National Cancer Institute
U.S. National Institutes of Health | www.cancer.gov

NCI Home
Cancer Topics
Clinical Trials
Cancer Statistics
Research & Funding
News
About NCI
Rectal Cancer Treatment (PDQ®)
Patient Version   Health Professional Version   En español   Last Modified: 12/12/2008



Purpose of This PDQ Summary






General Information About Rectal Cancer






Cellular Classification and Pathology of Rectal Cancer






Stage Information for Rectal Cancer






Treatment Option Overview






Stage 0 Rectal Cancer






Stage I Rectal Cancer






Stage II Rectal Cancer






Stage III Rectal Cancer






Stage IV and Recurrent Rectal Cancer






Get More Information From NCI






Changes to This Summary (12/12/2008)






More Information



Page Options
Print This Page
Print Entire Document
View Entire Document
E-Mail This Document
Quick Links
Director's Corner

Dictionary of Cancer Terms

NCI Drug Dictionary

Funding Opportunities

NCI Publications

Advisory Boards and Groups

Science Serving People

Español
Quit Smoking Today
NCI Highlights
Report to Nation Finds Declines in Cancer Incidence, Death Rates

High Dose Chemotherapy Prolongs Survival for Leukemia

Prostate Cancer Study Shows No Benefit for Selenium, Vitamin E

The Nation's Investment in Cancer Research FY 2009

Past Highlights
Stage IV and Recurrent Rectal Cancer

Metastatic Rectal Cancer
        First-line Multiagent Chemotherapy
        Second-line and Third-line Chemotherapy
        Liver Metastases
        Current Clinical Trials
Locally Recurrent Rectal Cancer
Current Clinical Trials

Note: Some citations in the text of this section are followed by a level of evidence. The PDQ editorial boards use a formal ranking system to help the reader judge the strength of evidence linked to the reported results of a therapeutic strategy. (Refer to the PDQ summary on Levels of Evidence for more information.)

Stage IV (old staging: Modified Astler-Coller D) and recurrent rectal cancer

Treatment options for local control:

  1. Resection of locally recurrent rectal cancer may be curative in selected patients.[1]
  2. Palliative surgical resection with either low-anterior resection (LAR) or abdominoperineal resection (APR).[1]
  3. Palliative radiation therapy.[2,3]
  4. Palliative chemotherapy.[4-10]
  5. Palliative chemoradiation.[11,12]
  6. Chemotherapy alone for local control.
  7. Palliative, endoscopic-placed stents to relieve obstruction.[13]

Treatment options for systemic control:

  1. Resection of liver metastases in selected patients (5-year cure rate with resection of solitary metastases exceeds 20%).[14-23]
  2. Resection of isolated pulmonary or ovarian metastases.
  3. Systemic chemotherapy (see below).
  4. Clinical trials evaluating new drugs.
Metastatic Rectal Cancer

Treatment of patients with recurrent or advanced colorectal cancer depends on the location of the disease. For patients with locally recurrent and/or liver-only and/or lung-only metastatic disease, surgical resection, if feasible, is the only potentially curative treatment. For patients with hepatic metastasis considered to be resectable (i.e., based on limited number of lesions, intrahepatic locations of lesions, lack of major vascular involvement, absent or limited extrahepatic disease, and sufficient functional hepatic reserve), a negative margin resection has been associated with 5-year survival rates of 25% to 40% in nonrandomized studies (such as the NCCTG-934653 trial).[24-28][Level of evidence: 3iiiDiv] Better surgical techniques and advances in preoperative imaging have improved patient selection for resection. In addition, multiple studies with multiagent chemotherapy have demonstrated that patients with metastatic disease isolated to the liver, which historically would be considered unresectable, can occasionally be made resectable after the administration of chemotherapy.[29]

Currently, there are seven active and approved drugs for patients with metastatic colorectal cancer: 5-FU, capecitabine, irinotecan, oxaliplatin, bevacizumab, cetuximab, and panitumumab. When 5-FU was the only active chemotherapy drug, trials in patients with locally advanced, unresectable, or metastatic disease demonstrated partial responses and prolongation of the time-to-progression (TTP) of disease,[5,30] as well as improved survival and quality of life for patients receiving chemotherapy compared with best supportive care.[31-33] Several trials have analyzed the activity and toxic effects of various 5-FU-leucovorin regimens, using different doses and administration schedules, and showed essentially equivalent results with a median survival time in the 12-month range.[34] Prior to the advent of multiagent chemotherapy, two randomized studies demonstrated that capecitabine was associated with equivalent efficacy when compared with the Mayo Clinic regimen of 5-FU-leucovorin.[35,36][Level of evidence: 1iiA]

Drug combinations described in this section:

