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Abstract: The magnetic and electromagnetic induction models and 
inversion strategies that are used to discriminate hazardous UXO from 
non-hazardous shrapnel and scrap metal are described. Discrimination 
methods typically proceed by first recovering a set of parameters that 
specify a physics-based model of the object being interrogated. For EMI, a 
polarizability model is commonly used. For magnetics, the physics-based 
model is generally a static magnetic dipole. Once the parameters are 
recovered by inversion, a subset of the parameters is used as feature 
vectors to guide a statistical or rule-based classifier. The dipole-based 
inversion and classification scheme is described and a number of varia-
tions are considered, including: 1) Dipole-based template matching 
whereby the object’s identity is selected as the best fitting polarization 
model from a predefined library of objects; 2) SEA, where the dipole 
model is replaced with a physically complete forward-modeling scheme. 
SEA is also a template-matching approach; and 3) SMC, where the dipole 
model is replaced by a fictitious charge distribution on a circle or ellipse 
that encloses the UXO or clutter object. The total SMC is then used as a 
feature vector in a statistical or rule-based classification scheme. 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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General Information 

The clearance of military facilities in the United States contaminated with 
unexploded ordnance (UXO) is one of the most significant environmental 
concerns facing the Department of Defense. A 2003 report by the Defense 
Science Board (DSB) on the topic estimated costs of remediation in the 
tens of billions of dollars. The DSB recognized that development of effec-
tive discrimination strategies to distinguish UXO from non-hazardous 
material is one essential technology area where the greatest cost saving to 
the Department of Defense (DoD) can be achieved.  

The objective of project W912HZ-04-C-0039 “UXO Characterization: 
Comparison of Cued-Surveying to Standard Detection and Standard 
Discrimination Approaches,” was to research, develop, optimize, and 
evaluate the efficiencies of different modes of UXO characterization and 
remediation as a function of the density of UXO and associated clutter. 
Survey modes investigated in the research include: 

1. Standard detection survey: All selected anomalies are excavated; 
2. Advanced discrimination survey: Data collected in proximity to each iden-

tified anomaly are inverted for physics-based parameters and statistical or 
analytical classifiers are used to rank anomalies, from which a portion of 
the higher ranked anomalies are excavated; 

3. Cued survey mode: Each selected anomaly is revisited with an interro-
gation platform, high-quality data are collected and analyzed, and a 
decision is made as to whether to excavate the item, or leave it in the 
ground.  

Specific technical objectives of the research were to: 

• Determine the feasibility and effectiveness of various interrogation 
approaches based on the cued survey approach; 

• Determine the feasibility and effectiveness of various interrogation 
sensors including magnetics, ground penetrating radar (GPR), and 
electromagnetic (EM) induction (EMI), and evaluate combinations of 
these sensors; 

• Develop and evaluate the most promising interrogation platform 
designs; 
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• Develop optimal processing and inversion approaches for cued-
interrogation platform datasets; 

• Evaluate the data requirements to execute accurate target parameter-
ization and assess the technical issues of meeting these requirements 
using detection and interrogation survey techniques; 

• Determine which survey mode is most effective as a function of geo-
logical interference, and UXO/clutter density; 

• Investigate the feasibility and effectiveness of using detailed test-stand 
measurements on UXO and clutter to assist in the design of interro-
gation algorithms used in the cued-search mode. 

The main areas of research involved in these coordinated activities 
include: 

• Sensor phenomenology including GPR, EMI , and magnetometry; 
• Data Collection Systems; platforms, field survey systems, field inter-

rogation systems; 
• Parameter estimation techniques; inversion techniques (single, coop-

erative, joint), forward-model parameterizations, processing strategies; 
and 

• Classification methods; thresholding, statistical models, information 
systems. 

This report “UXO Characterization: Comparing Cued Surveying to 
Standard Detection and Discrimination Approaches: Report 6 of 9 – 
Advanced Electromagnetic and Magnetic Methods for Discrimination of 
Unexploded Ordnance” is one of a series of nine reports written as part of 
W912HZ-04-C-0039: 

1. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 1 of 9 – Summary Report; 

2. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 2 of 9 – Ground Penetrating 
Radar for Unexploded Ordnance Characterization; Fundamentals; 

3. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 3 of 9 – Test Stand Magnetic and 
Electromagnetic Measurements of Unexploded Ordnance; 
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4. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 4 of 9 – UXO Characterization 
Using Magnetic, Electromagnetic, and Ground Penetrating Radar 
Measurements at the Sky Research Test Plot; 

5. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 5 of 9 – Optimized Data Collec-
tion Platforms and Deployment Modes for Unexploded Ordnance 
Characterization; 

6. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 6 of 9 – Advanced Electromag-
netic and Magnetic Methods for Discrimination of Unexploded Ordnance; 

7. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 7 of 9 – Marine Corps Base Camp 
Lejeune: UXO Characterization Using Ground Penetrating Radar; 

8. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 8 of 9 – Marine Corps Base Camp 
Lejeune: UXO Characterization Using Magnetic and Electromagnetic 
Data; 

9. UXO Characterization: Comparing Cued Surveying to Standard Detection 
and Discrimination Approaches: Report 9 of 9 – Former Lowry Bombing 
and Gunnery Range: Comparison of UXO Characterization Performance 
Using Area and Cued-interrogation Survey Modes. 
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1 Introduction 

Magnetic and electromagnetic (EM) methods represent the primary 
sensor types used for detection of UXO. Over the past 10 years, significant 
research effort has been focused on developing methods to discriminate 
between hazardous UXO and non-hazardous scrap metal, shrapnel, and 
geology (e.g., Hart et al. 2001; Collins et al. 2001; Pasion and Oldenburg 
2001a, 2001b; Zhang et al. 2003a, 2003b; Billings 2004). The most 
promising discrimination methods typically proceed by first recovering a 
set of parameters that specify a physics-based model of the object being 
interrogated. For example, in time-domain electromagnetic (TEM) data, 
the parameters comprise the object location and the polarization tensor 
(typically two or three collocated orthogonal dipoles along with their 
orientation and some parameterization of the time-decay curve). For 
magnetics, the physics-based model is generally a static magnetic dipole. 
Once the parameters are recovered by inversion, a subset of the 
parameters is used as feature vectors to guide either a statistical or rule-
based classifier. 

