Pharmacy Benefits Management Strategic Healthcare Group Medical Advisory Panel Drug Class Review: Orally Inhaled Steroids

This review was written by Deborah Khachikian, Pharm.D.

The standard screening test for determining relative anti-inflammatory potencies for inhaled corticosteroids has been the topical vasoconstriction (McKenzie skin blanching) test. The existing comparative clinical trials of asthma efficacy and systemic activity generally reflect the standard in vitro measures of potency. Existing data confirm only a potency difference, not an efficacy difference between inhaled steroids. The relative anti-inflammatory potency of the inhaled corticosteroids is in the following rank order: ¹⁻⁴

flunisolide =	triamcinolone < beclomethasone = budesonide < fluticasone
---------------	---

Inhaled steroid	Dosage forms	Puffs/ canister	Low dose mcg/day	Medium dose mcg/day	High dose mcg/day	# /month medium dose	Cost/ Inhaler (\$)	\$/month medium dose
Flunisolide 250mcg	MDI	100	500-1000	1000-2000	>2000	1-2	2.88	2.88-5.78
Triamcinolone 100mcg	MDI with built-in spacer	240	400-1000	1000-2000	>2000	1-2	18.09	18.09-36.18
Beclomethasone 42mcg	MDI	200	168-504	504-840	>840	2-3	3.62	6.98-10.48
Budesonide 200mcg	DPI	200	200-600	600-1000	>1000	0.5-1	69.08	34.54-69.08
Fluticasone (MDI)	MDI, DPI (blister	120	88-264	264-660	>660	2.4	10.00	20.76.70.50
44mcg 110mcg 220mcg	packs)					2-4 1-2 0.5-1	19.88 29.03 50.65	39.76-79.52 29.02-58.06 25.32-50.65
(DPI) 50mcg		60 doses					21.32	for low-dose use
100mcg 250mcg						0.5-1.5	27.95 35.98	18-53.97

Flunisolide, budesonide, and fluticasone are administered twice daily; beclomethasone and triamcinolone may be administered twice daily or 3-4 times daily Dose per National Asthma Education and Prevention Program (NAEPP) Expert Panel Report 2:Guidelines for the Diagnosis and Management of Asthma

Studies

The table below summarizes comparative trials between agents. Small studies, pediatric studies, abstracts, and studies using dosage forms not available in the U.S. have been excluded. These studies demonstrate that when equal potency dosing is used, efficacy is similar.

Study	Study patients	Dose	Results	Comments
Fabbri 1993 ⁵ R, DB, MC, Pr N=274 1 year	Moderate-severe asthma Receiving 1000- 2000mcg/day of inhaled BDP or BUD	BDP MDI 750mcg bid vs. FP MDI 750mcg bid ± spacers could ↑ to 1000mcg bid if needed	FEV1: FP>BDP a.m. PEF: FP>BDP p.m. PEF: FP>BDP beta-agonist: FP>BDP SS: FP=BDP, fewer asthma exacerbations with FP	Used FP at twice the potency of BDP
Lundback 1993 ⁶ R, DB, DD, MC, Pr N=585 6 weeks with 46-wk open label follow up	Moderate asthma Receiving 400- 1000mcg of inhaled steroid (type not specified)	BDP MDI 500mcg bid vs. FP MDI 250mcg bid vs. FP DPI 250mcg bid	FEV1: FP=BDP a.m. PEF: FP=BDP p.m. PEF: FP=BDP beta-agonist: FP=BDP SS: FP>BDP nighttime FP <bdp daytime<="" td=""><td>Used equipotent doses of BDP and FP</td></bdp>	Used equipotent doses of BDP and FP
Barnes 1993 ⁷ R, DB, SD, MC, Pr N=154 6 weeks	Severe asthma receiving 1500- 2000mcg/day of an inhaled steroid	BDP MDI 1000mcg bid vs. FP MDI 500mcg bid	FEV1: FP=BDP a.m. PEF: FP=BDP p.m. PEF: FP=BDP beta-agonist: FP=BDP SS: FP=BDP % pred PEF: FP>BDP	Used equipotent doses of BDP and FP

BDP=beclomethasone diproprionate; BUD=budesonide; CO=crossover; DB=double-blind; DD=double dummy; DPI=dry powder Inhaler; FLU=flunisolide; FP=fluticasone proprionate; MC=multicenter; MDI=metered-dose inhaler; O=open; PC=placebo controlled; Pr=parallel; R=randomized; SD=single dummy; SS=subjective symptoms; TAA=triamcinolone acetonide, TD= triple dummy

