Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 22-24 June 2007

By

Christian P. Dau USFWS-Migratory Bird Management 1011 E. Tudor Road Anchorage, Alaska 99503

and

William W. Larned USFWS-Migratory Bird Management P.O. Box 1670 Kenai, Alaska 99611

Key Words: Aerial population survey, Common Eider, waterbirds, barrier islands, Arctic Coastal Plain, Alaska

August 2007

## SUMMARY

The ninth consecutive aerial survey of common eiders and other waterbirds along the coastline of the Arctic Coastal Plain (ACP) of Alaska, including barrier islands, was conducted from 22 to 24 June 2007. Observations were made from an amphibious Cessna 206 (N61599) by pilot/observer and right seat observer. The study area, established when the survey was initiated in 1999, encompasses approximately 1,050 km of the Chukchi and Beaufort sea coastlines from Omalik Lagoon north and east to the Canadian border and an additional 190 and 325 linear kilometers, respectively, of barrier island habitats off Kasegaluk Lagoon and from Point Barrow to Demarcation Bay. Little shorefast ice was present in the Chukchi Sea during the survey, similar to conditions observed in 2006. Beaufort Sea ice cover was shorefast except near river mouths which were mostly ice free. Sea ice was broken and covered with melt indicating rapid disintegration.

A total of 1,936 common eiders, including 676 indicated breeding pairs (pairs+single drakes), were observed in 2007. Total observed and indicated breeding pairs were down 37.6 and 44.0 percent from 2006 and down 30.0 and 27.8 percent, respectively, from the long-term averages (1999-2006). Despite the decline from 2006, the population trend from 1999-2007 is positive. Total common eiders and indicated breeding pairs are increasing at annual rates of 2.2 and 5.4 percent, respectively. In 2007, indices were lower, the relative proportion of total birds and indicated breeding pairs increased everywhere except along the eastern Beaufort Sea coast in comparison to 2006 (Dau and Larned 2006). Other primary waterbird species observed and their change in numbers from 1999-2006 averages were: long-tailed duck 3,449 (-40.4%), glaucous gull 2,077 (-51.8%), greater white-fronted goose 1,703 (+81.8%), surf scoter 1,190 (-71.5%), Pacific brant 2,254 (-4.3%), king eider 1,677 (-48.3%), Canada goose 293 (-65.0%), lesser snow goose 2,279 (+331.6%), greater scaup 840 (+29.0%), and northern pintail 1,366 (+11.9%). Yellow-billed loons (n=46) decreased 13.2 percent from the 1999-2006 average of 53 birds.

### INTRODUCTION

This report summarizes the ninth consecutive year of aerial survey efforts to estimate common eider population size and trend, demography, distribution and habitat conditions along the coastline of the Alaskan ACP (Dau and Taylor 2000a, 2000b, Dau and Anderson 2001, 2002, Dau and Hodges 2003, Dau and Larned 2004, 2005, 2006). The survey area is north and east from Omalik Lagoon along the Chukchi Sea to Point Barrow then east along the Beaufort Sea to the Canadian border (Figures 1 and 2). The objectives are to estimate the annual size of the Alaska breeding common eider population along the ACP using indicated breeding pairs as the index and to determine trends in number, demographics and distribution.

## **METHODS**

This survey is timed to coincide with egg laying and early incubation when pair bonds are intact and males remain in the vicinity of breeding sites. Available literature summarized by Johnson and Herter (1989), subsequent studies, and this survey were used to estimate breeding phenology and appropriate survey timing. Observations were made from an amphibious Cessna 206 flown at approximately 100 knots and an altitude of 45 meters ASL/AGL. Observations, made from both sides of the aircraft by the pilot/observer (left) and observer (right), were entered into laptop computers using remote microphones. A custom record program interfaced with the aircraft Global Positioning System (GPS), geo-referenced observations (J. Hodges, USFWS-MBM, Juneau [retired]). The survey area extended up to 1.6 km seaward of terrestrial habitats (i.e. mainland, peninsula and barrier island shorelines) when open water existed. Occasional deviations were made to include larger flocks detected up to 3 km offshore. Flight routes followed shorelines and included all island, peninsula, bay and lagoon habitats as well as near shore waters. Flight tracks were periodically checked on laptop computers using moving map programs to help ensure complete survey area coverage.

The survey area includes 30 mainland shoreline segments and 22 islands or island groups (Figs. 1 and 2) identified on 1:250,000 scale topographic maps. Insular areas along the central Beaufort Sea coast were also identified on 1:63,360 scale topographic maps. Maps were consulted during the survey primarily to identify segment start and stop points. General observations on habitat, survey and ice conditions were voice recorded and the latter was compared to sea ice analyses prepared by the National Weather Service (Figure 3). Whenever possible, sex and age (i.e. adult or subadult) of single birds and composition of flocks were determined for waterfowl species. Flocks that could be identified as assemblages of single adult males or pairs were divided into singles and pairs as appropriate. Observations of common eiders and other species were summarized by survey segment (Tables 1 and 2) and for the total survey area (Table 3). The distribution, sex and age composition and numbers of common eiders were recorded by survey segment and summarized to provide a total observed population size (singles+2x pairs+birds in flocks) and the number of indicated breeding pairs (Tables 4 and 5). We assumed single male common eiders represented breeding pairs with females undetected on nests. Single males were not doubled to estimate population size and they were summed with the number of observed pairs to provide an estimate of indicated breeding pairs.