Magnetic and EM phenomenologies have different strengths and weak-
nesses. Magnetic data are simpler to collect, are mostly immune to sensor 
orientation and are better able to detect deeper targets. EM data are sensi-
tive to non-ferrous metals, are better at detecting smaller items, and are 
able to be used in areas with magnetic geology. There are significant 
advantages in collecting both types of data, including increased detection, 
stabilization of the EM inversions by cooperative inversion of the mag-
netics (Pasion et al., in preparation) and extra dimensionality in the 
feature space that may improve classification performance (e.g., Zhang 
et al. 2003a). However, these advantages need to be weighed against the 
extra costs of collecting both data types. 

Three key elements impact the success of the UXO discrimination process 
described in the previous paragraphs: 

1. Creation of a map of the geophysical sensor data: This includes all actions 
required to form an estimate of the geophysical quantity in question 
(magnetic field in nanoTesla [nT], amplitude of EMI response at a given 
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time-channel, etc.) at each of the visited locations. The estimated quantity 
is dependent on the following: 
a. Hardware, including the sensor type, deployment platform, position 

and orientation system, and the data acquisition system used to record 
and time-stamp the various sensors; 

b. Survey parameters such as line spacing, sampling rate, calibration 
procedures, etc.; 

c. Data processing such as merging of position/orientation information 
with sensor data, noise and background filtering applied; 

d. Background environment including geology, vegetation, topography, 
cultural features, etc. 

e. Depth and distribution of ordnance and clutter. 
2. Anomaly selection and feature extraction: This includes the detection of 

anomalous regions and the subsequent extraction of a dipole (for 
magnetics) or polarization tensor (for TEM) model for each anomaly. 
Where magnetic and EMI data have both been collected, the magnetic 
data can be used as constraints for the EMI model via a cooperative 
inversion process.  

3. Classification of anomalies: Given the feature vectors and training data 
over a portion of the site, the final step in the process is the creation of a 
ranked dig-list. Either statistical or rule-based classifiers are used to order 
anomalies from most- to least-likely UXO.  

This report describes the above dipole-based inversion and classification 
scheme. A number of variations to the scheme presented above are also 
considered, including:  

1. Dipole-based template matching, whereby the object identity is selected as 
the best fitting polarization model from a predefined library of objects; 

2. Standardized Excitations Approach (SEA) where the dipole model is 
replaced with a physically complete forward modeling scheme. SEA is also 
a template-matching approach; and 

3. Surface Magnetic Charge (SMC) method, where the dipole model is 
replaced by a fictitious charge distribution on a circle or ellipse that 
encloses the UXO or clutter item. The total SMC is then used as a feature 
vector in a statistical or rule-based classification scheme.  

The advantage of the SEA and SMC methods is that, unlike the dipole 
model, they are able to reproduce the response of an object in both the 
near and far fields. However, the methods are not yet as mature as the 
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dipole model, and the work described herein must be considered pre-
liminary. Neither method can currently be used for discrimination of 
live-site data. In contrast, all of the dipole-based methods described here 
have been implemented in the University of British Columbia’s (UBC’s) 
UXOLab software package and are currently undergoing testing and 
evaluation at a number of sites.  

UXOLab is a Matlab-based software package developed over a six-year 
period at the UBC-Geophysical Inversion Facility (GIF), principally 
through funding by the US Army Corps of Engineers (USACE) Engineer 
Research and Development Center (ERDC) (DAAD19-00-1-0120). Over 
the past three years (as part of this project and others), Sky Research and 
UBC-GIF have considerably expanded the capabilities of the software. 

All of the methods described in this report assume that there is one object 
in the field of view of the sensor. That is, the case of highly cluttered sites 
where the responses from multiple items overlap is not considered. 
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2 UXO Discrimination Using Dipole Models 

The two key elements of dipole-based classification are (1) feature extrac-
tion (or equivalently the inversion of the dipole parameters); and 
(2) classification. This section of the report reviews the methods used for 
these two steps. 

2.1. Feature extraction 

2.1.1. Feature extraction: Electromagnetic induction 

In the EMI method, a time-varying field illuminates a buried, conductive 
target. Currents induced in the target then produce a secondary field that 
is measured at the surface. EM data inversion involves using the secondary 
field generated by the target for recovery of the position, orientation, and 
parameters related to the target’s material properties and shape. For UXO, 
the inverse problem is simplified by assuming that the secondary field can 
be accurately approximated as a dipole.  

In order to illuminate a buried target, TEM sensors generate a large pri-
mary field that is rapidly switched off. The currents induced in the buried 
target decay with time, generating a decaying secondary field that is 
measured at the surface. The time-varying secondary magnetic field B(t) 
at a location r from the dipole m(t) is  

 ( ) ( ) (μ
ˆˆ

π
ot t
r

= ⋅ −3 3
4

B m rr )I  (1) 

where r̂ = r / r  is the unit-vector pointing from the dipole to the observa-

tion point, I is the 3 × 3 identity matrix, μ0 = 4 π × 10-7 H/m is the permit-
tivity of free space and r = |r| is the distance between the center of the 
object and the observation point. Equation 1 assumes an ideal step-off 
field and can be modified to account for arbitrary transmitter waveforms.  

The dipole induced by the interaction of the primary field Bo and the 
buried target is given by 

 ( ) ( )
μ o

o

t t= ⋅1
m M B  (2) 
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where M(t) is the target’s polarization tensor. The polarization tensor 
governs the decay characteristics of the buried target and is a function of 
the shape, size, and material properties of the target. The polarization 
tensor is written as: 

 ( )
( )

( )
( )

L t

t L t

L t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

1

2

3

0 0
0
0 0

M 0  (3) 

using the convention that , so that polarization 

tensor parameters are organized from largest to smallest. The polarization 
tensor components are parameterized such that the target response can be 
written as a function of a model vector containing components that are a 
function of target characteristics. Particular parameterizations differ 
depending on the instrument (number of time channels, time range 
measured, etc.) and the group implementing the work. Bell et al. (2001) 
solve for the components of the polarization tensor at each time channel, 
and this procedure is used for the four-channel Geonics EM-61 MKII. The 
Geonics EM-63 uses the Pasion-Oldenburg (P-O) formulation (Pasion and 
Oldenburg 2001a, 2001b), with , 

( ) ( ) ( )L t L t L t≥ ≥1 1 2 1 3 1

αi = 0

 ( ) ( ) ( )β
 α exp / γi

i i iL t k t t
−= + − i

3

 (4) 

for I = {1, 2, 3} and with the convention that . For a rod-like 

body of revolution (BOR), the axial polarization is the largest L1, while the 
transverse polarizations are smaller and equal, L2 = L3 (Pasion and 
Oldenburg 2001a, 2001b). For a plate-like body of revolution, the trans-
verse polarizations are equal, L1 = L2, and larger than the axial 
polarization.  

k k k≥ ≥1 2

The GEM-3 (frequency domain system) uses either the instantaneous 
polarization model or the four-parameter model of Miller et al. (2001), 

 ( ) ( )
( )
ωτ

ω
ωτ

c

c

i
L k s

i

⎛ ⎞− ⎟⎜ ⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜ +⎝ ⎠

2

1
 (5) 

where ω is angular frequency, k is the object amplitude, τ is a response 
time-constant, s is a factor that controls the magnitude of asymptotes at 
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high and low frequency, and c is a parameter that controls the width of the 
peak in the in-phase data. 