Drug Class Review: Orally Inhaled Steroids

	Diug	g Class Review: Orally Inha	aled Steroids	
Dahl 1993 ⁸ R, DB, MC, Pr N=672 4 weeks	Moderate asthma requiring BDP or BUD ≤ 1000mcg/day	BDP MDI 200mcg bid vs. FP MDI 50mcg vs. 100mcg vs. 200mcg vs. 400mcg bid No spacers used	PEF: ↑ linearly with FP; FP 200= BDP 400 Beta agonist: BDP=FP all doses Sympt-free days: FP400 similar to BDP400 Asthma exacerbations: BDP 400=FP 100 and 200 BDP>FP 400; BDP> FP 800	Efficacy was similar when equipotent doses of BDP and FP were compared.
Leblanc 1994 ⁹ R, DB, MC, Pr N=261 4 weeks	Mild-moderate asthma	BDP MDI 200mcg bid vs. FP MDI 100mcg bid <u>+</u> spacers	FEV1: FP=BCP a.m. PEF: FP=BCP p.m. PEF: FP=BCP beta-agonist: FP=BCP SS: FP=BCP	Used equipotent doses of BDP and FP
Langdon 1994 ¹⁰ R, O, MC, Pr N=275 8 weeks		BUD DPI 400 mcg bid vs. FP DPI 200 mcg bid	a.m. PEF: FP>BUD beta-agonist: FP=BUD SS: FP=BUD	Used medium dose for both agents
Lorentzen 1996 ¹¹ R N=213 12 months	Severe chronic asthma currently receiving inhaled steroids 1000- 2000mcg/day	FP MDI 1000mcg/day vs. BDP MDI 2000mcg/day	FEV1: FP=BDP PEF: FP=BDP	Used equipotent doses of BDP and FP
Anderson R, DB, DD, PC, MC, Pr N=321 8 weeks		TAA MDI 400mcg bid vs. BDP 200mcg bid	FEV1: BDP=TAA>Pl a.m. PEF: BDP=TAA>Pl beta-agonist: BDP=TAA>Pl SS: BDP=TAA>Pl	Used equipotent doses of BDP and TAA Data on file. Schering/Key Pharmaceuticals, Inc. and FDA
Aaronson R, DB, DD, PC, MC, Pr N=313 8 weeks		TAA MDI 400mcg bid vs. BDP 200mcg bid	FEV1: BDP>TAA>Pl a.m. PEF: BDP=TAA>Pl beta-agonist: BDP=TAA>Pl SS: BDP=TAA>Pl	Used equipotent doses of BDP and TAA Data on file. Schering/Key Pharmaceuticals, Inc. and FDA
Condemi 1997 ¹² R, DB, DD, PC, MC, Pr N=291 24 weeks	FEV1 50-80% predicted Maintained on BDP or TAA	TAA MDI 200mcg qid vs. FP DPI 250mcg bid	FEV1: FP>TAA>Pl a.m. PEF: FP>TAA>Pl beta-agonist: FP>TAA>Pl withdrew from lack of efficacy: Pl>TAA>FP	Low dose TAA being compared to medium dose FP
Bergmann 1997 ¹³ R, MC, Pr N=169 6 weeks	Mild-moderate asthma FEV1/FVC ≥ 60% predicted	FLU MDI 500mcg bid vs. FP DPI 250mcg bid	FEV1: FP>FLU a.m. PEF: FP>FLU p.m. PEF: FP>FLU SS: FP>FLU	Low dose FLU being compared to medium dose FP
Pauwels 1998 ¹⁴ R, DB, MC, CO N=306 12 months	Moderate-severe asthma, FEV1 ≥ 40% predicted Receiving BDP or BUD 800-2000mcg/day Mild-moderate	BDP MDI 1000mcg/ FP MDI 500mcg daily vs. BDP MDI 1500mcg/FP MDI 750mcg daily vs BDP MDI 2000mcg/FP MDI 1000mcg daily <u>± large volume spacer</u> BDP MDI 168mcg bid vs.	FEV1:FP=BDP a.m. PEF: FP > BDP p.m. PEF: FP=BDP beta-agonist: FP=BDP SS: FP=BDP FEV1:BDP=TAA>P1	Used equipotent doses of BDP and FP No wash-out period between the crossover pts. randomized into 1 of 3 arms based on prior steroid dose Used equipotent
Bronsky 1998 ¹⁵ R,DB,DD,PC,MC, Pr N=328 56-day	persistent asthma FEV1 50-90% predicted while on inhaled steroid	TAA MDI 400mcg bid No spacer used in BDP group	a.m. PEF: BDP=TAA>Pl p.m. PEF: BDP=TAA>Pl beta-agonist: BDP=TAA>Pl SS:BDP>TAA>Pl	doses of BDP and TAA
Berkowitz 1998 ¹⁶ R,DB,DD,PC,MC, Pr N=339 56-day	Mild-moderate persistent asthma FEV1 50-90% predicted while on inhaled steroid	BDP MDI 168mcg bid vs. TAA MDI 400mcg bid No spacer used in BDP group	FEV1:both active groups > Pl a.m. PEF: both active groups > Pl p.m. PEF: both active groups > Pl beta-agonist: both active groups > Pl SS: both active groups > Pl	Used equipotent doses of BDP and TAA