## **STUDY AREA/CONDITIONS**

Physical descriptions of individual survey segments and the following groupings of segments are described by Dau and Taylor (2000). Survey and ice conditions encountered in 2006 were:

#### Omalik Lagoon to Point Barrow (Segments 1-11)

Omalik Lagoon and Kasegaluk Lagoon south and west of Point Lay were ice free. Kasegaluk Lagoon from Point Lay to midway in Segment 5 was ice free with 50 % ice cover for the remainder of Segment 5 north to Icy Cape. Icy Cape to Nokotlek Point was 60-80 % ice covered and remainder of the north portion of Kasegaluk Lagoon was ice free. From Icy Cape to the north end of Kasegaluk Lagoon there was approximately 200 m of shorefast ice with none south

of Icy Cape. There was approximately 800 m of shorefast ice off Peard Bay, otherwise the shoreline north to Point Barrow was open or lined with brash. Offshore waters to approximately 8 km had 0-50% coverage of broken/floating ice. All sea and lagoon ice had abundant surface ponding and melt. Only the largest onshore lakes had remnant ice and the tundra was snow free. Survey conditions were good with high scattered to overcast ceilings, there was little patchy fog and winds were calm to 12 knots SSW. Temperatures were 42 to 45°F.

#### Point Barrow to the Colville River Delta (Segments 12-18)

Dease Inlet (Segment 13) and the western portion of Segment 14 to Cape Simpson were not surveyed due to reduced visibility. Shorefast ice was continuous north of spits and barrier islands of Elson Lagoon with 10-20 m open water or water over ice along the shore. Elson Lagoon was 98 % ice covered with extensive surface melt as was the northern 2/3 of Dease Inlet with the exception of 200-300 m open water along the east shore and approximately 50-100 m open around Tiny and Oarlock islands. Admiralty Bay was mostly ice free. Western Smith Bay had 400 m of open water near shore. The eastern half of Smith Bay was mostly open with dark melting ice decreasing to 3-5 km in width along the NE shore. Drew Point to Cape Halkett had shorefast, dark ice with 10-20 m open water along the shore. From Cape Halkett south and east along the shore of Harrison Bay, 100 m of open water with continuous ice beyond decreased to ice free water 15 km east of Fish Creek. Kogru Inlet was 70% ice covered. Colville River channels were ice free as was the coastline to 10-12 km offshore and lakes were ice free. There was no snow cover in these segments or areas to the east. Survey conditions were good with high overcast to broken ceilings and occasional moderate glare. Winds were initially SW 8 knots becoming NW 10 knots. Temperatures increased from 50° to 55°F.

#### Colville River Delta to the Canning River Delta (Segments 19-21, 190-214)

There was open water from the mid-Colville Delta north to 4 km south of Thetis Island and east to the Spy Island-Oliktok Point line. Simpson Lagoon east to the Long Island-Beechey Point line was ice covered with surface melt. Gwydyr Bay east to West Dock was 50% ice covered. The lagoon was 90% covered with ice with surface melt east to Milne Point decreasing to 50% at Kavearak Point with 1.6 km open water near shore. The lagoon was ice free from Beechey Point to West Dock. Continuous ice, with 0-30 m of open water near shore, was present north of barrier islands (Thetis to Long and Stump). Open water was present north of Egg Island. Prudhoe Bay had open water south of a line from West Dock to the Niakuk Islands with melt covered ice to the north. From Niakuk Islands east to the Endicott Causeway there was 150-200 m open water nearshore and otherwise continuous ice with surface melt east to Tigvariak Island. Midway Islands had 30 m open water to the north and 30-100 m to the south with continuous ice beyond. Cross Island was surrounded by shorefast ice. The remainder of Stefansson Sound from Mikkelsen Bay east to Brownlow Point had shorefast ice with surface melt. Barrier islands from the McClure to Flaxman groups had 0-30 m open water to the north and 10-450 m to the south. Survey conditions were good with minimal glare, high scattered to overcast ceilings and NE winds of 5-8 knots. Temperatures were 35-40°F.

Canning River Delta to the Canadian Border (Segments 22-29)

Weather prevented surveying the east half of Segment 22 and all of segments 23 and 29. The lagoon from Brownlow Point to the Canning River mouth was ice free except for 50 m of shorefast ice along the south shore. There was 20 m open water north of the spit and barrier islands. Little, discontinuous shorefast ice was present from Collison Point to Anderson Point but visibility was obscured seaward. Arey Lagoon west of Okpilak River and east to Barter Island was ice free with from 250-1600 m open water to the north of barrier islands. Kaktovik Lagoon was 95% ice covered with surface melt. Jago Lagoon was 20% ice covered with surface melt, Tapkaurak Lagoon and Pokok Bay were 75% and 90% ice covered, respectively. Angun Lagoon had 50% ice cover with surface melt versus 25% for Beaufort Lagoon. There was 50-100 m open water north of barrier islands and shorelines east from Barter Island. Survey conditions were fair with fog occasionally obscuring visibility. Otherwise, ceilings were overcast with NNE winds of 12 knots. Temperatures were 40-45°F throughout the day.

## **RESULTS/DISCUSSION**

A total of 1,936 common eiders, including 676 indicated breeding pairs, were observed (Tables 4a-b and 5). Total birds and indicated breeding pairs were down 37.6 and 44.0 percent, respectively, from 2006 counts of 3,102 birds and 1,207 pairs. Total birds and indicated breeding pairs in 2007 were down 30.0 and 27.8 percent, respectively, from the 1999-2006 averages of 2,766±885 (1SD, range 1,353-4,449) birds and 937±264 (1SD, range 572-1,340) pairs. Although overall total birds and pairs of common eiders declined in 2007, relative proportions increased in all primary areas except along the eastern Beaufort Sea coast (Table 5, Figure 4). Increasing trends in numbers of both total birds (2.2%/yr) and indicated breeding pairs (5.4%/yr) have been documented with inter-annual numbers or pairs being least variable (Figure 5). The population decline observed in 2007 is partially due to all or parts of segments omitted due to adverse weather (i.e. segments 13, 14, 22, 23 and 29). However, the 1999-2006 average estimate of 240 birds for the areas missed suggests a relatively small impact on total estimated population size in 2007.