Given a set of observations dobs, the parameter estimation is formulated as 
an optimization problem through Bayes theorem: 

 ( ) ( ) ( )
( )

|p p
p

p
=

obs
obs

obs

m d m
m|d

d
 (6) 

where m is the vector of model parameters (location, orientation and 
polarization tensor parameters), p(m) is the probability distribution 
representing prior information, p(dobs) is the marginal probability density 
of the experimental data, and p(dobs|m) is the conditional probability 
density of the experimental data, which describes the ability of the model 
to reproduce the experimental data. The a-posteriori conditional prob-
ability density p(m|dobs) is the probability density ascribed to m after 
collecting the data. The a-posteriori conditional probability density encap-
sulates all available information on the model parameters, and the model 
that maximizes it is usually regarded as the solution to the inverse prob-
lem. A value of m is estimated that maximizes the log of the a-posteriori 
conditional probability density 

 ({* max logm p ) }⎡ ⎤= ⎢ ⎥⎣ ⎦
obs

m
m|d  (7) 

With a single data set and no prior information on the model parameters 
(except bound constraints on the model parameters), the inversion 
reduces to  

( ) /minimize  φ ( ) ,    L U
d iV F m sub i iject to m m m− ⎡ ⎤= − ≤⎢ ⎥ ≤⎣ ⎦

21 21
2

obsm d  (8) 

where F(m) is a vector comprising the forward modeled data at the sam-
pled locations,  and are the lower and upper bounds on parameter i 

and Vd is the co-variance matrix of the data. Efficient algorithms for the 
solution of this optimization problem have been implemented for various 
polarization tensor formulations within UXOLab (including two and three 
independent component polarization tensors). 

L
im U

im
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The accuracy of the feature vectors recovered by inversion depends on the 
signal-to-noise ratio, position and orientation accuracy of the sensor data, 
and spatial coverage of the available data. As described in Appendix A, 
accurately resolving both the transverse and axial polarizations of a buried 
object can be challenging when using horizontal transmitter loops (such as 
the Geonics EM-61 and EM-63 and Geophex GEM-3 data used in this 
project). Successful discrimination requires careful attention to factors 
that affect data quality (see Report 5 in this series for examples of plat-
forms and data collection procedures developed as part of this project). 

2.1.2. Feature extraction: Magnetics 

For magnetics, the physics-based model most commonly used is a dipole. 
This comprises a location (horizontal position and depth) and the magni-
tude and orientation of the dipole moment. More complicated models 
comprising quadrupoles and octupoles have been developed (Billings et al. 
2002a, 2002b). However, in most UXO detection scenarios the sensor is in 
the far field of the source body and moments of higher order than the 
dipole are poorly resolved. The contribution of the dipole to the magnetic 
field decays as the third power of distance from the object and dominates 
the far field, 

 ( ) (μ
ˆˆ

π
o

r
= ⋅ −3 3

4
B r m rr I)  (9) 

where the terms were defined earlier. As for the TEM case, a bound-
constrained optimization problem is solved to extract feature vectors from 
each anomaly.  

2.2. Classification of anomalies 

At this stage in the process, feature vectors have been established for each 
anomaly and a decision must be made as to which items should be exca-
vated as potential UXO. Rule-based classifiers use relationships derived 
from the underlying physics to partition the feature space. Examples 
include the ratio of TEM decay parameters (Pasion and Oldenburg 2001a, 
2001b) and magnetic remanence (Billings 2004). This project focuses on 
statistical classification techniques that have proven to be very effective at 
discrimination at various test sites (e.g., Zhang et al. 2004; Beran et al. 
2004). 
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Statistical classifiers have been applied to a wide variety of pattern recog-
nition problems, including optical character recognition, bioinformatics, 
and UXO discrimination. Within this field there is an important dich-
otomy between supervised and unsupervised classification. Supervised 
classification makes classification decisions for a test set comprised of 
unlabelled feature vectors. The classifier performance is optimized using a 
training data set for which labels are known. In unsupervised classifica-
tion there is only a test set; labels are unknown for all feature vectors. 
Most applications of statistical classification algorithms to UXO discrimi-
nation have used supervised classification; the training data set is gen-
erated as targets are excavated. More recently, unsupervised methods have 
been used to generate a training data set which is an informative sample of 
the test data (Zhang et al. 2004). In addition, semi-supervised classifiers, 
which exploit both labeled data and the topology of unlabelled data, have 
been applied to UXO discrimination in one study (Zhang et al. 2004). 

Figure 1 summarizes the supervised classification process within the sta-
tistical framework. Given test and training data sets, features can be 
extracted from the data, a relevant subset of these features can be selected, 
and the classifier can be optimized using the available training data. 
Because the predicted performance of the classifier is dependent upon the 
feature space, the learning stage can involve further experimentation with 
feature extraction and selection before adequate performance is achieved.  

 
Figure 1. A framework for statistical pattern recognition. 

There are two (sometimes equivalent) approaches to partitioning the 
feature space. The generative approach models the underlying probability 
distributions, which are assumed to have produced the observed feature 
data. The starting point for any generative classifier is Bayes rule: 

 ( ) ( ) ( )P ω P ω P ωi i∝x x i  (10) 
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The likelihood function (P ωix )  computes the probability of observing the 

feature vector x given the class ωi. The prior probability quantifies 

the expectation of how likely it is to observe class . Bayes rule provides a 

mechanism for classifying test feature vectors: assign x to the class with 
the largest a posteriori probability. Contours along which the posterior 
probabilities are equal define decision boundaries in the feature space.  