Drug Class Review: Orally Inhaled Steroids

17	FF1/1 50 900/	TAA MDI 200 11	EEVI ED TAALDI	T 1 TAA1 .
Gross 1998 ¹⁷	FEV1 50-80%	TAA MDI 200 mcg qid vs.	FEV1: FP> TAA>Pl	Low dose TAA being
R, DB, DD, PC, MC, Pr	predicted	FP DPI 250mcg bid	a.m. PEF: FP> TAA>Pl	compared to medium
N=304	Receiving BDP or TAA		beta-agonist: FP> TAA>Pl	dose FP
24 week	8-12 puffs daily \geq 4		withdrew from lack of	
	weeks		efficacy: Pl>TAA>FP	
Heinig 1999 ¹⁸	Severe asthma requiring	BUD DPI 2000mcg/day	FEV1: FP > BUD	
DB,DD, Pr	inhaled steroids	vs. FP DPI 2000mcg/day	SS: FP> BUD	
N=395		0.1	Asthma exacerbations:	
24 weeks			FP=BUD	
	EEV1 40 950/	ED MDI 220 m hid	FEV1=FP + salmet > FP >	Medium doses of
Baraniuk 1999 ¹⁹	FEV1 40-85%	FP MDI 220 mcg bid vs.		
R, DB, TD, MC, Pr	predicted	FP MDI 88mcg bid +	TAA	TAA and FP
N=680	Receiving BDP 252-	salmeterol 42 mcg bid vs.	a.m. PEF= FP+salmet =	compared to low
12 week	672 mcg/day, TAA	TAA MDI 600mcg bid	FP>TAA	dose FP + salmeterol
	600-1000mcg/day, or		p.m. PEF= FP+salmet =	
	FLU 1000mcg/day for		FP>TAA	
	> 3 months		beta-agonist= FP+salmet =	
			FP>TAA	
			SS = FP + salmet = FP > TAA	
Newhouse 2000 ²⁰	Moderate asthma	FLU via AeroChamber	FEV1: FLU=BUD	Medium dose FLU
R, MC	FEV140-85% predicted	750mcg bid vs. BUD DPI	a.m. PEF: FLU=BUD	compared to high
N=176	Receiving BDP, FP, or	600mcg bid	p.m. PEF: FLU=BUD	dose BUD
	BUD 800-2000mcg/day	00000000000000	beta-agonist: FLU=BUD	4000 202
6 week	BOB 000 2000mcg/day		SS: FLU=BUD	

Adrenal suppression²¹⁻²⁷

The best tests for evaluating basal adrenocorticol activity are the 24-hour integrated measurement of plasma cortisol level or the 24-hour urinary free cortisol excretion (24hr/UFC). These tests are impractical for routine monitoring and are therefore, typically used in a controlled laboratory research environment. The overnight or early morning urinary cortisol-creatinine ratio (UCC) has been shown to be as sensitive as the integrated 24-hour urinary free cortisol. The AM plasma cortisol level is the least sensitive test. To evaluate adrenal cortical reserve in response to stress, the ACTH or Cosyntropin stimulation test is used. The 1mcg ACTH test is more sensitive than the standard 250mcg short test because physiologic rather than pharmacological doses are used. Studies that use test subjects with asthma/COPD rather than normal volunteers and chronic dosing rather than single dose is preferred.