Flocked birds in 2007 totaled 902 (46.6% of total), which is a proportional increase in comparison to 2006 (1,159 birds, 37.4% of total). Number and composition of common eider flocks indicates adult males have predominated in eight of nine years (Table 7). No subadult male were observed in 2007 versus nineteen (0.6% of total observations) in 2006, two (0.1%) in 2005, 30 (1.3%) in 2004 and none in 2002 or 2003. Detectability of subadults is likely related to observer experience; nevertheless, the low number reported suggests that breeding adults predominate along the ACP.

Total numbers of common eiders observed, and to a lesser extent the number of indicated breeding pairs (Table 5), appears to be primarily affected by ice conditions which may delay or "short-stop"Canadian migrants during some years. However, our subjective observations of ice conditions are all within 10 km of shore and we are unable to determine the presence of leads further offshore and to what extent common eiders may use them.

The number of indicated breeding pairs is believed to be indicative of reproductive effort along

the ACP of Alaska and although numbers have varied, the trend appeared stable through 2006 with a considerable decline in 2007 (Table 5, Figure 4). To better understand changes in annual distribution it would be important to 1) evaluate fidelity of individual pairs to breeding sites and 2), if individual pair distribution varies in relation to nesting conditions, quantify effects on annual productivity. Flint et al. (2003) documented low productivity and recruitment of common eiders along the coast of the central Beaufort Sea suggesting the population would decline unless supplemented by immigration or infrequent years of high recruitment.

During spring migration, sea ice distribution and the amount and location of open water near breeding site affects number and distribution of common eiders observed in the survey area. Preferred nesting sites are associated with driftwood, detritus and vegetation on barrier islands and peninsulas. Subjective estimates of the amounts of driftwood (i.e. none, low, moderate, high) have been obtained for central Beaufort Sea barrier islands as part of this survey (C. Dau, unpublished). At eighteen islands measured in 2007, driftwood amounts increased 20.8 percent overall (i.e. increase on 11 islands, decrease on two and no change on five) in relation to observations from 1999-2006. Storm surges, wind and tide erode vegetation and annually alter the amount of available driftwood which in turn affects the suitability of breeding sites to nesting common eiders. Our observations suggest better than average nesting conditions for common eiders in 2007, indexed solely by the relative amounts if drift.

Common eider distribution, abundance and demography may correspond to annual habitat conditions hence; continuation of this survey will help document long-term patterns of use.

# RECOMMENDATIONS

1) Continue annual aerial survey to quantify and monitor the distribution, abundance, demographics, and habitat use of the common eider population summering along the Alaska ACP.

2) Encourage the collection of ground survey data of birds and nests to aid in refining survey timing and potentially provide air:ground visibility indices.

3) Continue to explore ocular and photographic techniques to index nesting conditions (i.e. the amount and distribution of driftwood).

## REFERENCES

- Anthony, M. 1999. Aerial videography of eider nests on barrier islands along the North Slope in 1999. Summary Report-Not for Distribution. USGS-ABSC, Anchorage, Ak. 20pp.
- Dau, C.P. and E.J. Taylor. 2000a. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 28 June-2 July 1999. Unpubl. Rept. USFWS. Anchorage, Ak. 22pp.

\_\_\_\_\_\_. 2000b Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of

Alaska, 3-12 July 2000. Unpubl. Rept. USFWS. Anchorage, Ak. 23pp.

\_\_\_\_\_ and P.D. Anderson. 2001. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 30 June-3 July 2001. Unpubl. Rept. USFWS. Anchorage, Ak. 16pp.

\_\_\_\_\_ and P.D. Anderson. 2002. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 25-29 June 2002. Unpubl. Rept. USFWS. Anchorage, Ak. 16pp.

and J.I. Hodges. 2003. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 27-30 June 2003. Unpubl. Rept. USFWS. Anchorage, Ak. 18pp.

\_\_\_\_\_ and W.W. Larned. 2004. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 24-27 June 2004. Unpubl. Rept. USFWS. Anchorage, Ak. 19pp.

\_\_\_\_\_ and W.W. Larned. 2005. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 24-27 June 2004. Unpubl. Rept. USFWS. Anchorage, Ak. 19pp.

\_\_\_\_\_ and W.W. Larned. 2006. Aerial population survey of common eiders and other waterbirds in near shore waters and along barrier islands of the Arctic Coastal Plain of Alaska, 25-27 June 2004. Unpubl. Rept. USFWS. Anchorage, Ak. 19pp.

- Flint, P.L., J.A. Reed, J.C. Franson, T.E. Hollmen, J.B. Grand, M.D. Howell, R.B. Lancot, D.L. Lacroix, and C.P. Dau. 2003. Monitoring Beaufort Sea Waterfowl and Marine Birds. U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska OCS Study MMS 2003-037. 125pp.
- Johnson, S.R. and D.R. Herter. 1989. The Birds of the Beaufort Sea. BP Exploration (Alaska) Inc. Anchorage, Ak. 372pp.



Fig. 1. Location of aerial survey segments searched for common eiders along the Arctic Coast, Alaska







Fig. 2. Survey segments, including coastline and barrier islands, along the central Arctic Coastal Plain, Alaska.



Figure 3. Sea ice conditions in late June along the Arctic Coastal Plain, 2007.