  • The Arbeitsgemeinschaft Internische Onkologie (AIO) or German AIO regimen (folic acid, 5-FU, and irinotecan):
    • Irinotecan (100 mg/m2) administered as a 2-hour infusion on day 1; leucovorin (500 mg/m2) administered as a 2-hour infusion on day 1; followed by 5-FU (2,000 mg/m2) intravenous (IV) bolus via ambulatory pump administered for a period of 24 hours on a weekly basis four times a year (52 weeks).
  • The CAPOX regimen (capecitabine and oxaliplatin):
    • Capecitabine (1,000 mg/m2) twice a day on days 1 through 14 plus oxaliplatin (70 mg/m2) on days 1 and 8 every 3 weeks.
  • The Douillard regimen (folic acid, 5-FU, and irinotecan):
    • Irinotecan (180 mg/m2) administered as a 2-hour infusion on day 1; leucovorin (200 mg/m2) administered as a 2-hour infusion on day 1 and day 2; followed by a loading dose of 5-FU (400 mg/m2) IV bolus, then 5-FU (600 mg/m2) via ambulatory pump administered for a period of 22 hours on day 1 and day 2 every 2 weeks.
  • The FOLFOX4 regimen (oxaliplatin, leucovorin, and 5-FU):
    • Oxaliplatin (85 mg/m2) administered as a 2-hour infusion on day 1; leucovorin (200 mg/m2) administered as a 2-hour infusion on day 1 and day 2; followed by a loading dose of 5-FU (400 mg/m2) IV bolus, then 5-FU (600 mg/m2) administered via ambulatory pump for a period of 22 hours on day 1 and day 2 every 2 weeks.
  • The FOLFOX6 regimen (oxaliplatin, leucovorin, and 5-FU):
    • Oxaliplatin (85–100 mg/m2) administered as a 2-hour infusion on day 1; leucovorin (400 mg/m2) administered as a 2-hour infusion on day 1; followed by a loading dose of 5-FU (400 mg/m2) IV bolus on day 1, then 5-FU (2,400–3,000 mg/m2) administered via ambulatory pump for a period of 46 hours every 2 weeks.
  • The FOLFIRI regimen (folic acid, 5-FU, and irinotecan):
    • Irinotecan (180 mg/m2) administered as a 2-hour infusion on day 1; leucovorin (400 mg/m2) administered as a 2-hour infusion on day 1; followed by a loading dose of 5-FU (400 mg/m2) IV bolus administered on day 1, then 5-FU (2,400–3,000 mg/m2) administered via ambulatory pump for a period of 46 hours every 2 weeks.
  • The FUFOX regimen (fluorouracil, leucovorin, and oxaliplatin):
    • Oxaliplatin (50 mg/m2) plus leucovorin (500 mg/m2) plus 5-FU (2,000 mg/m2) as a 22-hour continuous infusion on days 1, 8, 22, and 29 every 36 days.
  • The FUOX regimen (fluorouracil plus oxaliplatin):
    • Continuous infusion 5-FU (2,250 mg/m2) during 48 hours on days 1, 8, 15, 22, 29 and 36 plus oxaliplatin (85 mg/m2) on days 1, 15, and 29 every 6 weeks.
  • IFL (or Saltz) regimen (irinotecan, 5-FU, and leucovorin):
    • Irinotecan (125 mg/m2), 5-FU (500 mg/m2) IV bolus, and leucovorin (20 mg/m2) IV bolus administered weekly for 4 out of 6 weeks.
  • The XELOX regimen (capecitabine plus oxaliplatin):
    • Oral capecitabine (1,000 mg/m2) twice a day for 14 days plus oxaliplatin (130 mg/m2) on day 1 every 3 weeks.
First-line Multiagent Chemotherapy

Three randomized studies in patients with metastatic colorectal cancer demonstrated improved response rates, progression-free survival (PFS), and OS when irinotecan or oxaliplatin was combined with 5-FU-leucovorin.[37-39] Intergroup study N9741 then compared IFL with FOLFOX4 in first-line treatment for patients with metastatic colorectal cancer. Patients assigned to FOLFOX4 experienced improved PFS (median, 6.9 months vs. 8.7 months; P = .014; hazard ratio [HR] = 0.74; 95% confidence interval [CI], 0.61–0.89) and OS (15.0 months vs. 19.5 months, P = .001; HR = 0.66; 95% CI, 0.54–0.82) compared with patients randomly assigned to IFL.[Level of evidence: 1iiA] Subsequently, two studies compared FOLFOX with FOLFIRI, and patients were allowed to cross over after progression on first-line therapy, respectively.[40,41][Level of evidence: 1iiDiii] PFS and OS were identical between the treatment arms in both studies. Since the publication of these studies, the use of either FOLFOX or FOLFIRI is considered acceptable for first-line treatment of patients with metastatic colorectal cancer.