Studies using the 24hr/UFC, UCC or ACTH stimulation test have been reviewed. Many of the subjects with asthma had been on inhaled steroids prior to the study. In general, inhaled steroids used at low-moderate doses for less than 1 year do not seem to cause HPA-suppression. Short-term use (4-8 weeks) of high doses may result in abnormal ACTH stimulation values in some patients. There is little information on long-term, low-dose inhaled steroids, but one study suggests that the short ACTH stimulation test remains normal.

Effects on bone 22,28-29

Qualitative CT or dual energy x-ray absorptiometry (DXA) scan at the hip and spine are reliable measures of bone mineral density (BMD). Of the two techniques, DXA is preferred. When evaluating studies, one also needs to take into account the age of the patient (eg. post-menopausal females) and previous oral steroid use.

Results from studies that evaluated low-moderate doses over 1-2 years, ranged from no change to 1.1% spine and 1.7% hip decreases in BMD. Results of low-moderate doses for ≥ 3 years ranged from no changes to decreased lumbar BMD in one study and $2\% \downarrow$ femoral neck in another study.

Results from studies that evaluated high doses over 1-2 years, ranged from no change to decreased BMD at the femoral neck. Results of high doses for >3 years resulted in decreased hip and lumbar BMD.

CFC-free inhalers

Through the Clean Air Act and the Montreal Protocol, the United States Government has committed to eliminate the use of CFC containing metered dose inhalers. Currently, MDIs fall under the essential-use designation. This means a CFC containing product cannot be removed unless the following criteria are met:

- at least 2 different CFS-free products available for an active moiety if an active moiety is marketed under multiple NDA's or exists in multiple strengths (at least one CFC-free product for drugs under a single NDA or available in one strength)
- same route of administration
- same indication(s)
- approximately the same level of convenience of use compared to the product(s) containing CFCs
- adequate supplies and production capacity
- at least 1 year of post marketing data for each product
- persuasive evidence showing patient acceptance of the alternative product

The FDA believes it is premature to set a specific time frame for the elimination of CFC containing products because, many variables exist as to when new products will be submitted to the agency for review, when they gain approval, and when the products might be considered clinically acceptable.

Currently, there are only two CFC-free products (excluding dry powder inhalers) on the market. Qvar® (beclomethasone HFA) and Proventil HFA® (albuterol HFA). Qvar, which will be handled by MacNeil Pharmaceuticals, is available in the 40 and 80mcg strengths (100 puffs/canister) and priced at \$19.34 and \$26.62 respectively. Because of the smaller particle size, more drug is delivered to the lungs, therefore Qvar is dosed at half the beclomethasone CFC dose. Proventil HFA is manufactured by Schering and is available in the 90mcg strength (200 puffs/canister) and priced at \$13.76.

It may be another 3-5 years before we begin seeing a phase-out of some CFC inhalers. Nevertheless, it may be prudent to begin anticipating the added cost to the VA for CFC-free products. As an example, in FY2000, 2,981,490 albuterol and 589,958 beclomethasone inhalers were dispensed at total cost of \$4.9 and \$2.1 million dollars respectively. If the HFA products are dispensed at the prices previously mentioned, the cost per year will rise to \$41 million for albuterol and \$11.5 million for beclomethasone. Although the prices for the other products are not known at this time, we can be fairly certain that they will be higher than those paid by VA for currently marketed products. The table below reviews the currently marketed products and the status for a CFC-free product.

DRUG	TRADE NAME	STRENGTHS/ \$ PER INHALER	COMMENTS
		Cor	ticosteroids
Beclomethasone	Vanceril (Schering) Beclovent (Glaxo)	42, 82 mcg \$3.62/27.73	Beclomethasone HFA (Qvar) available in 40 and 80 mcgs
Flunisolide	Aerobid	250 mcg \$2.88	Flunisolide HFA submitted to FDA
Triamcinolone	Azmacort	100 mcg \$18.09	Triamcinolone HFA submitted to FDA
Fluticasone	Flovent	44, 110, 220 mcg \$19.88/29.03/50.65	Dry powder diskus inhaler available; CFC-free MDI in Phase III trials with NDA expected to be filed in 2002.
		Bror	nchodilators
Albuterol	Proventil (Schering) Ventolin (Glaxo) Several generics	90 mcg \$1.65	Proventil HFA available in 90 mcg; capsules for inhalation by Rotahaler available; HFA MDI in Phase III trials (Glaxo) with NDA expected to be filed in 2002.
Salmeterol	Serevent	25 mcg \$35.28	Dry powder diskus inhaler available; CFC-free MDI in Phase III trials with NDA expected to be filed in 2002.
Metaproterenol	Alupent	0.65mg \$13.37	Studies in CFC-free vehicles in progress, MFR uncertain when NDA will be filed
Pirbuterol	Maxair	0.2 mg \$17.13	Plans to go forward with the HFA technology, but has no plans as to when NDA will be filed
Terbutaline	Brethaire, Bricanyl	0.2 mg	Discontinued
Bitolterol	Tornalate	0.37 mg	Discontinued
Ipratropium	Atrovent	18mcg \$18.45	Studies in CFC-free vehicles in progress, MFR uncertain when NDA will be filed
Ipratropium/ albuterol	Combivent	18/90 mcg \$21.16	Studies in CFC-free vehicles in progress, MFR uncertain when NDA will be filed