x





Figure 4. Trends in percent distribution of total and indicated breeding pairs of Common Eiders



|                   | Segment Number |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     |       |
|-------------------|----------------|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| Species           | 190            | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199  | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 211 | 212 | 213 | 214 | Total |
| ARTE              |                |     |     | 6   |     |     |     |     |     |      |     |     | 1   |     | 8   |     |     |     | 1   | 19  |     |     | 35    |
| BLBR              |                |     |     |     |     |     |     | 6   | 11  |      |     |     |     |     |     |     |     |     |     | 25  |     |     | 42    |
| CAGO              |                |     |     |     |     |     |     |     |     |      |     |     |     |     |     |     |     | 3   |     |     |     |     | 3     |
| COEH <sup>1</sup> |                |     |     | 1   |     | 2   |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     | 3     |
| COEI              | 31             | 4   | 9   | 6   |     | 18  | 18  | 37  | 132 | 8    | 19  | 19  |     | 5   | 11  | 1   | 25  | 1   | 17  | 54  | 2   | 3   | 420   |
| COME              |                |     |     |     |     |     |     |     | 1   |      |     |     |     |     |     |     |     |     |     |     |     |     | 1     |
| GLGU              | 7              | 5   | 12  | 3   | 3   | 9   | 4   | 9   | 98  | 50   | 18  | 3   | 1   | 4   | 1   | 1   | 5   |     | 4   | 37  | 3   | 1   | 278   |
| GWFG              |                |     |     | 81  | 31  |     |     |     |     |      |     |     |     |     |     |     |     | 2   |     |     |     | 2   | 116   |
| KIEI              | 6              |     |     | 2   | 3   |     | 8   | 3   |     |      |     |     |     |     |     |     | 22  |     | 2   | 10  |     |     | 56    |
| LESG              |                |     |     |     |     |     |     |     | 18  | 1570 |     |     |     |     |     |     |     | 90  |     |     |     |     | 1678  |
| LTDU              |                | 5   |     | 1   |     |     |     | 1   | 5   |      |     | 2   |     | 68  | 10  |     | 20  | 8   | 10  | 132 |     | 20  | 282   |
| NOPI              |                |     |     |     |     |     |     |     | 25  | 18   |     |     |     |     |     |     |     | 2   |     |     |     | 10  | 55    |
| PAJA              |                |     |     | 1   |     |     |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     | 1     |
| PALO              | 1              |     | 1   | 4   | 8   | 4   |     | 4   | 3   |      |     |     |     |     | 4   |     | 7   |     |     | 3   | 1   | 1   | 41    |
| RBME              | 2              |     | 2   |     | 2   | 4   |     |     |     |      |     |     |     |     |     |     |     |     |     |     |     |     | 10    |
| RTLO              |                | 2   |     | 1   |     | 2   |     |     | 5   |      |     |     |     |     | 1   |     |     |     |     |     |     |     | 11    |
| SUSC              | 45             |     |     |     |     |     |     |     | 70  |      |     |     |     |     |     |     |     |     |     |     |     |     | 115   |
| TUSW              |                |     |     |     |     |     |     |     | 15  |      |     |     |     |     |     |     |     | 2   |     |     |     |     | 17    |
| YBLO              |                |     |     |     |     |     |     | 1   |     |      |     |     |     |     |     |     |     |     |     |     |     |     | 1     |

### Table 1. Species totals by segment along barrier islands of the ACP, 22-24 June, 2007.

<sup>1</sup> COEH = common eider hens in singles and flocks.