( )P ωi

ωi

An example of a generative classifier is discriminant analysis, which 
assumes a Gaussian form for the likelihood function. Training this classi-
fier involves estimating the means and covariances of each class. If equal 
covariances are assumed for all classes, the decision boundary is linear. 
While these assumptions may seem overly restrictive, in practice linear 
discriminant analysis performs quite well in comparison with more exotic 
methods and is often used as a baseline classifier when assessing 
performance. 

Other generative classifiers assume a nonparametric form for the likeli-
hood function. For example, the probabilistic neural network (PNN) 
models the likelihood for each class as a superposition of kernel functions. 
The kernels are centered at the training data for each class. In this case the 
complexity of the likelihood function (and hence the decision boundary) is 
governed by the width of the kernels (Figure 2).  

 
Figure 2. Nonparametric density estimate using Gaussian kernels. Kernel centers are shown as crosses. 

A large kernel width produces a smooth distribution (left) compared to a small kernel width (right). 
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The discriminative approach is not concerned with underlying distribu-
tions but rather seeks to identify decision boundaries, which provide an 
optimal separation of classes. For example, a support vector machine 
(SVM) constructs a decision boundary by maximizing the margin between 
classes. The margin is defined as the perpendicular distance between 
support planes which bound the classes, as shown in Figure 3. The deci-
sion boundary then bisects the support planes (the boundary does not 
have to be linear as shown in the example). This formulation leads to a 
constrained optimization problem: maximize the margin between classes 
subject to the constraint that the training data are classified correctly. An 
advantage of the SVM method over other discriminative classifiers (e.g., 
neural networks) is that there is a unique solution to the optimization 
problem. 

 
Figure 3. Support vector machine formulation for constructing a 

decision boundary. The decision boundary bisects support planes 
bounding the classes. 

With all classification algorithms, a balance must be struck between 
obtaining good performance on the training data and generalizing to a test 
data set. An algorithm that classifies all training data correctly may 
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produce an overly complex decision boundary, which may not perform 
well on the test data. In the literature this is referred to as “bias-variance 
trade-off” and is addressed by constraining the complexity of the decision 
boundary (regularization). In cases such as linear discriminant analysis, 
the regularization is implicit in specifying the likelihood function. Alterna-
tively, the complexity of the fit can be explicitly governed by regularization 
parameters (e.g., the width of kernels in a PNN or Lagrange multipliers in 
an SVM). These parameters are typically estimated from the training data 
using cross-validation, which sets aside a portion of the training data to 
assess classifier performance for a given regularization.  

2.3. Examples of the dipole modeling approach 

The polarization tensor formulation was used extensively within this 
project, for the following purposes: 

1. To fit high-quality Geonics EM-61, Geonics EM-63, and Geophex GEM-3 
data collected over a number of UXO and calibration items at the USACE 
ERDC test stand in Vicksburg, MS (see Report 3); 

2. To fit magnetic, TEM, and frequency-domain electromagnetic (FEM) data 
collected over the Sky Research test plot in Ashland, OR (see Report 4). 

3. To determine the improvement in performance of discrimination and 
cued-interrogation platforms developed under this project (see Report 5); 

4. For the discrimination mode data collected at the Marine Corps Base 
Camp Lejeune, NC (see Report 8); 

5. For the discrimination and cued-interrogation data collected at the Rocket 
Range and 20-millimeter (mm) Range Fan sites at the Former Lowry 
Bombing and Gunnery Range (FLBGR), CO (see Report 9);  

Statistical classification methods were used to rank EM-61 and EM-63 
data collected at Camp Lejeune and FLBGR. 
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3 Dipole-Based Fingerprinting Algorithm 

As part of this project, a library- (or fingerprinting-) based technique was 
developed for the identification of UXO from time domain electromagnetic 
data. The high fidelity data acquired over a number of different ordnance 
items at the USACE ERDC test stand (see Report 3) were inverted for 
polarization tensors. The polarization tensors are functions of the target 
only and are used to characterize each member of the library. For each 
polarization tensor within the library, a template is generated. A template 
is defined as the data predicted by the polarization tensor that best fits the 
observed data. Generating this template requires solving a non-linear 
inverse problem for the orientation and location of a target. Each of the 
data templates is then compared to the observed data. To determine if the 
anomaly is likely generated by one of the targets, users can either find the 
template with the minimum error (for example, least squares) or the 
maximum correlation to the observed data. By not inverting for model 
parameters directly, tradeoffs between polarization tensor values and 
orientation and position can be avoided. This method is not meant to 
replace parametric inversion, but rather provides an additional analysis 
tool when working with data that do not support inverting for model 
parameters directly. 

The objective of the template-matching analysis is to determine, from a list 
of M targets, the target that is most likely to have generated the observed 
data dobs. Each target in the list is characterized by model parameters, 
represented by the vector pti. Both dipole polarization parameters and SEA 
reduced source sets (RSS) are used for the vector of model parameters (see 
the next section for a discussion on SEA). For each pti in the library, deter-
mine the location ri, orientation, represented by angles φi and θi and back-
ground characteristics pbg, which best fits the observed data dobs. The 
solution is determined by obtaining the maximum likelihood solution. 
The data predicted by this recovered model, dipred = F[ri, φi, θi, pt i, pbgi] 
= F[mi], are referred to as the template for target i. The target template 
dipred that is most similar to the observed data dobs is selected as the most 
likely target. A number of measures compare the target templates with the 
observed data, including measures of maximum correlation or minimum 
error. There are also several ways with which to define the minimum error. 
Riggs et al. (2001) outline the derivation of the minimum least squares 
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from a generalized likelihood ratio test (GLRT) with Gaussian data 
statistics. The likelihood ratio test for two targets is 

 
( )
( )

( )( )
( )( )

target1
|

η
|

target2

p p C C

p C Cp

−<
≡

> −

obs

obs

d p p
pd p

1 2 01 11

1 12 222

 (11) 

where Cij is the cost of classifying the target as pi when the target is pj , and 
p(pi) is the prior probability for the ith class. If the < condition applies, 
then target 1 is selected, otherwise target 2 is selected. The GLRT is 
obtained by substituting the maximum likelihood estimate into Equa-
tion 11. Considering two targets with equal prior probability of producing 
the anomaly, and assuming that an incorrect classification produces the 
same cost, η = 1. By taking the logarithm of the resulting expression, the 
decision criterion is to simply select the target that has the smallest least 
squares error: 

( ) ( )/ /

target1

( ,θ,φ, , ) ( ,θ,φ, , )

target2

t bg t bg
d dV F V F− −<

− −
>

obs obsd r p p d r p p
2 21 2 1 2

1 1 1 2 2 2 (12) 

where ri is the position, and θi and φi are the orientation angles that 
produce the best fits of the observed data for the model pti. For multiple 
candidate targets, simply choose the target with the smallest least squares 
misfit. 