The Bolus, Infusional, or Capecitabine with Camptosar-Celecoxib (BICC-C) trial evaluated several different irinotecan-based regimen in patients with previously untreated metastatic colorectal cancer: FOLFIRI, mIFL, and capecitabine/irinotecan (CAPIRI).[42] The study randomly assigned 430 patients and was closed early due to poor accrual. The patients who received FOLFIRI had a better PFS than the patients who received either mIFL (7.6 months vs. 5.9 months, P = .004) or CAPIRI (7.6 months vs. 5.8 months, P = .015). Patients who received CAPIRI had the highest (grade 3 or higher) rates of nausea, vomiting, diarrhea, dehydration, and hand-foot syndrome. After bevacizumab was approved, the BICC-C trial was amended and an additional 117 patients were randomly assigned to receive FOLFIRI/bevacizumab or mIFL/bevacizumab. Although the primary endpoint of PFS was not significantly different, patients receiving FOLFIRI/bevacizumab had a significantly better OS (28.0 months vs. 19.2 months, P = .037; HR for death = 1.79, 95% CI 1.12 to 2.88). When using an irinotecan-based regimen as first-line treatment of metastatic colorectal cancer, FOLFIRI is preferred.[42][Level of evidence: 1iiDiii]

Randomized phase III trials have addressed the equivalence of oral FUOX substituting for infusional 5-FU. Two phase III studies have evaluated FUOX versus CAPOX.[43,44] The AIO Colorectal Study Group randomly assigned 474 patients to either FUFOX or CAPOX. The median PFS was 7.1 months for the CAPOX arm and 8.0 months for the FUFOX arm (HR = 1.17; 95% CI, 0.96–1.43: P = .117), and the HR was in the prespecified equivalence range.[44] The Spanish Cooperative Group randomly assigned 348 patients to CAPOX or FUOX.[43] The TTP was 8.9 months versus 9.5 months (P = .153) and met the prespecified range for noninferiority.[43][Level of evidence: 1iiDiii] When using an oxaliplatin-based regimen as first-line treatment of metastatic colorectal cancer, a CAPOX regimen is not inferior to a FUOX regimen.

The Addition of Bevacizumab to Multiagent Chemotherapy

Patients with previously untreated metastatic colorectal cancer were randomly assigned to either IFL or IFL plus bevacizumab.[45] The patients randomly assigned to IFL plus bevacizumab experienced a significantly better PFS (10.6 months with IFL and bevacizumab compared to 6.2 months with IFL plus placebo; HR for disease progression = 0.54; P <.001) and OS (20.3 months with IFL plus bevacizumab compared to 15.6 months with IFL plus placebo; HR for death = 0.66; P <.001).[45] Investigators from the Eastern Cooperative Oncology Group (ECOG) randomly assigned patients who had progressed on 5-FU-leucovorin and irinotecan to either FOLFOX or FOLFOX plus bevacizumab. The results demonstrated that patients randomly assigned to FOLFOX plus bevacizumab experienced a statistically significant improvement in PFS (7.3 months vs. 4.7 months: HR for progression = 0.61; P <.0001) and OS (12.9 months vs. 10.8 months; HR for death = 0.75; P = .0011).[46][Level of evidence: 1iiA] Based on these two studies, bevacizumab can reasonably be added to either FOLFIRI or FOLFOX for patients undergoing first-line treatment of metastatic colorectal cancer.

Second-line and Third-line Chemotherapy

Second-line chemotherapy with irinotecan in patients treated with 5-FU-leucovorin as first-line therapy demonstrated improved OS when compared to either infusional 5-FU or supportive care.[2,23,47,48] Similarly, a phase III trial randomly assigned patients who progressed on irinotecan and 5-FU-leucovorin to bolus and infusional 5-FU-leucovorin (LV5FU2), single-agent oxaliplatin, or FOLFOX4. Median TTP for FOLFOX4 versus LV5FU2 was 4.6 months versus 2.7 months (stratified log-rank test, 2-sided P < .001).[49][Level of evidence: 1iiDiii]

Erbitux is a partially humanized monoclonal antibody against the epidermal growth factor receptor (EGFR). For patients who have progressed on irinotecan-containing regimens, a randomized phase II study was performed of erbitux or irinotecan plus erbitux. Median TTP for patients receiving erbitux was 1.5 months compared to median TTP of 4.2 months for patients receiving irinotecan and erbitux.[50][Level of evidence: 3iiiDiv] On the basis of this study, erbitux was approved for use in patients with metastatic colorectal cancer refractory to 5-FU and irinotecan.

Panitumumab is a fully humanized antibody against the EGFR. In a phase III trial that has not yet been reported, patients with chemotherapy refractory colorectal cancer were randomly assigned to panitumumab or best supportive care. Patients receiving panitumumab experienced improved OS. Despite the preliminary nature of this study, the FDA approved panitumumab for use in patients with metastatic colorectal cancer refractory to chemotherapy.[51]

Liver Metastases

Approximately 15% to 25% of colorectal cancer patients will present with liver metastases at diagnosis, and another 25% to 50% will develop metaschronous hepatic metastasis following resection of the primary tumor.[52-54] Although only a small proportion of patients with liver metastasis are candidates for surgical resection, advances in tumor ablation techniques and in both regional and systemic chemotherapy provide a number of treatment options.