#### Table 2. Species totals by segment along ACP mainland shoreline, 22-24 June, 2007.

|                   |     |     |     | <u> </u> |     |      | 0   |    |     |     |     | S   | egme | nt Nu | mber |     |     |     |    |    |    |     |     |     |     |     |     | Total |
|-------------------|-----|-----|-----|----------|-----|------|-----|----|-----|-----|-----|-----|------|-------|------|-----|-----|-----|----|----|----|-----|-----|-----|-----|-----|-----|-------|
| Species           | 1   | 2   | 3   | 4        | 5   | 6    | 7   | 8  | 9   | 10  | 11  | 12  | 14   | 15    | 16   | 17  | 19  | 20  | 21 | 22 | 23 | 24  | 25  | 26  | 27  | 28  | 181 |       |
| AMWI              | 5   |     |     |          |     |      |     |    |     |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 5     |
| ARTE              | 6   | 103 | 53  | 115      | 38  | 4    | 231 |    |     | 30  |     | 73  |      | 2     |      |     |     |     |    |    |    |     |     |     |     |     |     | 655   |
| BLBR              |     | 58  | 40  | 138      | 232 | 1244 | 3   |    |     | 235 |     | 75  | 6    |       | 40   | 110 | 10  | 1   |    |    |    |     | 20  |     |     |     |     | 2212  |
| BLSC              | 2   |     |     | 8        |     |      |     |    |     |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 10    |
| CAGO              |     |     |     |          |     |      |     |    |     |     |     |     |      | 181   | 75   | 19  | 4   | 2   |    |    |    |     |     |     | 8   |     | 1   | 290   |
| COEH <sup>1</sup> |     |     | 1   |          | 1   | 10   | 1   |    |     | 7   |     |     |      |       |      |     |     | 1   |    |    |    | 10  | 18  | 7   |     |     |     | 56    |
| COEI              |     | 43  | 34  | 87       | 140 | 262  | 17  |    | 95  | 223 | 144 | 1   |      | 4     | 1    |     | 1   | 88  | 6  | 2  |    | 28  | 169 | 98  | 12  | 2   |     | 1457  |
| COME              |     |     |     |          |     |      |     |    |     |     |     |     | 3    |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 3     |
| GLGU              | 33  | 29  | 62  | 267      | 71  | 68   | 21  | 65 | 66  | 70  | 21  | 41  | 33   | 17    | 26   | 10  | 65  | 151 | 7  | 5  |    |     | 171 | 457 | 4   | 1   | 38  | 1799  |
| COGO              |     | 1   |     |          |     |      |     |    |     |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 1     |
| GRSC              |     | 68  | 40  | 350      |     |      |     |    |     |     |     |     | 275  |       | 1    |     |     | 1   |    |    |    | 45  |     |     |     | 60  |     | 840   |
| GWFG              | 302 | 224 | 134 |          | 27  | 20   | 3   | 8  |     | 2   | 3   | 7   | 5    | 154   | 111  | 150 | 238 | 29  |    |    |    |     | 32  | 25  | 47  |     | 66  | 1587  |
| KIEH <sup>1</sup> |     | 3   |     |          |     |      |     |    |     |     |     |     |      |       |      | 8   |     | 2   |    |    |    |     |     |     |     |     |     | 13    |
| KIEI              |     | 2   | 45  | 16       | 79  | 3    |     |    | 393 | 85  | 751 |     |      | 19    | 29   | 87  | 16  | 67  | 11 | 3  |    |     |     | 2   |     |     |     | 1608  |
| LESG              |     |     | 230 |          |     |      |     | 15 |     |     |     |     | 13   |       |      |     | 105 | 210 |    |    |    |     |     | 3   |     |     | 25  | 601   |
| LTDU              | 74  | 106 | 20  | 40       | 90  | 1011 | 42  | 9  | 59  | 764 | 178 | 160 | 131  | 147   | 39   |     | 2   | 25  | 8  | 20 |    | 143 | 73  | 24  |     | 2   |     | 3167  |
| NOPI              | 12  | 470 | 90  | 56       |     | 110  | 31  |    |     | 106 | 25  |     | 89   | 6     | 3    | 38  | 114 | 10  |    |    |    |     |     |     |     |     | 151 | 1311  |
| PAJA              |     | 32  | 1   |          |     |      |     |    |     |     |     |     |      | 2     |      |     |     |     |    |    |    |     |     |     |     |     |     | 35    |
| PALO              |     | 16  | 4   | 4        | 8   | 28   | 28  | 1  | 17  | 177 | 20  | 9   | 12   | 28    | 11   | 6   | 17  | 10  | 3  | 1  |    |     | 5   | 5   | 7   | 1   | 2   | 420   |
| POJA              |     |     |     |          |     |      |     |    |     |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     | 2   |     |     | 2     |
| RBME              | 1   | 14  | 1   |          |     | 50   | 2   |    | 10  |     |     |     |      |       |      |     |     | 6   |    |    |    |     | 3   | 50  |     | 20  | 2   | 159   |
| RLHA              |     |     |     |          |     |      |     |    |     |     |     |     |      | 1     |      |     |     |     |    |    |    |     |     |     |     |     |     | 1     |
| RTLO              | 1   | 2   | 7   | 3        | 1   | 8    | 5   |    | 5   |     | 1   | 55  | 4    | 3     |      |     | 2   |     |    |    |    |     |     | 6   | 2   | 1   |     | 106   |
| SAGU              |     |     | 1   |          | 1   |      |     |    |     |     |     | 67  |      |       |      |     | 92  |     |    |    |    |     |     |     |     |     |     | 161   |
| SNOW              |     |     |     |          |     |      |     |    |     |     |     |     |      | 2     |      |     |     |     |    |    |    |     |     |     |     |     |     | 2     |
| SPEI              |     |     |     | 2        |     | 6    |     |    | 4   |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 12    |
| STEI              |     |     |     |          |     |      |     |    | 2   |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 2     |
| SUSC              |     | 52  | 225 |          | 12  | 10   | 8   |    | 10  |     |     |     |      |       |      |     |     | 20  |    |    |    | 20  | 110 | 283 | 170 | 155 |     | 1075  |
| TUSW              |     |     | 1   |          | 5   | 16   |     | 6  |     |     |     |     |      | 3     | 1    |     | 10  | 14  |    |    |    |     |     |     |     |     | 2   | 58    |
| UNEI <sup>1</sup> |     |     |     |          |     | 150  |     |    |     |     |     |     |      |       |      |     |     |     |    |    |    |     |     |     |     |     |     | 150   |
| WWSC              |     |     |     |          |     | 3    |     |    |     |     | 22  |     |      |       |      |     |     |     |    |    |    |     | 40  |     | 22  | 7   |     | 94    |

<sup>1</sup> COEH, KIEH = common and king eider hens in singles and flocks (UNEI = unidentified eider).

| Species           | Mainland | Barrier Isl. | Total |
|-------------------|----------|--------------|-------|
| AMWI              | 5        |              | 5     |
| ARTE              | 655      | 35           | 690   |
| BLBR              | 2212     | 42           | 2254  |
| BLSC              | 10       |              | 10    |
| CAGO              | 290      | 3            | 293   |
| COEH <sup>1</sup> | 56       | 3            | 59    |
| COEI              | 1457     | 420          | 1877  |
| COGO              | 1        |              | 1     |
| COME              | 3        | 1            | 4     |
| GLGU              | 1799     | 278          | 2077  |
| GRSC              | 840      |              | 840   |
| GWFG              | 1587     | 116          | 1703  |
| KIEH <sup>1</sup> | 13       |              | 13    |
| KIEI              | 1608     | 56           | 1664  |
| LSGO              | 1678     | 601          | 2279  |
| LTDU              | 3167     | 282          | 3449  |
| NOPI              | 1311     | 55           | 1366  |
| PAJA              | 35       | 1            | 36    |
| PALO              | 420      | 41           | 461   |
| POJA              | 2        |              | 2     |
| RBME              | 159      | 10           | 169   |
| RLHA              | 1        |              | 1     |
| RTLO              | 106      | 11           | 117   |
| SAGU              | 161      |              | 161   |
| SNOW              | 2        |              | 2     |
| SPEI              | 12       |              | 12    |
| STEI              | 2        |              | 2     |
| SUSC              | 1075     | 115          | 1190  |
| TUSW              | 58       | 17           | 75    |
| UNEI <sup>2</sup> | 150      |              | 150   |
| WWSC              | 94       |              | 94    |
| YBLO              |          | 1            | 1     |

Table 3. Total birds for all areas, ACP coastline, 22-24 June 2007.