A blind test of the prototype library/template matching code was per-
formed using data collected over 10 items in the Sky Research test site (see 
Report 4). Data were collected in both dynamic and cued-interrogation 
modes (Figure 4). Dynamic data were collected using a push-cart along 
transects separated by 0.5 meter (m). Cued-interrogation data were col-
lected by placing a Geonics EM-63 sensor without wheels on a portable 
test stand positioned over the target. When performing the template-
matching algorithm on the dynamically collected data, 8 of 10 items were 
correctly identified (Table 1). When processing the statically collected 
data, 9 of 10 items were correctly identified.  
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a. Dynamic data collection b. Cued (Static) Data collection 

Figure 4. Two EM-63 data collection modes. 

Table 1. Results when applying the Fingerprinting/Template matching algorithm to dynamic 
and cued-interrogation style data.  

  Predicted Target 

Cell Label Target Description Dynamic Data Cued-interrogation  

56d 40-mm M385  40-mm M385  40-mm M385 

57b BDU-28 submunition  BDU-28 submunition  BDU-28 submunition 

60 81-mm M374 mortar  81-mm M374 mortar  81-mm M374 mortar 

64c M42 submunition  M42 submunition  M42 submunition 

65a MK 118 Rockeye  MK 118 Rockeye  40-mm M385 

67 2.75-in. rocket  2.75-in. rocket  2.75-in. rocket 

68 2.75-in. rocket  2.75-in. rocket  2.75-in. rocket 

71 M456 Heat Rd  MN 76 mm  M456 Heat Rd 

72b BLU-26 submunition  M42 submunition  BLU-26 submunition 

73b 60-mm M493A  60-mm M493A  60-mm M493A 

 

Observed and predicted data when applying the library method to dynam-
ically collected data measured over a 76-mm projectile are compared in 
Figure 5. The data predicted using the 76-mm projectile polarization 
parameters from the library produce the smallest misfit. 
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When processing the cued-interrogation data, the background response 
needs to be taken into account due to the close proximity of the transmit-
ter coil to the ground. Since the data were collected over a 1.8-m2 area, a 
high pass filter could not be used to remove the background response. 
Therefore when solving for the least squares misfit of each library target, a 
background soil model was included. Figure 6 shows the misfit for data 
collected over an MK118 Rockeye. The MK118 Rockeye was the only UXO 
incorrectly identified by the template-matching algorithm when applied to 
cued-interrogation data. The incorrect identification may be related to a 
trade-off between the parameter modeling the relatively large background 
soil signal in the data (approximately 20 mV in the first time channel) and 
the polarization tensor. In addition, the anomaly was only partially sam-
pled due to the test stand not being centered on the target; therefore fewer 
data were available to constrain the result. 

Full details of the method are presented in Pasion et al. (2007). 
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b. The best fit soundings observed at a point directly over the rocket. 

Figure 5. Application of the library method to dynamically collected data measured over a 76-mm 
mortar. The objective is to determine which target in the library most likely fits the data.  
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a. UXO Lab output of data fit for the first time channel. Note that at the edges of the data there is approximately 
a 20-mV response due to the soil. 
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b. Data misfit for a sounding taken directly over an MK118 Rockeye. The estimated soil noise is of 

approximately the same order as the data, causing difficulty in correctly identifying the target. 

Figure 6. Application of the library method to data collected in a cued-interrogation mode over an ATC 
MK118. The close proximity of the transmitter coil to the ground introduces a significant soil response. 
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4 Standardized Excitation Approach 

The Standardized Excitation Approach (SEA) is a numerical technique for 
computing the EMI response from a three-dimensional, electromagnetic-
ally heterogeneous object in both near and far fields. The objective of the 
SEA is to determine a set of characteristic sources, called the Reduced Set 
of Sources (RSS), associated to each UXO. These sources can then be used 
for fast modeling of the EMI response. The full EMI solution is obtained 
by the superposition of responses to the spheroidal excitation modes. A 
potential advantage of the SEA approach over that of the dipole model, is 
that it is able to reproduce the signal from an arbitrary body at an arbitrary 
orientation and distance (both near- and far-field).  

Under the quasi-magnetostatic approximation, the magnetic field outside 
of an object is irrotational. For a primary field, the related primary poten-
tial  on a fictitious spheroid  surrounding the object can be 

expressed as: 

ψpr ξ ξ= 0

 ( ) ( ) ( ) ( )ψ η,ξ,φ η ξ φpr m m
pmn n n pm

m n m p

H d
b P P T

∞ ∞

= = =
= ∑∑∑

1
0

0 02
 (13) 

where (η,ξ,φ ) are the standard prolate spheroidal coordinates, d is the 

inter-focal distance,  are associated Legendre functions of the first kind 

(Shubitidze et al. 2005b), and Tpm(φ) is cos(mφ) for p = 0 and is sin(mφ) 
for p = 1. The coefficients bpmn can be determined from the known primary 
field or potential. Note that a spheroid is chosen because it can assume the 
general shape of an elongated object of interest, typically BOR. Equation 
13 is a decomposition of a primary magnetic field (

m
nP

Δψpr− ) into spheroidal 

modes. Note that the lower primary field modes (p, m, n) = (0, 0, 1), (0, 1, 
1), (1, 1, 1) correspond to uniform excitation in the z, x, and y directions, 
respectively. 

After the primary magnetic field is decomposed into fundamental 
spheroidal modes, the secondary field due to an object can be written as a 
linear superposition of an object’s response for each pmn excitation mode, 
i.e., 
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  (14) ( ) ( , )
redN
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where r is the position vector of an observation point outside of the object 
and pmn

′ir
iq is the strength in the secondary field for the pmn mode at the ith 

point  distributed on a spheroidal surface and called the reduced set of 

source (RSS, Shubitidze et al. 2005b), and  is the Green’s function 

for the magnetic field given by 

( , )′iG r r

 3
04

1),(
i

i
i

r-r
rrrrG
′
′−=′

πμ
. (15) 

It is observed from Equation 14 that the extrinsic characteristics in the 
secondary field are contained in the spheroidal modal expansion coeffi-
cients bpmn determined by an excitation type, the location and orientation 
of the target, while the intrinsic characteristics of field response are sepa-
rated in the RSS determined by the target's geometry and physics. This 
property of the RSS can make the SEA appealing to build libraries for the 
purpose of discrimination and classification regardless of what excitation 
is used.  