Current MDIs on the market

Mast cell stabilizers				
Cromolyn	Intal	800 mcg	Per Aventis, there are no plans at this time to go forward with a CFC-free	
		\$26.70	product	
Nedocromil	Tilade	1.75 mg	Per Aventis, there are no plans at this time to go forward with a CFC-free	
\$16.64 product				

HFA-hydrofluoroalkane

Discussion/recommendations

There is little difference in efficacy and toxicity when equipotent doses of inhaled steroids are administered. To achieve equipotent doses between lower potency and higher potency agents require that a greater number of inhalations be administered thus, possibly influencing patient compliance.

- 1. Flunisolide should be considered as the first-line choice for patients requiring a lower potency agent for the following reasons:
 - Clinically similar to beclomethasone and triamcinolone
 - Considerably less costly than triamcinolone (\$2.88 versus \$18.09)
 - Availability of beclomethasone is not guaranteed
- 2. Flunisolide is presently the only orally inhaled product on National Formulary; addition of second agent will be considered at a later date.
- 3. Fluticasone should be reserved for patients whose symptoms are not adequately controlled with maximum dosing with lower potency agents or patients who have difficulty complying with a lower potency agent that requires a large number of inhalations.
- 4. Review the CFC-free products separately as more products become available.

References:

¹Kelly HW. Comparison of inhaled corticosteroids. Ann Pharmacother 1998;32:220-232.

²O'Byrne PM, Pedersen S. Measuring efficacy and safety of different inhaled steroids. J Allergy Clin Immunol 1998;102:879-876.

³Kamada AK, Szefler SJ, Martin RJ, Boushey HA, et al. Issues in the use of inhaled corticosteroids. Am Rev Respir Crit Care Med 1996;153:1739-1748.

⁴Edsbacker S. Pharmacological factors that influence the choice of inhaled corticosteroids. Drugs 1999;58 suppl 4: 7-16.

⁵Fabbri L, Burge PS, Croonenborgh L, Warlies F, et al. Comparison of fluticasone propionate with beclomethasone dipropionate in moderate to severe asthma treated for one year. Thorax 1993;48:817-823.

⁶Lundback B, Alexander M, Days J, Herbert J, et al. Evaluation of fluticasone propionate (500mcg/day) administered either as dry powder via a Diskhaler® inhaler or pressurized inhaler and compared with beclomethason dipropionate (1000mcg/day) administered by pressurized inhaler. Respir Med 1993;87:609-620.

⁷Barnes NC, Marone G, DiMaria GU, Visser S, et al. A comparison of fluticasone propionate, 1mg daily, with beclomethasone dipropionate, 2mg daily, in the treatement of severe asthma. International Study Group. Eur Respir J 1993;6:877-885.

⁸Dahl R, Lundback B, Malo JL, Mazza JA, et al. A dose-ranging study of fluticasone propionate in adult patients with moderate asthma. Chest 1993;104:1352-1358.

⁹LeBlanc P, Mink S, Keistinen T, Saarelainen PA, et al. A comparison of fluticasone propionate 200 mcg/day with beclomethasone dipropionate 400mcg/day in adult asthma. Allergy 1994;49:380-385.

¹⁰Langdon CG, Capsey LJ. Fluticasone propionate and budesonide in adult asthmatics: a comparison using drypowder inhaler devices. Br J Clin Res 1994;5:85-99.