 $^{1}$  COEH, KIEH = common and king eider hens in singles and flocks.  $^{2}$  UNEI = unidentified eider.

| SEGMENT | SING       | BLES   |     | PAIRS                        | JUVENILE | FL    | OCKED BIRDS                  | TOTAL                 |
|---------|------------|--------|-----|------------------------------|----------|-------|------------------------------|-----------------------|
|         |            |        |     |                              | MALES    |       |                              | OBSERVED <sup>3</sup> |
|         | Adult Male | Female | No. | Indicated Total <sup>1</sup> |          | Total | Male:Dark Birds <sup>2</sup> |                       |
| 1       |            |        |     |                              |          |       |                              | 0                     |
| 2       |            |        | 1   | 1                            |          | 41    |                              | 43                    |
| 3       | 5          | 1      | 7   | 12                           |          | 15    |                              | 35                    |
| 4       | 19         |        | 25  | 44                           |          | 18    | 12:6                         | 87                    |
| 5       | 4          | 1      | 18  | 22                           |          | 100   | 60:40                        | 141                   |
| 6       | 24         | 10     | 29  | 53                           |          | 180   | 64:61                        | 272                   |
| 7       | 3          | 1      | 7   | 10                           |          |       |                              | 18                    |
| 8       |            |        |     |                              |          |       |                              | 0                     |
| 9       | 10         |        | 5   | 15                           |          | 75    | 38:37                        | 95                    |
| 10      | 14         | 7      | 28  | 42                           |          | 153   | 85:60                        | 230                   |
| 11      | 8          |        | 3   | 11                           |          | 130   | 7:8                          | 144                   |
| 12      | 1          |        |     | 1                            |          |       |                              | 1                     |
| 13      |            |        |     |                              |          |       |                              | NS                    |
| 14      |            |        |     |                              |          |       |                              | 0                     |
| 15      |            |        | 2   | 2                            |          |       |                              | 4                     |
| 16      | 1          |        |     | 1                            |          |       |                              | 1                     |
| 17      |            |        |     |                              |          |       |                              | 0                     |
| 18      |            |        |     |                              |          |       |                              | NS                    |
| 19      | 1          |        |     | 1                            |          |       |                              | 1                     |
| 20      | 41         | 1      | 7   | 48                           |          | 33    | 16:10                        | 89                    |
| 21      |            |        | 3   | 3                            |          |       |                              | 6                     |
| 22      | 2          |        |     | 2                            |          |       |                              | 2                     |
| 23      |            |        |     |                              |          |       |                              | 0                     |
| 24      | 14         | 10     | 7   | 21                           |          |       |                              | 38                    |
| 25      | 39         | 18     | 45  | 84                           |          | 40    | 28:12                        | 187                   |
| 26      | 22         | 7      | 33  | 55                           |          | 10    | 5:5                          | 105                   |
| 27      | 8          |        | 2   | 10                           |          |       |                              | 12                    |
| 28      |            |        | 1   | 1                            |          |       |                              | 2                     |
| 29      |            |        |     |                              |          |       |                              | NS                    |
| 181     |            |        |     |                              |          |       |                              | 0                     |

Table 4a. Common eider sex and age composition and totals in shoreline segments, ACP, 2007.

<sup>1</sup> Single males+pairs = Indicated total pairs.
<sup>2</sup> Flocks from which sex ratios were obtained. Dark birds = females and subadults.
<sup>3</sup> Total observed = singles+2x pairs+ juveniles+ flocks.

| SEGMEN | SINC  | GLES       |    | PAIRS | JUVENIL | FLO  | CKED BIRDS | TOTAL |
|--------|-------|------------|----|-------|---------|------|------------|-------|
| Т      |       |            |    |       |         |      |            |       |
|        |       | · <u> </u> |    |       | MALES   |      |            |       |
|        | Adult | Female     | No |       |         | Tota | Male:Dark  |       |
|        | Male  |            | •  | lotal |         |      | Birds      |       |
| 190    | 2     |            | 2  | 4     |         | 25   |            | 31    |
| 191    | 2     |            | 1  | 3     |         |      |            | 4     |
| 192    | 7     |            | 1  | 8     |         |      |            | 9     |
| 193    |       | 1          | 3  | 3     |         |      |            | 7     |
| 194    |       |            |    |       |         |      |            | 0     |
| 195    |       | 2          | 9  | 9     |         |      |            | 20    |
| 196    | 12    |            | 3  | 15    |         |      |            | 18    |
| 197    | 19    |            | 9  | 28    |         |      |            | 37    |
| 198    | 63    |            | 12 | 75    |         | 45   |            | 132   |
| 199    | 8     |            |    | 8     |         |      |            | 8     |
| 200    | 9     |            | 5  | 14    |         |      |            | 19    |
| 201    | 1     |            | 9  | 10    |         |      |            | 19    |
| 202    |       |            |    |       |         |      |            | 0     |
| 203    | 3     |            | 1  | 4     |         |      |            | 5     |
| 204    | 3     |            | 4  | 7     |         |      |            | 11    |
| 205    | 1     |            |    | 1     |         |      |            | 1     |
| 206    |       |            |    |       |         | 25   | 12:13      | 25    |
| 207    | 1     |            |    | 1     |         |      |            | 1     |
| 211    | 1     |            | 2  | 3     |         | 12   | 6:6        | 17    |
| 212    | 28    |            | 13 | 41    |         |      |            | 54    |
| 213    |       |            | 1  | 1     |         |      |            | 2     |
| 214    | 1     |            | 1  | 2     |         |      |            | 3     |

Table 4b. Common eider sex and age composition and totals in barrier island segments, ACP, 2007.

<sup>1</sup> Single males+pairs = Indicated total pairs.
<sup>2</sup> Flocks from which sex ratios were obtained. Dark birds = females and subadults.
<sup>3</sup> Total observed = singles+2x pairs+ juveniles+ flocks.