For patients with hepatic metastasis considered to be resectable (based on a limited number of lesions, intrahepatic locations of lesions, lack of major vascular involvement, absent or limited extrahepatic disease, and sufficient functional hepatic reserve), a negative-margin resection has resulted in 5-year survival rates of 25% to 40% in mostly nonrandomized studies.[17,21,55-58] Improved surgical techniques and advances in preoperative imaging have allowed for better patient selection for resection.

Patients with hepatic metastases that are deemed unresectable will occasionally become candidates for resection if they have a good response to chemotherapy. These patients have 5-year survival rates similar to patients who initially had resectable disease.[29] Radiofrequency ablation has emerged as a safe technique (2% major morbidity and <1% mortality rate) that may provide long-term tumor control.[59-65] Radiofrequency ablation and cryosurgical ablation remain options for patients with tumors that cannot be resected and for patients who are not candidates for liver resection.[66-68]

Other local ablative techniques that have been used to manage liver metastases include embolization and interstitial radiation therapy.[69,70] Patients with limited pulmonary metastasis, and patients with both pulmonary and hepatic metastasis, may also be considered for surgical resection, with 5-year survival possible in highly selected patients.[71-73]

The role of adjuvant chemotherapy after potentially curative resection of liver metastases is uncertain. A trial of hepatic arterial floxuridine and dexamethasone plus systemic fluorouracil (5-FU) and leucovorin compared to systemic 5-FU plus leucovorin alone showed improved 2-year PFS (57% vs. 42%, P=.07) and overall survival (OS) (86% vs. 72%, P = .03) for patients in the combined therapy arm; median survival in the combined therapy arm was 72.2 months versus 59.3 months in the monotherapy arm (P=.21).[74][Level of evidence: 1iiA]

A second trial preoperatively randomly assigned patients with one to three potentially resectable colorectal hepatic metastases to either no further therapy or postoperative hepatic arterial floxuridine plus systemic 5-FU.[75] Among those randomized, 27% were deemed ineligible at the time of surgery, leaving only 75 patients evaluable for recurrence and survival. Although liver recurrence was decreased, median or 4-year survival was not significantly different between the patient groups. Additional studies are required to evaluate this treatment approach and to determine whether more effective systemic combination chemotherapy alone would provide similar results compared to hepatic intra-arterial therapy plus systemic treatment.

Hepatic intra-arterial chemotherapy with floxuridine for liver metastasis has produced higher overall response rates but no consistent improvement in survival when compared to systemic chemotherapy.[16,76-80] Controversy regarding the efficacy of regional chemotherapy has led to initiation of a large multicenter phase III trial (CLB-9481) of hepatic arterial infusion versus systemic chemotherapy. The use of combination intra-arterial chemotherapy with hepatic radiation therapy, especially employing focal radiation of metastatic lesions, is under evaluation.[81] Several studies show increased local toxic effects with hepatic infusional therapy, including liver function abnormalities and fatal biliary sclerosis.

Current Clinical Trials

Check for U.S. clinical trials from NCI's PDQ Cancer Clinical Trials Registry that are now accepting patients with stage IV rectal cancer and recurrent rectal cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

Locally Recurrent Rectal Cancer

Locally recurrent rectal cancer may be resectable, particularly if an inadequate prior operation was performed. For patients with local recurrence alone following an initial, attempted curative resection, aggressive local therapy with repeat LAR and coloanal anastomosis, APR, or posterior or total pelvic exenteration can lead to long-term disease-free survival (DFS).[82] The use of induction chemoradiation for previously nonirradiated patients with locally advanced (pelvic side-wall, sacral, and/or adjacent organ involvement) pelvic recurrence may increase resectability and allow for sphincter preservation.[83,84] Intraoperative radiation therapy in patients who received previous external-beam radiation may improve local control in patients with locally recurrent disease, with acceptable morbidity.[3] The presence of hydronephrosis associated with recurrence appears to be a contraindication to surgery with curative intent.[85] Patients with limited pulmonary metastases and patients with both pulmonary and hepatic metastases may also be considered for surgical resection, with 5-year survival possible in highly selected patients.[71-73]

Current Clinical Trials

Check for U.S. clinical trials from NCI's PDQ Cancer Clinical Trials Registry that are now accepting patients with stage IV rectal cancer and recurrent rectal cancer. The list of clinical trials can be further narrowed by location, drug, intervention, and other criteria.

General information about clinical trials is also available from the NCI Web site.

