

Supersonic Vehicles Technology Sonic Boom Technology Development and Demonstration FAA Civil Supersonic Aircraft Workshop

Peter G. Coen NASA Langley Research Center 13 November, 2003

Supersonic Vehicles Technology

Response to FY 02 Congressional Mandate

Three Element Approach Selected

- 1. Leverage DARPA Quiet Supersonic Platform (QSP) technology demonstrations that relate strongly to civil aircraft and fit with NASA core competencies
 - Shaped Sonic Boom Flight Experiments
 - Supersonic Laminar Flow
 - DFRC F-15 FTF tests
 - Wind tunnel test of ASU concept in LaRC UPWT
- 2. Develop a solid foundation for a full follow-on program
 - Engage Industry Partners in planning process
 - Identify technology requirements and sensitivities
 - Build working relationships
- 3. Support technology development in critical areas not currently funded
 - Sonic Boom and Acoustics
 - Aerodynamic Performance
 - Propulsion Noise and Performance
 - Design Approaches
 - Flexible Vehicles

NASA Involvement Crucial to SSBD Success

Near Field Pressure Data Collection

Improved Ground Pressure Measurements

Mid Field Pressure Data Collection

Wind Tunnel

Validation

SVT Community Acceptability Efforts

LARC "Boom Box" simulator reconditioning completed
Initial Studies of low ∆P shaped booms concluded

SVT Vehicle Design Efforts

Validation Data Experiments

LaRC

Multidisciplinary Design

Tools & Approaches
Stanford
Boeing
University of Colorado

NASA Propogation Efforts

Three Dimensional Boom Propagation

- Eagle Aeronautics and Old Dominion University
- Euler CFD Solution Coupled to Full Potential
 Extrapolation
- Full extent of Boom "Carpet" Modeled

Sonic Boom Reduction: Next Steps

FY 04

SSBD Follow on Flights

- Average Ambient Temperature Low Enough to Achieve Design Mach SSBD Design Mach Starting in December
- Robustness of Shaped Boom
- Maneuver Effects

FY 02-03 Earmark Activities to Continue in new VSP plan

- Acceptable Boom Metrics and Levels
 - Boom Simulator Studies explore low initial overpressure signatures
- Low-Boom Vehicle Design
 - Application of Multi-Disciplinary Design

Future Activity?

- Shaped <u>LOW</u> Boom Flight Demonstration
 - Overflight of Populated Areas