001 from SGY-14 to SGY-01, starting at 08:06 the end of a flood tide and ending at 20:57, at the end of a flood tide.

Fig. 13. Profiles of Temperature, Salinity, Density and Fluorescence, Seguam Pass X-line, 9 June 2001 from SGX-01 to SGX-04 starting at 17:24, during a flood tide.

Fig. 14. Profiles of Temperature, Salinity, Density and Fluorescence, Amukta Pass Y-line, 12 June 2001 from AMY-14 to AMY-08, starting at 07:05 at the start of an ebb tide and ending at 13:28 on the start of a flood tide.
Fig. 15. Profiles of Temperature, Salinity, Density and Fluorescence, Amukta Pass X-line, 11 June 2001 from AMX-05 to AMX-01, starting at 21:21.
Fig. 16. Profiles of Temperature, Salinity, Density and Fluorescence, Akutan Pass Y-line, 14 June 2001 from AKy-18 to AKY-08, starting at 12:00, at the end of a flood tide and ending at 17:44 near the end of an ebb tide.
Fig. 17. Profiles of Temperature, Salinity, Density and Fluorescence, Akutan Pass Y-line, 15 June 2001 from AkY-19 to AKY-06, starting at 06:55 near the middle of an ebb tide and ending at 14: 23 at the end of an ebb tide.

Fig. 18. Profiles of Temperature, Salinity, Density and Fluorescence, Unimak Pass Y-line, 18 June 2001 from UNY-18 to UNY-08, starting at 06:30 at the beginning of an ebb tide and ending at 17:00, near the middle of a flood tide.

Fig. 19. Profiles of Temperature, Salinity, Density and Fluorescence, Shumagin Island Whale Study Plot along the long axis of the trench where fin whales were seen.

Fig. 20. Acoustically Detected Biomass, Unimak Pass, 18 June 2001, at four frequencies: $420,200,120$ and 43 kHz . Transect was started in the south at 17:14 at UNY-08, and ended at 03:38, 19 June at UNY-28. In the Fig., north is on the left side.

Fig. 21. Acoustically Detected Biomass, Akutan Pass, 14 June 2001, at four frequencies: $420,200,120$ and 43 kHz . Transect was started in the south at 19:28 at AKY-08, and ended at 23:44 at AKY-18. In the Fig., north is on the left side.

Fig.22. Acoustically Detected Biomass, Seguam Pass, 11 June 2001, at four frequencies: $420,200,120$ and 43 kHz . Transect was started in the north at 10:38 at SGY-15, and ended at 18:39 at SGY-01. In the Fig., north is on the left side.

Fig. 23. Abundance of selected species or groups of seabirds along the north (top panel) and south (bottom panel) sides of the Aleutian Islands between the Krenitzin Islands and Seguam Island, June 2001.

Fig. 24. Abundance of selected species or groups of seabirds along the Y-transect in Unimak Pass, 18 June 2001

Fig. 25. Abundance of selected species or groups of seabirds along the Y-transect in Akutan Pass, 14 and 15 June 2001.
Fig. 26. Abundance of selected species or groups of seabirds along the Y-transect in Amukta Pass, 12 June 2001.

Fig. 27. Abundance of selected species or groups of seabirds along the Y-transect in Seguam Pass, 10 and 11 June 2001.
Fig. 28. Summary of Marine Mammal Survey Effort, June 2001
Fig. 29. Summary of Marine Mammal Sightings, June 2001

Fig. 30. Marine Mammal Survey Effort, Shelikof Strait region
Fig. 31. Marine Mammal Sightings, Shelikof Strait region
Fig. 32. Marine Mammal Survey effort, Alaska Peninsula and Shumagin Islands Region.

Fig. 33. Marine Mammal Sightings, Alaska Peninsula and Shumagin Islands region
Fig. 34. Marine Mammal Survey Effort, Unimak Pass to Unalaska Island region
Fig. 35. Marine Mammal Sightings, Unimak Pass to Unalaska Island region
Fig. 36. Marine Mammal Survey Effort, Umnak Island to Amukta Island
Fig. 37. Marine Mammal Sightings, Umnak Island to Amukta Island
Fig. 38. Marine Mammal Survey Effort, Amukta Island to Amlia Island
Fig. 39. Marine mammal Sightings, Amukta Island to Amlia Island

 $\begin{array}{llllll} & 051 & 1300 & 1385 & 1375 & 1694\end{array}$
$\begin{array}{llll}8051 & 1240 & 1531 & 2771 \\ 1052 & 2026^{3219}\end{array}$ 2112

rule lose
$2230 \quad 2765$ $\begin{array}{lll}0812 & t 201 \\ 1202 & \$ 10 \\ & 3191 & 060\end{array}$ \triangle Nation 129
092
bLt
 Antiar
 oct af 0 $\mathrm{NHO}^{\text {oct }}$

w os 219,18
2020
 500 420
20
20
${ }^{1000} 7$ $8 \frac{8}{8}$ 102300

 39 ${ }^{24} 410253911$ 316
16
280
250
200
 zs e satiny
 1430
 $\begin{array}{lll}1222 & 744 & 1522 \\ 1150 & 1440 \\ 1840 \\ 15332 & 15027\end{array}$
\square

$$
\begin{aligned}
& 2721 \\
& 2790
\end{aligned}
$$ Bib per

Abundance of birds along the Aleutian Islands (June, 2001) (only birds feeding and sitting on the water)

Abundance of birds along the Akutan Pass Y -line transect (June 14-15, 2001)

(only birds feeding and sitting on the water)

Abundance of birds along the Amukta Pass Y-line transect (June 12, 2001)
(only birds feeding and sitting on the water)

Abundance of birds along the Seguam Pass Y-line transect (June 10-11, 2001)
(only birds feeding and sitting on the water)
\# Small Auklet

- Northern Fulmars

04-03
田

02-01
N
Figs. 2

HX245 Marine Mammal On Effort Sightings

HX245 Marine Mammal On Effort Shelikof Strait

HX245 Marine Mammal On Effort Shelikof Strait

HX245 Marine Mammal On Effort Alaska Peninsula

HX245 Marine Mammal On Effort Sightings Alaska Peninsula

HX245 Marine Mammal On Effort Unalaska Island \& Akutan-Unimak Passes

HX245 Marine Mammal On Effort Sightings Unalaska Is \& Unimak Pass

0 km	20	40	60	80

HX245 Marine Mammal On Effort Island of Four Mountains

HX245 Marine Mammal On Effort Sightings Islands of Four Mountains

HX245 Marine Mammal On Effort Seguam and Amukta Passes
$=$
0 km 20

S e a
Bering

0 km