References

  1. Wanebo HJ, Koness RJ, Vezeridis MP, et al.: Pelvic resection of recurrent rectal cancer. Ann Surg 220 (4): 586-95; discussion 595-7, 1994.  [PUBMED Abstract]

  2. Cunningham D, Pyrhönen S, James RD, et al.: Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet 352 (9138): 1413-8, 1998.  [PUBMED Abstract]

  3. Haddock MG, Gunderson LL, Nelson H, et al.: Intraoperative irradiation for locally recurrent colorectal cancer in previously irradiated patients. Int J Radiat Oncol Biol Phys 49 (5): 1267-74, 2001.  [PUBMED Abstract]

  4. Valone FH, Friedman MA, Wittlinger PS, et al.: Treatment of patients with advanced colorectal carcinomas with fluorouracil alone, high-dose leucovorin plus fluorouracil, or sequential methotrexate, fluorouracil, and leucovorin: a randomized trial of the Northern California Oncology Group. J Clin Oncol 7 (10): 1427-36, 1989.  [PUBMED Abstract]

  5. Petrelli N, Douglass HO Jr, Herrera L, et al.: The modulation of fluorouracil with leucovorin in metastatic colorectal carcinoma: a prospective randomized phase III trial. Gastrointestinal Tumor Study Group. J Clin Oncol 7 (10): 1419-26, 1989.  [PUBMED Abstract]

  6. Erlichman C, Fine S, Wong A, et al.: A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6 (3): 469-75, 1988.  [PUBMED Abstract]

  7. Doroshow JH, Multhauf P, Leong L, et al.: Prospective randomized comparison of fluorouracil versus fluorouracil and high-dose continuous infusion leucovorin calcium for the treatment of advanced measurable colorectal cancer in patients previously unexposed to chemotherapy. J Clin Oncol 8 (3): 491-501, 1990.  [PUBMED Abstract]

  8. Poon MA, O'Connell MJ, Wieand HS, et al.: Biochemical modulation of fluorouracil with leucovorin: confirmatory evidence of improved therapeutic efficacy in advanced colorectal cancer. J Clin Oncol 9 (11): 1967-72, 1991.  [PUBMED Abstract]

  9. Wadler S, Lembersky B, Atkins M, et al.: Phase II trial of fluorouracil and recombinant interferon alfa-2a in patients with advanced colorectal carcinoma: an Eastern Cooperative Oncology Group study. J Clin Oncol 9 (10): 1806-10, 1991.  [PUBMED Abstract]

  10. Grem JL, Jordan E, Robson ME, et al.: Phase II study of fluorouracil, leucovorin, and interferon alfa-2a in metastatic colorectal carcinoma. J Clin Oncol 11 (9): 1737-45, 1993.  [PUBMED Abstract]

  11. Wong CS, Cummings BJ, Brierley JD, et al.: Treatment of locally recurrent rectal carcinoma--results and prognostic factors. Int J Radiat Oncol Biol Phys 40 (2): 427-35, 1998.  [PUBMED Abstract]

  12. Crane CH, Janjan NA, Abbruzzese JL, et al.: Effective pelvic symptom control using initial chemoradiation without colostomy in metastatic rectal cancer. Int J Radiat Oncol Biol Phys 49 (1): 107-16, 2001.  [PUBMED Abstract]

  13. Baron TH: Expandable metal stents for the treatment of cancerous obstruction of the gastrointestinal tract. N Engl J Med 344 (22): 1681-7, 2001.  [PUBMED Abstract]

  14. Scheele J, Stangl R, Altendorf-Hofmann A: Hepatic metastases from colorectal carcinoma: impact of surgical resection on the natural history. Br J Surg 77 (11): 1241-6, 1990.  [PUBMED Abstract]

  15. Scheele J, Stangl R, Altendorf-Hofmann A, et al.: Indicators of prognosis after hepatic resection for colorectal secondaries. Surgery 110 (1): 13-29, 1991.  [PUBMED Abstract]

  16. Wagman LD, Kemeny MM, Leong L, et al.: A prospective, randomized evaluation of the treatment of colorectal cancer metastatic to the liver. J Clin Oncol 8 (11): 1885-93, 1990.  [PUBMED Abstract]

  17. Adson MA, van Heerden JA, Adson MH, et al.: Resection of hepatic metastases from colorectal cancer. Arch Surg 119 (6): 647-51, 1984.  [PUBMED Abstract]

  18. Coppa GF, Eng K, Ranson JH, et al.: Hepatic resection for metastatic colon and rectal cancer. An evaluation of preoperative and postoperative factors. Ann Surg 202 (2): 203-8, 1985.  [PUBMED Abstract]

  19. Taylor M, Forster J, Langer B, et al.: A study of prognostic factors for hepatic resection for colorectal metastases. Am J Surg 173 (6): 467-71, 1997.  [PUBMED Abstract]

  20. Jaeck D, Bachellier P, Guiguet M, et al.: Long-term survival following resection of colorectal hepatic metastases. Association Française de Chirurgie. Br J Surg 84 (7): 977-80, 1997.  [PUBMED Abstract]