Table 5. Proportional distribution of totals and indicated pairs of common eiders along the ACP, 1999-2007.

| AREA            | 1999   | 9 (%)  | 2000   | ) (%)  | 2001   | 1 (%)  | 2002   | 2 (%)  | 200    | 3 (%)  | 2004   | 4 (%)  | 200    | 5 (%)  | 200    | 6 (%)  | 2007   | 7 (%)  |
|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| (Segment No.)   | Total  | Pairs  |
| Kasegaluk       | 176    | 69     | 914    | 119    | 747    | 165    | 1802   | 177    | 657    | 171    | 1553   | 414    | 664    | 317    | 642    | 223    | 596    | 142    |
| Lagoon (2-7)    | (13.0) | (12.1) | (34.5) | (13.8) | (26.3) | (24.4) | (40.5) | (21.0) | (31.0) | (19.6) | (51.2) | (30.9) | (25.7) | (28.3) | (20.7) | (18.5) | (30.8) | (21.0) |
| Peard Bay (10)  | 106    | 36     | 7      | 1      | 288    | 73     | 258    | 83     | 121    | 67     | 109    | 48     | 81     | 42     | 531    | 83     | 230    | 42     |
|                 | (7.8)  | (6.3)  | (0.3)  | (0.1)  | (10.2) | (10.8) | (5.8)  | (9.9)  | (5.7)  | (7.7)  | (3.6)  | (3.6)  | (3.1)  | (3.7)  | (17.1) | (6.9)  | (11.9) | (6.2)  |
| Central         | 542    | 378    | 760    | 424    | 531    | 277    | 1347   | 350    | 647    | 331    | 784    | 512    | 733    | 375    | 620    | 437    | 519    | 289    |
| Beaufort Sea    | (40.1) | (66.1) | (28.7) | (49.1) | (18.7) | (41.0) | (30.3) | (41.6) | (30.5) | (37.9) | (25.8) | (38.2) | (28.4) | (33.5) | (20.0) | (36.2) | (26.8) | (42.8) |
| Coast (18-21,   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 181-214)        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Canning R       | 299    | 75     | 956    | 319    | 1242   | 158    | 1005   | 224    | 476    | 267    | 523    | 341    | 1084   | 377    | 1239   | 445    | 346    | 173    |
| Demarcation     | (22.1) | (13.1) | (36.1) | (37.0) | (43.8) | (23.4) | (22.6) | (26.6) | (22.4) | (30.5) | (17.2) | (25.4) | (42.0) | (33.6) | (39.9) | (36.9) | (17.9) | (25.6) |
| Bay (22-29)     |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Other areas (1, | 230    | 14     | 12     | 0      | 29     | 3      | 37     | 7      | 222    | 38     | 64     | 25     | 19     | 10     | 70     | 19     | 245    | 30     |
| 8-9, 11-17)     | (17.0) | (2.5)  | (0.5)  |        | (1.0)  | (0.4)  | (0.8)  | (0.8)  | (10.4) | (4.3)  | (2.1)  | (1.9)  | (0.7)  | (0.90) | (2.3)  | (1.6)  | (12.7) | (4.4)  |
| TOTALS          | 1353   | 572    | 2649   | 863    | 2837   | 676    | 4449   | 841    | 2123   | 874    | 3033   | 1340   | 2581   | 1121   | 3102   | 1207   | 1936   | 676    |

Table 6. Species totals for all areas, ACP, 1999-2007.