¹¹Lorentzen KA, Van Helmond JL, Bauer K, Langaker KE, et al. Fluticasone propionate 1mg daily and beclomethasone dipropionate 2mg daily: a comparison over 1 year. Respir Med 1996;60-617.

¹²Condemi JJ, Chervinsky P, Goldstein MF, Ford LB, et al. Fluticasone propionate powder administered through Diskhaler versus triamcinolone acetonide administered through metered-dose inhaler in patients with persistent asthma. J Allergy Clin Immunol 1997;100:467-474.

¹³Bergmann KC. Controlled clinical comparative evaluation of fluticasone powder inhalation versus flunisolide dose aerosol in patients with mild to moderate asthma. Pneumologie 1997;51:27-32.

¹⁴Pauwells RA, Yernault JC, Demedts MG, Geusens P. Safety and efficacy of fluticasone and beclomethasone in moderate to severe asthma. Am J Respir Crit Care Med 1998;157:827-832.

¹⁵Bronsky E, Korenblat P, Harris AG, Chen R. Comparative clinical study of inhaled beclomethasone dipropionate and triamcinolone acetonide in persistent asthma. Ann Allergy Asthma Immunol 1998;80:295-302.

¹⁶Berkowitz R, Rachelefsky G, Harris AG, Chen R. A comparison of triamcinolone acetonide MDI with built-in tube extender and beclomethasone dipropionate MDI in adult asthmatics. Chest 1998;114:757-765.

¹⁷Gross GN, Wolfe JD, Noonan MJ, Pinnas JL, et al. Differential effects of inhaled corticosteroids: fluticasone propionate versus triamcinolone acetonide. Am J Man Care 1998;4:233-244.

¹⁸Heinig JH, Boulet LP, Croonenborghs L, Mollers MJ. The effect of high-dose fluticasone propionate and budesonide on lung frunction and asthma exacerbations in patients with severe asthma. Respir Med 1999;93:613-620.

¹⁹Baraniuk J, Murray JJ, Nathan RA, Berger WE, et al. Fluticasone alone or in combination with salmeterol vs triamcinolone in asthma. Chest 1999;116:625-632.

²⁰Newhouse M, Knight A, Wang S, Newman K, and the AER-MD-04 Study Group. Comparison of efficacy and safety between flunisolide/AeroChamber and budesonide/turbuhaler in patients with moderate asthma. Ann Allergy Asthma Immunol 2000;84:313-319.

²¹Chrousos GP, Harris AG. Hypothalmic-pituitary-adrenal axis suppression and inhaled corticosteroid therapy. Review of the literature. Neuroimmunomodulation 1998;5:288-308.

²²Lipworth BJ. Systemic adverse effects of inhaled corticosteroids therapy. A systematic review and meta-analysis. Arch Intern Med 1999;159:941-955.

²³Dluhy RG. Clinical relevance of inhaled corticosteroids and HPA axis suppression. J Allergy Clin Immunol 1998;101:S447-450.

²⁴Clark DJ, Lipworth BJ. Adrenal suppression with chronic dosing of fluticasone propionate compared with budesonide in adult asthmatic patients. Thorax 1997;52:55-58.

²⁵Wilson AM, Clark DJ, Devlin MM, McFarlane LC, et al. Adrenocortical activity with repeated administration of one-daily inhaled fluticasone propionate and budesonide in asthmatic adults. Eur J Clin Pharmacol 1998;53: 317-320.

²⁶Li JT, Goldstein MF, Gross GN, Noonan MJ, et al. Effects of fluticasone propionate, triamcinolone acetonide, prednisone, and placebo on the hypothalamic-pituitary-adrenal axis. J Allergy Clin Immunol, 1999;103:622-629.

Drug Class Review: Orally Inhaled Steroids

²⁷Sorkness CA, LaForce C, Storms W, Lincourt WR, et al. Effects of the inhaled corticosteroids fluticasone propionate, triamcinolone acetonide, and flunisolide and oral prednisone on the hypothalamic-pituitary-adrenal axis in adult patients with asthma. Clin Ther 1999;21: 353-367.

²⁸Goldstein MF, Fallon JJ, Harning R. Chronic glucocorticoid therapy-induced osteoporosis in patients with obstructive lung disease. Chest 1999;116:1733-1749.

²⁹The Lung Health Study Research Group. Effect of inhaled triamcinolone on the decline in pulmonary function in chronic obstructive pulmonary disease. N Engl J Med 2000; 343:1902-1909.