

The A-Cute-Tox Project: Optimization and Prevalidation of an *in vitro* Test Strategy for Predicting Human Toxicity

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

Thomas Hartung, Agnieszka Kinsner, Sandra Coecke, Pilar Prieto

Strategy to Replace Acute Toxicity Testing

In vitro cytotoxicity test: Relatively good correlation (~70%) Certain number of misclassifications

Further needs:

Improve the *in vitro - in vivo* correlation by evaluating existing <u>outliers</u> in order to introduce <u>further parameters</u> (ADE, metabolism, organ specificity).

WP1: Selection of reference chemicals and collection of *in vivo* data

• 97 reference chemicals were selected within a wide range of acute toxicity and generic u

• Generation of the in vivo database (animal and human)

LD50 data & Chemicals: criteria for data reduction/selection

- □ Only LD50 data cited with common unit (mg/kg) selected
- □ Only LD50 data cited as finite numbers selected
- □ Of regulatory significance:
 - □ focus on rat and mouse data (~40% each, of full dataset)
 - □ only oral/gavage dose route analysed
- □ Chemicals < 3 oral LD50's excluded (unreliable for statistical evaluation)

	rat	mouse
Total number of LD50 studies	921	907
Oral studies (total)	601	377
Oral studies (> 2 LD50 values per chemical)	504	300
(number of eligible chemicals)	(62)	(51)

WP1: Evaluation of in vivo animal data – variability

Distribution of SD for log-transformed LD50 (rat oral studies: 62 chemicals)

SD of log-transformedLD50 (rat, oral)

WP1: Evaluation of in vivo human data – calc. of LC50 values

View cases Case type: Sub-lethal acute poisoning (single dose): Clinical observations (time related) Chemical (CAS): Acetaminophen (103-90-2)																						
Reference (linked to full source)	Case age/sex	Case category	Dose: 9	Notes (case, dose, time)	Time (exposure to sampling): h	Notes (blood sample)	Blood conc.: (mg/l)	Blood conc.: (µM)	Metabolite Blood conc.: (mgil)	Metabolite Blood conc.: (µM)	Symptoms and signs	Treatment	Time (exposure to recovery): h									
SPC 1957	15F	S	20		24		206	1362			0h: C, L	NAC										
SDC 4076-5	17F	8	17.5	5	4		284	1878			0h: V, MS	MT										
SPC 1970.3					7		82	542														
SPC 1976:6	24F				2		484	3200			0h: MS	MT, CA										
		e	24		5		150	992														
		0	24		9		90	595														
																16		15	99			

The database contains human acute toxicity data from a single poisoning, consisting of:

- sub-lethal blood concentrations
- lethal blood concentrations
- post-mortem blood concentrations

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

WP1: Estimation of LC50 human

Example: Acetaminophen approximate LC0 and LC100 and LC50

LC100 = 3.40 LC0 = 3.35 LC50 = (3.35+ 3.40)/2= 3.37 in microM Converted to M LC50=-2.63

WP2: Generation of in vitro basal cytotoxicity data

- Assessment of basal cytotoxicity in:
 - BALB/3T3 (NRU)
 - NHK (NRU)
 - HL-60 (ATP)
 - HepG2 (NRU, total protein)
 - Fa32 (NRU, total protein)

Generation of an *in vitro* database for 97 selected reference chemicals

Automation

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

3T3 NRU validated protocol

ECVAM Unit, IHCP, JRC NMI Unit, IHCP, JRC University Nottingham, UK

21 chemicals from the ACuteTox list tested

LDH protocol on NeoHep ECVAM/NMI Units, IHCP, JRC University of Konstanz, Germany TU Munich, Germany University of Valencia, Spain University of Oulu, Finland

11 chemicals tested from the ACuteTox list: 6 reported metabolism-mediate effect

WP3: Evaluation of in vitro cytotoxicity data

- 6 basal cytotoxicity tests: similar information i.e. similar ranking
- The validated 3T3/NRU seems to be the best candidate

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

Plot observed rat vs predicted LD50 From in vitro 3T3/NRU, PLS regression analysis

Log LD50 (mol/kg b.w.), predicted with 3T3/NRU

Plot observed LC50 humans vs predicted from *in vitro*

Chemicals wit poor human da

ihp ind consumer Protection

18

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

WP4: Cytokine secretion

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

WP4: Haematopoiesis

ihp ind consumer Protection

WP5: Role of ADE (in vitro/in silico)

- Measurement of the transport across the intestinal barrier and the blood-brain barrier using *in vitro* models and neuronal networks (n=21)
- Measurement of protein binding, microsomal stability, lipophilicity (n=42)
- Measurement (n=3) and modelling of free concentration of compounds in the *in vitro* systems.
- Generic biokinetic model for the interpretation of *in vitro* toxic concentrations in relation to the *in vivo* acute toxic dose – under development