There are two ways of determining pmn
iq

iq

. One is to formulate the problem 

as an inverse problem and determine  for each mode, given the 

measured data. Obviously this process requires very detailed, low-noise 
measurements, as well as techniques to reduce the problem of ill 
conditioning. 

pmn

Another method of determining  is a forward process that determines 

the amplitude  assuming that the geometry of an object and its 

physical properties are known. In this procedure (Shubitidze et al. 2005b), 
can be determined by solving the following linear equation: 

pmn
iq

pmn
iq

pmn
iq

 [ ] ( )ψsc
pmn

⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
pmn

jg q r  (16) 
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where: 

 ( , )
πμ

′ =
′0

1
4j i

j i

g 1r r
r - r

 (17) 

is the potential at the jr
′ir

 observation point produced by the ith point 

magnetic charges at  on the auxiliary surface where the  are 

located. 

pmn
iq

( )ψsc
pmn jr  is the scalar potential at jr  for the pmn mode with 

 and is given by pmnb =1

 ( )ψ
πμ

N
sc pmn
pmn k
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1 0

1
4

1r
r - rj

j k

 (18) 

In Equation 18,  is the strength of the kth auxiliary magnetic charge, 

located at  inside the object. The quantity can be determined by the 

method of auxiliary sources (MAS, Shubitidze et al. 2003). Therefore, the 
SEA adopted here for establishing these libraries needs to deal with the 
geometry of an object and estimate its conductivity and permeability.  

pmn
kQ

′kr

4.1. Template matching using GEM-3 data 

Full implementation of the SEA fingerprinting method would involve 
solving for the position and orientation that minimized the least-squares 
difference between the observed data and that predicted from each item in 
the library. The code for inverting for location and orientation is being 
developed and is not mature enough to implement the nonlinear inversion 
approach. Therefore, a template-matching technique was developed to 
determine depth and orientation by searching a library of data pre-
modeled at several depths and dip angles. Image registration was used to 
find the location and azimuth angle of the target. The main objective of 
implementing this style of template matching is to determine if it is pos-
sible to identify targets using an RSS library without a priori information.  

The first step of the algorithm is to generate a library of UXO responses. 
Generating a library of UXO responses meant that all forward modeling 
using the RSS only needed to be performed once, thereby increasing the 
speed of the analysis. Target responses for nine ordnance items were 
calculated for target distances from the GEM-3 sensor head varying, at 
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10-centimeter (cm) intervals, from 20 cm to 80 cm. At each depth the 
target was measured at dip angles from 0 degrees (horizontal) to 
90 degrees (vertical), at 15-degree intervals. Data were modeled on a 1-m2 
area and on a uniform grid with 10-cm spacing. UXO identification is 
achieved by determining the data template from the library that best 
matches the sensor data, by cycling through each of the data templates. 
However, the target location and azimuthal orientation are unknown. 
Determining the target location and azimuthal orientation is equivalent to 
determining the translation and rotation of the data templates. This opera-
tion represents a simple problem in image registration, since there is no 
need to consider scaling the template.  

The above procedure was demonstrated with GEM-3 data collected on the 
USACE ERDC Test Stand (see Report 3). A first example compares data 
from a horizontal 40-mm projectile located 30 cm from the GEM-3 sensor 
head. Figure 7a compares the sounding directly over the center of the tar-
get. Figure 7b compares the misfit values for the various items in the RSS 
library. It is clear that C3 is the most likely target. The ease with which the 
algorithm picked C3 is, in part, due to C3 being the only non-ferrous 
(aluminum) item in the library. 
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(a) Data fit (b) Comparison of misfits 

Figure 7. 40-mm projectile example. 

Figure 8 plots the results when the data from an 81-mm mortar (M374) are 
fit. Although the correct target (C8) has the minimum misfit, several other 
targets have relatively similar misfit values, indicating that several targets 
appear quite similar when viewed by a GEM-3 sensor 50 cm from the target. 
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(a) Data fit (b) Comparison of misfits 

Figure 8. 81mm mortar example. 

4.2. Preliminary results using Geonics EM-63 data 

The SEA methods were extended to time domain measurements and pre-
liminary results obtained from EM-63 test stand data are presented here. 
The first example considered a solid steel cylinder with a length L of 
30.48 cm and a diameter d of 7.5 cm. The cylinder was oriented at three 
polar angles of θ = 0°, 5°, 90°. For each of the three excitations, the verti-
cal distance between the sensor and the center of the cylinder h was 
60 cm. Applying the SEA procedure produced the associated transient 
responses. The comparisons in Figures 9a–9c show that the measured and 
modeled TEM decay curves agree well. Good agreement is also observed in 
the two-dimensional (2D) response image of Figure 10 at times t1 
= 0.18 microseconds (ms) and t7 = 0.41 ms.  

In the second example, an ATC 40-mm projectile (aluminum) with length 
of L = 75 mm was used. The sensor and object configurations are the same 
as that of the cylinder case. Figures 11 and 12 show the measured and 
modeled TEM decay curves and the 2D response image at two instances in 
time. The SEA again produced the TEM response very well except for a 
small anomaly in the axial response, which was determined to be related 
to an instrument artifact within the EM-63 sensor. 
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(a) Transverse excitation (b) Axial excitation (c) Cylinder with a dip of 450 

Figure 9. TEM response from a solid steel cylinder: L = 30.48 cm, d = 7.5 cm. 

 

 
(a) (b) 

 
(c) (d) 

Figure 10. 2D TEM response at instant time from the solid steel cylinder: Axial excitation. t1 = 0.18 ms: 
Measured (a) and the SEA (b). t7 = 0.41 ms: Measured (c) and the SEA (d). 
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(a) Transverse excitation (b) Axial excitation (c) Cylinder with a dip of 450 
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Figure 11. TEM response from ATC 40-mm aluminum: L = 75 mm.  