|                   |      | -     | -    | Tota  | al Birds Obse | erved | -    | -    | -    |
|-------------------|------|-------|------|-------|---------------|-------|------|------|------|
| Species           | 1999 | 2000  | 2001 | 2002  | 2003          | 2004  | 2005 | 2006 | 2007 |
| AGWT              | 0    | 0     | 0    | 6     | 0             | 0     | 0    | 3    | 0    |
| AMWI              | 0    | 0     | 0    | 0     | 0             | 10    | 2    | 0    | 5    |
| ARTE              | 901  | 127   | 1530 | 241   | 671           | 1628  | 654  | 407  | 690  |
| BLBR              | 2329 | 1411  | 2215 | 1319  | 2656          | 3836  | 1843 | 3242 | 2254 |
| BLGU              | 1    | 8     | 18   | 9     | 823           | 4     | 1    | 3    | 0    |
| BLKI              | 0    | 0     | 29   | 92    | 0             | 15    | 3    | 10   | 0    |
| BLSC              | 3    | 0     | 0    | 546   | 0             | 14    | 35   | 29   | 10   |
| CAGO              | 1554 | 659   | 465  | 425   | 823           | 577   | 794  | 1391 | 293  |
| CEJV <sup>1</sup> | 18   | 8     | 10   | 0     | 0             | 30    | 2    | 19   | 0    |
| COEH <sup>2</sup> | 92   | 330   | 295  | 215   | 114           | 88    | 60   | 176  | 59   |
| COEI <sup>3</sup> | 1243 | 2311  | 2532 | 4234  | 2009          | 2915  | 2519 | 2907 | 1877 |
| COGO              | 0    | 0     | 0    | 0     | 0             | 0     | 0    | 0    | 1    |
| COLO              | 0    | 0     | 1    | 0     | 2             | 0     | 2    | 5    | 0    |
| COMU              | 0    | 0     | 0    | 40    | 0             | 0     | 0    | 0    | 0    |
| COME              | 0    | 0     | 4    | 0     | 0             | 0     | 0    | 65   | 4    |
| CORA              | 0    | 0     | 1    | 2     | 2             | 1     | 0    | 0    | 0    |
| EIHE <sup>2</sup> | 0    | 0     | 0    | 0     | 0             | 0     | 0    | 5    | 0    |
| GOEA              | 0    | 0     | 0    | 0     | 0             | 0     | 0    | 1    | 0    |
| GLGU              | 4462 | 3345  | 5499 | 2703  | 7031          | 5478  | 3959 | 1988 | 2077 |
| GRSC              | 1011 | 944   | 744  | 99    | 495           | 408   | 602  | 905  | 840  |
| GWFG              | 521  | 1269  | 623  | 425   | 255           | 1411  | 454  | 2540 | 1703 |
| GYRF              | 0    | 0     | 0    | 0     | 0             | 1     | 0    | 1    | 0    |
| HEGU              | 0    | 0     | 0    | 0     | 0             | 0     | 0    | 2    | 0    |
| JAEG              | 0    | 12    | 0    | 0     | 1             | 4     | 0    | 5    | 0    |
| KEJV <sup>1</sup> | 0    | 0     | 0    | 0     | 0             | 1     | 0    | 1    | 0    |
| KIEH <sup>2</sup> | 9    | 61    | 48   | 146   | 35            | 37    | 24   | 72   | 13   |
| KIEI              | 892  | 427   | 1716 | 10719 | 5334          | 2327  | 1013 | 3067 | 1664 |
| LGSH              | 0    | 0     | 0    | 0     | 7             | 0     | 2    | 0    | 0    |
| LSGO              | 124  | 986   | 192  | 164   | 454           | 468   | 774  | 1060 | 2279 |
| LTJA              | 1    | 3     | 0    | 0     | 1             | 5     | 0    | 1    | 0    |
| LTDU              | 4890 | 5726  | 5544 | 5110  | 9724          | 3527  | 3972 | 7776 | 3449 |
| MEGU              | 0    | 0     | 8    | 21    | 0             | 0     | 0    | 0    | 0    |
| MESH <sup>4</sup> | 0    | 0     | 62   | 0     | 0             | 0     | 0    | 0    | 0    |
| NOFU              | 0    | 0     | 0    | 1     | 0             | 0     | 0    | 0    | 0    |
| NOPI              | 1268 | 779   | 2752 | 516   | 879           | 751   | 553  | 1651 | 1366 |
| NSHO              | 0    | 0     | 0    | 0     | 0             | 0     | 0    | 8    | 0    |
| PAJA              | 4    | 9     | 81   | 7     | 10            | 3     | 5    | 19   | 36   |
| PALO              | 443  | 429   | 208  | 537   | 325           | 315   | 166  | 1272 | 461  |
| POJA              | 0    | 3     | 0    | 0     | 4             | 0     | 0    | 10   | 2    |
| RBME              | 710  | 1985  | 194  | 108   | 265           | 643   | 495  | 633  | 169  |
| RLHA              | 0    | 0     | 0    | 0     | 0             | 0     | 0    | 1    | 1    |
| RTLO              | 85   | 198   | 154  | 64    | 233           | 159   | 81   | 253  | 117  |
| SACR              | 2    | 2     | 2    | 2     | 1             | 0     | 0    | 0    | 0    |
| SAGU              | 99   | 4     | 442  | 20    | 185           | 106   | 83   | 210  | 161  |
| SMSH <sup>₄</sup> | 0    | 3     | 0    | 0     | 0             | 4     | 8    | 228  | 0    |
| SNOW              | 14   | 0     | 1    | 6     | 4             | 0     | 15   | 117  | 2    |
| SPEH <sup>2</sup> | 2    | 0     | 0    | 0     | 0             | 1     | 0    | 7    | 0    |
| SPEI              | 11   | 15    | 45   | 14    | 8             | 13    | 18   | 108  | 12   |
| STEI              | 0    | 0     | 2    | 1     | 0             | 0     | 0    | 5    | 2    |
| STEH <sup>2</sup> | 0    | 0     | 0    | 0     | 0             | 0     | 6    | 0    | 0    |
| SUSC              | 2073 | 11113 | 2644 | 1500  | 5764          | 1543  | 3220 | 5591 | 1190 |

|                   | Total Birds Observed |      |      |      |      |      |      |      |      |  |  |  |  |  |
|-------------------|----------------------|------|------|------|------|------|------|------|------|--|--|--|--|--|
| Species           | 1999                 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |  |  |  |  |  |
| TUNE <sup>5</sup> | 9                    | 0    | 0    | 1    | 1    | 0    | 0    | 0    | 0    |  |  |  |  |  |
| TUSW              | 32                   | 84   | 30   | 269  | 49   | 50   | 83   | 180  | 75   |  |  |  |  |  |
| UNEI <sup>6</sup> | 0                    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 150  |  |  |  |  |  |
| WWSC              | 128                  | 765  | 1622 | 1485 | 931  | 1159 | 1235 | 3775 | 94   |  |  |  |  |  |
| YBLO              | 40                   | 51   | 40   | 34   | 48   | 91   | 23   | 99   | 46   |  |  |  |  |  |

Table 6 (continued). Species totals for all areas, ACP, 1999-2007.

<sup>1</sup> CEJV, KEJV = COEI and KIEI juveniles in singles and flocks. (EIHE = unidentified eider hen).
<sup>3</sup> COEI = single adult males and birds in pairs and flocks.
<sup>4</sup> MESH = medium shorebird; SMSH = small shorebird.
<sup>5</sup> TUNE = tundra swan nest.
<sup>6</sup> UNEI= unidentified eider.

| -    | Els els | Tatal      | ۸ مار بال | Daaroo             |                    |
|------|---------|------------|-----------|--------------------|--------------------|
|      | FIOCK   | rotal      | Adult     | Brown              |                    |
| Year | Total   | Classified | Males     | Birds <sup>1</sup> | Ratio <sup>2</sup> |
| 1999 | 546     | 351        | 129       | 222                | 0.6:1              |
| 2000 | 1469    | 1191       | 613       | 578                | 1.1:1              |
| 2001 | 1785    | 1546       | 930       | 616                | 1.5:1              |
| 2002 | 3083    | 2423       | 1533      | 890                | 1.7:1              |
| 2003 | 815     | 363        | 189       | 174                | 1.1:1              |
| 2004 | 1033    | 991        | 665       | 326                | 2.0:1              |
| 2005 | 998     | 743        | 468       | 275                | 1.7:1              |
| 2006 | 1159    | 329        | 171       | 158                | 1.1:1              |
| 2007 | 902     | 591        | 333       | 258                | 1.3:1              |

Table 7. Common eider flock composition along the coastline of the Alaska ACP.

<sup>1</sup> Brown Birds = Females and Subadults. <sup>2</sup> Adult Male:Brown Birds.