  21. Gayowski TJ, Iwatsuki S, Madariaga JR, et al.: Experience in hepatic resection for metastatic colorectal cancer: analysis of clinical and pathologic risk factors. Surgery 116 (4): 703-10; discussion 710-1, 1994.  [PUBMED Abstract]

  22. Fernández-Trigo V, Shamsa F, Sugarbaker PH: Repeat liver resections from colorectal metastasis. Repeat Hepatic Metastases Registry. Surgery 117 (3): 296-304, 1995.  [PUBMED Abstract]

  23. Rougier P, Van Cutsem E, Bajetta E, et al.: Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. Lancet 352 (9138): 1407-12, 1998.  [PUBMED Abstract]

  24. Weeks JC, Nelson H, Gelber S, et al.: Short-term quality-of-life outcomes following laparoscopic-assisted colectomy vs open colectomy for colon cancer: a randomized trial. JAMA 287 (3): 321-8, 2002.  [PUBMED Abstract]

  25. Higgins GA Jr, Amadeo JH, McElhinney J, et al.: Efficacy of prolonged intermittent therapy with combined 5-fluorouracil and methyl-CCNU following resection for carcinoma of the large bowel. A Veterans Administration Surgical Oncology Group report. Cancer 53 (1): 1-8, 1984.  [PUBMED Abstract]

  26. Buyse M, Zeleniuch-Jacquotte A, Chalmers TC: Adjuvant therapy of colorectal cancer. Why we still don't know. JAMA 259 (24): 3571-8, 1988.  [PUBMED Abstract]

  27. Laurie JA, Moertel CG, Fleming TR, et al.: Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. The North Central Cancer Treatment Group and the Mayo Clinic. J Clin Oncol 7 (10): 1447-56, 1989.  [PUBMED Abstract]

  28. Moertel CG, Fleming TR, Macdonald JS, et al.: Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med 322 (6): 352-8, 1990.  [PUBMED Abstract]

  29. Leonard GD, Brenner B, Kemeny NE: Neoadjuvant chemotherapy before liver resection for patients with unresectable liver metastases from colorectal carcinoma. J Clin Oncol 23 (9): 2038-48, 2005.  [PUBMED Abstract]

  30. Petrelli N, Herrera L, Rustum Y, et al.: A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol 5 (10): 1559-65, 1987.  [PUBMED Abstract]

  31. Scheithauer W, Rosen H, Kornek GV, et al.: Randomised comparison of combination chemotherapy plus supportive care with supportive care alone in patients with metastatic colorectal cancer. BMJ 306 (6880): 752-5, 1993.  [PUBMED Abstract]

  32. Expectancy or primary chemotherapy in patients with advanced asymptomatic colorectal cancer: a randomized trial. Nordic Gastrointestinal Tumor Adjuvant Therapy Group. J Clin Oncol 10 (6): 904-11, 1992.  [PUBMED Abstract]

  33. Buyse M, Thirion P, Carlson RW, et al.: Relation between tumour response to first-line chemotherapy and survival in advanced colorectal cancer: a meta-analysis. Meta-Analysis Group in Cancer. Lancet 356 (9227): 373-8, 2000.  [PUBMED Abstract]

  34. Leichman CG, Fleming TR, Muggia FM, et al.: Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest Oncology Group study. J Clin Oncol 13 (6): 1303-11, 1995.  [PUBMED Abstract]

  35. Van Cutsem E, Twelves C, Cassidy J, et al.: Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: results of a large phase III study. J Clin Oncol 19 (21): 4097-106, 2001.  [PUBMED Abstract]

  36. Hoff PM, Ansari R, Batist G, et al.: Comparison of oral capecitabine versus intravenous fluorouracil plus leucovorin as first-line treatment in 605 patients with metastatic colorectal cancer: results of a randomized phase III study. J Clin Oncol 19 (8): 2282-92, 2001.  [PUBMED Abstract]

  37. Saltz LB, Cox JV, Blanke C, et al.: Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343 (13): 905-14, 2000.  [PUBMED Abstract]

  38. de Gramont A, Figer A, Seymour M, et al.: Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol 18 (16): 2938-47, 2000.  [PUBMED Abstract]

  39. Douillard JY, Cunningham D, Roth AD, et al.: Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 355 (9209): 1041-7, 2000.  [PUBMED Abstract]

  40. Tournigand C, André T, Achille E, et al.: FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 22 (2): 229-37, 2004.  [PUBMED Abstract]

  41. Colucci G, Gebbia V, Paoletti G, et al.: Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 23 (22): 4866-75, 2005.  [PUBMED Abstract]

  42. Fuchs CS, Marshall J, Mitchell E, et al.: Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 25 (30): 4779-86, 2007.  [PUBMED Abstract]

  43. Díaz-Rubio E, Tabernero J, Gómez-España A, et al.: Phase III study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 25 (27): 4224-30, 2007.  [PUBMED Abstract]

  44. Porschen R, Arkenau HT, Kubicka S, et al.: Phase III study of capecitabine plus oxaliplatin compared with fluorouracil and leucovorin plus oxaliplatin in metastatic colorectal cancer: a final report of the AIO Colorectal Study Group. J Clin Oncol 25 (27): 4217-23, 2007.  [PUBMED Abstract]

  45. Hurwitz H, Fehrenbacher L, Novotny W, et al.: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350 (23): 2335-42, 2004.  [PUBMED Abstract]

  46. Giantonio BJ, Catalano PJ, Meropol NJ, et al.: High-dose bevacizumab improves survival when combined with FOLFOX4 in previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200. [Abstract] J Clin Oncol 23 (Suppl 16): A-2, 1s, 2005. 