 

 
(a) (b) 

 
(c) (d) 

Figure 12. 2D TEM response at instant time from ATC 40 mm: Axial excitation. t1 = 0.18 ms: 
Measured (a) and the SEA (b). t7 = 0.41 ms: Measured (c) and the SEA (d). 
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The test stand data illustrate that the formulated SEA procedure can be 
used to accurately simulate various scenario measurements of transient 
field or voltage due to a metallic object at either on-time or off-time for an 
arbitrary transmitter waveform. The results presented using the test stand 
EM-63 data illustrated the effectiveness of the approach. As the procedu
is able to produce full three-dimensional (3D) TEM responses of an object 
for a given TEM system, it is desirable to build up a responding source 
library in time-domain for the purpose of UXO discrimination. With such 
a pre-calculated time-domain library,

re 

 one can rapidly conduct a finger-
printing test of TEM data for known candidates using the SEA without the 

More details on the theoretical development of the SEA method can be 
und in Pasion et al. (2006) and Song et al. (2008).  

 

need for additional transformations. 

fo
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5 Surface Magnetic Charge 

The Surface Magnetic Charge (SMC) model (Shubitidze et al. 2005a) pro-
poses a simple physical framework for describing the response of a metal-
lic object to an inducing electromagnetic field. Like the SEA approach, it is 
applicable in both the near and far fields. However, in contrast to the SEA, 
the SMC is a parameter estimation technique and not a fingerprinting 
method. Thus, statistical or rule-based classification would need to be 
applied to the estimated parameters in order to determine the UXO 
likelihood of an unknown, buried object.  

The SMC model assumes a highly conducting, permeable, arbitrarily 
shaped, heterogeneous metallic target embedded in a soil with low con-
ductivity (< 1 S/m). In a quasi-magneto static regime, displacement cur-
rents are negligible, conduction currents are weak outside the target, and 
the magnetic field is irrotational and can be written as the gradient of a 
scalar potential ψ: 

 ( ) (,ξ )ψ ,ξsc=−∇scH r r  (19) 

where the variable ξ can represent either time t or frequency ω. If Gauss’ 
Law is assumed for the magnetic field and if it is assumed that the field is 
generated by surface charges σm only, the magnetic field is given by: 

 ( ) ( ) ( )
,ξ σ ,ξ '

πμ m
o S

dS
−

=
−∫sc r r'

H r r'
r r' 3

1
4

 (20) 

where r is the observation point, r' the source point, S is a closed surface 
surrounding the scatterer, and μ0 is the magnetic permeability of free space. 

To numerically solve the SMC integral and define a charge distribution 
that characterizes a given type of ordnance, the surface S is split in sub-
surfaces Δsi assuming that the amplitude of σi, the surface magnetic charge 
at the center of Δsi, is proportional to the normal component of the inci-
dent primary magnetic field at that point: 

 ( ) ( ) ( ) ( ) ( ) (ˆσ ', ', ', pr
i i i nt q t q t H )⎡ ⎤= ⋅ =⎢ ⎥⎣ ⎦

prr r H r' n r' r r'  (21) 
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where qi is the normalized magnetic charge surface density, assumed to be 
independent of the relative position of the sensor and target (Equation 12). 
Integration over the surface S defines the total normalized surface 
magnetic charge (NSMC) of an object at a given time channel (or 
frequency) as: 

 ( ) ( )', Δ
N

i
i

Q t iq t S
=

=∑ r
1

 (22) 

5.1. Preliminary results using Geonics EM-63 data 

In Pasion et al. (2006) the SMC model was applied to the UXO problem, 
with the result that the SMC provided accurate data prediction and dem-
onstrated potential for discrimination of a large collection of standard UXO. 
As an example, regularized inversion and detailed analysis are applied to 
data for 40-mm, 60-mm, 90-mm, and M42 standard ordnance at multiple 
depths and orientations. The Geonics EM-63 sensor acquired data on the 
USACE ERDC Vicksburg test stand at 26 time channels (0.18 ms to 
25.14 ms), two depths (one shallow, one deep) and three inclinations 
(0, 45, 90 degrees). Figure 13 shows the total magnetic charge as a function 
of time for all measured configurations obtained with the proposed regu-
larized inversion algorithm for NSMC. Several conclusions can be drawn: 
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Figure 13. The total normalized magnetic charge for 40-mm, 60-mm, 90-mm, 

and M42 standard ordnance at multiple depths and orientations. 

 



ERDC/EL TR-08-37 28 

• All lines cluster for each object; the recovered total magnetic charge is 
therefore a stable feature and the inversion is robust.  

• Each object has a distinct time-evolving total magnetic charge.  
• The magnitude of the total magnetic charge scales with the volume of 

the object.  
• Objects with different physical properties have different time decays 

for the total magnetic charge, as illustrated by the M42 and 40-mm 
items that have similar size but different material. 

These results suggest clear and stable separation with NSMC and the total 
magnetic charge for these four types of ordnance, thus opening the possi-
bility of applying automated discrimination procedures. As a side note, 
there is a slight increase of the total magnetic charge for the 10th and 11th 
time channels. This effect is only due to a pervasive instrument bias, not to 
any physical property or modeling issue, and would not appear should the 
sensor be perfectly calibrated. 

Figure 14 extends the picture further, showing results for a wider range of 
targets, including pieces of scrap as well as a variety of cylindrical calibra-
tion objects. Even with the expanded set of targets, the total magnetic 
charge (TMC) for each item is unique enough to make discrimination 
between object types feasible (at least on data with dense coverage, high 
signal-to-noise ratio (SNR), and accurate positioning). 

5.2. Preliminary results using Geophex GEM-3 data 

The SMC method was also tested on the GEM-3 data collected at the 
ERDC test stand (see Report 3). Data were processed and inverted by 
taking the modulus of data for every time channel so that amplitude 
reached a maximum value directly above target. TMC is computed for each 
item at each frequency. Figure 15 shows that each type of ordnance has a 
distinct distribution of TMC over the measured range of frequencies, inde-
pendent of its relative position with the sensor. This indicates the potential 
for discrimination of ordnance by TMC. 

More details on the theoretical development of the SMC method can be 
found in Pasion et al. (2006) and Lhomme et al. (2007). 
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Figure 14. Total magnetic charge recovered from EM-63 data collected over a range of different ordnance (left) 
and cylinders (right).  
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Figure 15. Total magnetic charge of 13 standard UXO items as a function of frequency, for 

data acquired with a GEM-3 sensor over Vicksburg test stand. Only median is shown for 
clarity. 
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6 Conclusions 

This report describes the various forward models and inversion pro-
cedures that are used to aid UXO discrimination from magnetic and time- 
and frequency-domain electromagnetic data. The simplest and most 
widely used magnetic and EMI models are based on dipoles: a static dipole 
in the magnetic case, and a polarization tensor formulation for EMI. The 
dipole model parameters can act as feature-vector inputs to a statistical or 
rule-based classification scheme to determine their UXO likelihood. Alter-
natively, high-quality test-stand data can be used to create a library of 
polarization tensor models and implement a template or fingerprint-
matching scheme to determine the identity of each buried object. Both of 
these dipole-based methods are well developed and were used extensively 
in this project. In addition, the methods are undergoing test and evalu-
ation at a number of live sites through the ESTCP program.  