WP5: Oral absorption

72% overall accuracy

WP5: Blood-brain barrier

DLOOD-DRAIN DARRIER PASSAGE MODEL								
		BBB						
Chemical	LogBBpred	Class ^b	Class	Class	Exper.			
		P13	P35	P15	Data			
					(logBB)			
Acetaminophen	-1.0	Р	M	Н	-0.31/H			
Actylsalicylic acid	-0.6	M		M	-0.5/M			
Atropine Sulfate	-0.9	Р	Н	Μ				
Caffeine	-0.1	H	H	H				
Carbamazepine	0.1	H	H	H	-0.06/H			
Colchicine	0.0	H	L	Μ	0/H			
Cycloheximide	-0.9	Р	Н	M				
Diazepam	-0.5	M	H	M	0.52/H			
Digoxin	ND	-	Н	-				
Isopropyl alcohol	1.1	H	H	-	-0.15/H			
Malathion	-0.2	H	H	M				
Mercury II Chloride	ND	-	Н	-				
Pentachlorophenol	-0.1	H	H	M				
Phenobarbital	1.2	H	H	H	0.12/H			
SLS	-0.9	Р	Н					
Sodium Valproate	1.5	H	Н	M	-0.22/H			

PLOOD PDATN PADDTED PASSACE MODE

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

73% overall accuracy

ihp Institute for Health and Consumer Protection

25

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

WP6: Role of metabolism

								Reported
Compound	Casno	P15	P23	P31	Bayer	Mean	Comparison hepatocyes vs HepG2	bioactivation
Atropine sulfate	5908-99-6	>1E-03	0,06	0,53	0,01	0,20	More toxic to hepatocytesthan to HepG2	YES
Mercury II	7487-94-7	0,04	0,18	0,75	0,18	0,29	More toxic to hepatocytesthan to HepG2	NO
Pentachlorophen	87-86-5	0,97	0,04	0,84	1,28	0,78	Slightly more toxic to hepatocytes than to HepG2	YES
Rifampicine	13292-46-1	0,85	0,56	1,18	0,67	0,82	Slightly more toxic to hepatocytes than to HepG2	NO
Tetracycline HCI	64-75-5	>1E-03	0,31	0,06	1,13	0,50	Slightly more toxic to hepatocytes than to HepG2	NO
Orphenadrine HCI	341-95-5	1,34	1,55	0,25	0,56	0,93	Similar toxicity to hepatocytes than to HepG2	NO
Diazepam	439-14-5	1,25	1,50	1,24	0,85	1,21	Similar toxicity to hepatocytes than to HepG2	NO
Malathion	121-75-5	1,46	1,46	>=1E-03	>1E-03	1,46	Similar toxicity to hepatocytes than to HepG2	YES
Amiodarone HCI	1951-25-3	1,35	1,02	1,10	1,54	1,25	Similar toxicity to hepatocytes than to HepG2	NO
SLS	151-2-3	1,63	0,42	1,69	1,45	1,30	Similar toxicity to hepatocytes than to HepG2	NO
Digoxin	20830-75-5	908,72	??	>=1000		>=1000	Less toxic to hepatocytes than to HepG2	NO
(±)-Verapamil HCI	152-11-4	8,85	2,75	0,31	1,70	3,40	Less toxic to hepatocytes than to HepG2	NO

information the second second

27

WP7.1: Neurotoxicity

- Basal cytotoxicity
- General cell physiology (energy status, glycolytic activity, Ca2+ homeostasis, cell and mitochondrial membrane potential, oxidative stress (ROS)

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

- Neurochemistry
 - Voltage operated ion channels
 - Receptor function
 - Neurotransmitter synthesis/degradation
 - Neurotransmitter uptake
 - Neurotransmitter release
 - Global electrical activity

Human neuroblastoma SH-SY5Y cell line

Primary cultures of cerebellar granule ce

Serum-free aggregating rat brain cell cultures

WP7.2: Nephrotoxicity

- •TER: sensitive indicator of nephrotoxicity
- •TER: greater sensitivity for nephrotoxic chemicals
- Compounds requiring metabolism (diethylene glycol) did not show toxicity at concentrations used

REMS MACHINE

↓TER

1 Permeability

Loss of barrier function

WP7.3 Hepatotoxicity

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

 $IC_{50}(A) < IC_{50}(B) \approx IC_{50}(C)$: "hepatotoxic" (bioactivable) $\rightarrow alert$

IC50(A) ≈ IC50 (B) < IC50(C): "hepatotoxic" → alert

IC50(A) ≈ IC50 (B) ≈ IC50(C): no hepatotoxic → no alert

ipp Institute for Health and Consumer Protection

31

Chair: T. Hartung (ECVAM)

1. Patric Amcoff (OECD)

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation - NICEATM - January 10 and 11, 2008

- 2. Donald Bjerke (P&G, US)
- 3. Robert Combes (FRAME, UK)
- 4. Rodger Curren (IIVS, US)
- 5. Cornelia Kozmutza (University Hungary)
- 6. Manfred Liebsch (ZEBET, Germany)
- 7. Peter Maier (ECOPA)
- 8. Ralph Parchment (NCI, US)
- 9. Leonard M Schechtman (US)
- 10. Judy Strickland (NIH/NIEHS, US)
- 11. William Stokes (NIH/NIEHS, US)
- 12. Hanna Tahti (University Finland)
- 13. Jens Zimmer (University Denmark)

Advisory Board

Workshop on Acute Chemical Testing: Advancing In Vitro Approaches and Humane Endpoints for Systemic Toxicity Evaluation – NICEATM - January 10 and 11, 2008

ECVAM follow-up validation study