  47. Rothenberg ML, Eckardt JR, Kuhn JG, et al.: Phase II trial of irinotecan in patients with progressive or rapidly recurrent colorectal cancer. J Clin Oncol 14 (4): 1128-35, 1996.  [PUBMED Abstract]

  48. Conti JA, Kemeny NE, Saltz LB, et al.: Irinotecan is an active agent in untreated patients with metastatic colorectal cancer. J Clin Oncol 14 (3): 709-15, 1996.  [PUBMED Abstract]

  49. Rothenberg ML, Oza AM, Bigelow RH, et al.: Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 21 (11): 2059-69, 2003.  [PUBMED Abstract]

  50. Cunningham D, Humblet Y, Siena S, et al.: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351 (4): 337-45, 2004.  [PUBMED Abstract]

  51. Van Cutsem E, Peeters M, Siena S, et al.: Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25 (13): 1658-64, 2007.  [PUBMED Abstract]

  52. Power DG, Healey-Bird BR, Kemeny NE: Regional chemotherapy for liver-limited metastatic colorectal cancer. Clin Colorectal Cancer 7 (4): 247-59, 2008.  [PUBMED Abstract]

  53. Khatri VP, Chee KG, Petrelli NJ: Modern multimodality approach to hepatic colorectal metastases: solutions and controversies. Surg Oncol 16 (1): 71-83, 2007.  [PUBMED Abstract]

  54. Pawlik TM, Choti MA: Surgical therapy for colorectal metastases to the liver. J Gastrointest Surg 11 (8): 1057-77, 2007.  [PUBMED Abstract]

  55. Hughes KS, Simon R, Songhorabodi S, et al.: Resection of the liver for colorectal carcinoma metastases: a multi-institutional study of patterns of recurrence. Surgery 100 (2): 278-84, 1986.  [PUBMED Abstract]

  56. Schlag P, Hohenberger P, Herfarth C: Resection of liver metastases in colorectal cancer--competitive analysis of treatment results in synchronous versus metachronous metastases. Eur J Surg Oncol 16 (4): 360-5, 1990.  [PUBMED Abstract]

  57. Rosen CB, Nagorney DM, Taswell HF, et al.: Perioperative blood transfusion and determinants of survival after liver resection for metastatic colorectal carcinoma. Ann Surg 216 (4): 493-504; discussion 504-5, 1992.  [PUBMED Abstract]

  58. Fong Y, Fortner J, Sun RL, et al.: Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230 (3): 309-18; discussion 318-21, 1999.  [PUBMED Abstract]

  59. Rossi S, Buscarini E, Garbagnati F, et al.: Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol 170 (4): 1015-22, 1998.  [PUBMED Abstract]

  60. Solbiati L, Livraghi T, Goldberg SN, et al.: Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221 (1): 159-66, 2001.  [PUBMED Abstract]

  61. Lencioni R, Goletti O, Armillotta N, et al.: Radio-frequency thermal ablation of liver metastases with a cooled-tip electrode needle: results of a pilot clinical trial. Eur Radiol 8 (7): 1205-11, 1998.  [PUBMED Abstract]

  62. Curley SA, Izzo F, Delrio P, et al.: Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 230 (1): 1-8, 1999.  [PUBMED Abstract]

  63. Oshowo A, Gillams A, Harrison E, et al.: Comparison of resection and radiofrequency ablation for treatment of solitary colorectal liver metastases. Br J Surg 90 (10): 1240-3, 2003.  [PUBMED Abstract]

  64. Livraghi T, Solbiati L, Meloni F, et al.: Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the "test-of-time approach". Cancer 97 (12): 3027-35, 2003.  [PUBMED Abstract]

  65. Pawlik TM, Izzo F, Cohen DS, et al.: Combined resection and radiofrequency ablation for advanced hepatic malignancies: results in 172 patients. Ann Surg Oncol 10 (9): 1059-69, 2003.  [PUBMED Abstract]

  66. Jarnagin WR, Fong Y, Ky A, et al.: Liver resection for metastatic colorectal cancer: assessing the risk of occult irresectable disease. J Am Coll Surg 188 (1): 33-42, 1999.  [PUBMED Abstract]

  67. Ravikumar TS, Kaleya R, Kishinevsky A: Surgical ablative therapy of liver tumors. Cancer: Principles and Practice of Oncology Updates 14 (3): 1-12, 2000. 

  68. Seifert JK, Morris DL: Prognostic factors after cryotherapy for hepatic metastases from colorectal cancer. Ann Surg 228 (2): 201-8, 1998.  [PUBMED Abstract]

  69. Thomas DS, Nauta RJ, Rodgers JE, et al.: Intraoperative high-dose rate interstitial irradiation of hepatic metastases from colorectal carcinoma. Results of a phase I-II trial. Cancer 71 (6): 1977-81, 1993.  [PUBMED Abstract]

  70. Ravikumar TS: Interstitial therapies for liver tumors. Surg Oncol Clin N Am 5 (2): 365-77, 1996.  [PUBMED Abstract]

  71. Girard P, Ducreux M, Baldeyrou P, et al.: Surgery for lung metastases from colorectal cancer: analysis of prognostic factors. J Clin Oncol 14 (7): 2047-53, 1996.  [PUBMED Abstract]

  72. McAfee MK, Allen MS, Trastek VF, et al.: Colorectal lung metastases: results of surgical excision. Ann Thorac Surg 53 (5): 780-5; discussion 785-6, 1992.  [PUBMED Abstract]

  73. Headrick JR, Miller DL, Nagorney DM, et al.: Surgical treatment of hepatic and pulmonary metastases from colon cancer. Ann Thorac Surg 71 (3): 975-9; discussion 979-80, 2001.  [PUBMED Abstract]

  74. Kemeny N, Huang Y, Cohen AM, et al.: Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 341 (27): 2039-48, 1999.  [PUBMED Abstract]

  75. Kemeny MM, Adak S, Gray B, et al.: Combined-modality treatment for resectable metastatic colorectal carcinoma to the liver: surgical resection of hepatic metastases in combination with continuous infusion of chemotherapy--an intergroup study. J Clin Oncol 20 (6): 1499-505, 2002.  [PUBMED Abstract]

  76. Kemeny N, Daly J, Reichman B, et al.: Intrahepatic or systemic infusion of fluorodeoxyuridine in patients with liver metastases from colorectal carcinoma. A randomized trial. Ann Intern Med 107 (4): 459-65, 1987.  [PUBMED Abstract]

  77. Chang AE, Schneider PD, Sugarbaker PH, et al.: A prospective randomized trial of regional versus systemic continuous 5-fluorodeoxyuridine chemotherapy in the treatment of colorectal liver metastases. Ann Surg 206 (6): 685-93, 1987.  [PUBMED Abstract]

  78. Rougier P, Laplanche A, Huguier M, et al.: Hepatic arterial infusion of floxuridine in patients with liver metastases from colorectal carcinoma: long-term results of a prospective randomized trial. J Clin Oncol 10 (7): 1112-8, 1992.  [PUBMED Abstract]

  79. Kemeny N, Cohen A, Seiter K, et al.: Randomized trial of hepatic arterial floxuridine, mitomycin, and carmustine versus floxuridine alone in previously treated patients with liver metastases from colorectal cancer. J Clin Oncol 11 (2): 330-5, 1993.  [PUBMED Abstract]

  80. Reappraisal of hepatic arterial infusion in the treatment of nonresectable liver metastases from colorectal cancer. Meta-Analysis Group in Cancer. J Natl Cancer Inst 88 (5): 252-8, 1996.  [PUBMED Abstract]

  81. McGinn CJ, Lawrence TS: Clinical Results of the Combination of Radiation and Fluoropyrimidines in the Treatment of Intrahepatic Cancer. Semin Radiat Oncol 7 (4): 313-323, 1997.  [PUBMED Abstract]

  82. Ogunbiyi OA, McKenna K, Birnbaum EH, et al.: Aggressive surgical management of recurrent rectal cancer--is it worthwhile? Dis Colon Rectum 40 (2): 150-5, 1997.  [PUBMED Abstract]

  83. Lowy AM, Rich TA, Skibber JM, et al.: Preoperative infusional chemoradiation, selective intraoperative radiation, and resection for locally advanced pelvic recurrence of colorectal adenocarcinoma. Ann Surg 223 (2): 177-85, 1996.  [PUBMED Abstract]

  84. Valentini V, Morganti AG, De Franco A, et al.: Chemoradiation with or without intraoperative radiation therapy in patients with locally recurrent rectal carcinoma: prognostic factors and long term outcome. Cancer 86 (12): 2612-24, 1999.  [PUBMED Abstract]

  85. Rodriguez-Bigas MA, Herrera L, Petrelli NJ: Surgery for recurrent rectal adenocarcinoma in the presence of hydronephrosis. Am J Surg 164 (1): 18-21, 1992.  [PUBMED Abstract]

Back to Top

< Previous Section  |  Next Section >


A Service of the National Cancer Institute
Department of Health and Human Services National Institutes of Health USA.gov