The advantage of the SEA and SMC methods is that, unlike the dipole 
model, they are able to reproduce the response of an object in both the 
near and far fields. However, the methods are not yet as mature as the 
dipole model, and the work described herein must be considered pre-
liminary. Neither method can currently be used for discrimination of live-
site data. In addition, neither method has demonstrated a clear, practical 
advantage over the dipole-based methods at this time.  

 



ERDC/EL TR-08-37 32 

References 
Bell, T. H., B. J. Barrow, and J. T. Miller. 2001. Subsurface discrimination using 

electromagnetic induction sensors. In IEEE Transactions on Geoscience and 
Remote Sensing 39:1286–1293. 

Beran, L., S. D. Billings, and D. W. Oldenburg. 2004. A comparison of classification 
algorithms for UXO discrimination. In Proceedings of the 2004 UXO Forum, 
St. Louis, March 9–12, 2004. 

Billings, S. D. 2004. Discrimination and classification of buried unexploded ordnance 
using magnetometry. In IEEE Transactions of Geoscience and Remote Sensing 
42:1241–1251. 

Billings, S. D., L. R. Pasion, and D. W. Oldenburg. 2002a. Inversion of magnetics for UXO 
discrimination and identification. In Proceedings of the 2002 UXO Forum, 
Orlando, September 2002. 

Billings, S. D., L. R. Pasion, and D. W. Oldenburg. 2002b. Discrimination and identifi-
cation of UXO by geophysical inversion of total-field magnetic data. ERDC/GSL 
TR-02-16. Vicksburg, MS: U.S. Army Engineer Research and Development 
Center. 

Collins, L., Y. Zhang, J. Li, H.  Wang, L. Carin, S. Hart, S. Rose-Phersson, H. Nelson, and 
J. R. McDonald. 2001. A comparison of the performance of statistical and fuzzy 
algorithms for unexploded ordnance detection. In IEEE Transactions on Fuzzy 
Systems 9:17–30.  

Gasperikova, E., J. T. Smith, F. Morrison, and A. Becker. 2006. Berkeley UXO 
discriminator (BUD) for UXO detection and discrimination. In Partners in 
Environmental Technology Technical Symposium and Workshop, November 
2006. 

Hart, S. J., R. E. Shaffer, S. L. Rose-Pehrsson, and J. R. McDonald. 2001. Using physics-
based modeler outputs to train probabilistic neural networks for unexploded 
ordnance (UXO) classification in magnetometry surveys. In IEEE Trans. Geosci. 
Remote Sensing 39(4):797–804. 

Lhomme, N., L. P. Pasion, and D. W. Oldenburg. 2007. Identification of UXO with 
surface magnetic charges on a sphere. In Symposium on the Application of 
Geophysics to Engineering and Environmental Problems, Denver, CO, April 1–5. 

Miller, J. T., T. H. Bell, J. Soukup, and D. Keiswetter. 2001. Simple phenomenological 
models for wide-band frequency domain electromagnetic induction. In IEEE 
Transactions on Geoscience and Remote Sensing 39:1294–1298. 

Pasion, L. P., and D. Oldenburg. 2001a. A discrimination algorithm for UXO using time 
domain electromagnetics. Journal of Engineering and Environmental 
Geophysics 28:91–102. 

 



ERDC/EL TR-08-37 33 

Pasion, L. R., and Oldenburg, D. W. 2001b. Locating and characterizing unexploded 
ordnance using time domain electromagnetic induction. ERDC/GSL TR-01-10. 
Vicksburg, MS: U.S. Army Engineer Research and Development Center. 

Pasion, L. R., S. D. Billings, and D. W. Oldenburg. Guidelines on data quality 
requirements for advanced discrimination of UXO. Technical Report (in 
preparation). Project Number DACA42-03-P-0238. Vicksburg, MS: U.S. Army 
Engineer Research and Development Center.  

Pasion, L. P., S. D. Billings, D. W. Oldenburg, and S. E. Walker. 2007. Application of a 
library based method to time domain electromagnetic data for the identification 
of unexploded ordnance. Journal of Applied Geophysics 61(3-4):279–291. 

Pasion, L. P., N. Lhomme, L. P. Song, F. Shubitidze, and D. W. Oldenburg. 2006. A 
unified approach to UXO discrimination using the Method of Auxiliary Sources. 
SERDP-UX-1446 Final Report. 

Riggs, L., J. Mooney, and D. Lawrence. 2001. Identification of metallic mine-like objects 
using low frequency magnetic fields. In IEEE Transactions on Geoscience and 
Remote Sensing 39(1)56–66. 

Shubitidze, F., K. O’Neill, I. Shamatava, K. Sun, and K. Paulsen. 2005a. A simple 
magnetic charge model for classification of multiple buried metallic objects in 
cases with overlapping signals. In Proceedings from SAGEEP 05. 

Shubitidze, F., K. O’Neill, I. Shamatava, K. Sun, and K. D. Paulsen. 2005b. Fast and 
accurate calculation of physically complete EMI response by a heterogeneous 
metallic object. In IEEE Transactions of Geoscience and Remote Sensing 
43:1736–1750. 

Shubitidze, F., K. O’Neill, K. Sun, I. Shamatava, and K. D. Paulsen. 2003. A hybrid full 
MAS and combined MAS/TSA algorithm for electromagnetic induction sensing: 
Applied Computational Electromagnetics Society Journal 19:112–126. 

Song, L, F. Shubitidze, L. R. Pasion, D. W. Oldenburg, and S. D. Billings. 2008. Com-
puting transient electromagnetic response of a metallic object with a Spheroidal 
Excitation Approach. In IEEE Transactions on Geoscience and Remote Sensing 
5(3):359–363.  

Zhang, Y., L. M. Collins, and L. Carin. 2003a. Model-based statistical signal processing 
for UXO discrimination: Performance results from the JPG-V demonstration. In 
Proceedings of SPIE 5089:1116–1126. 

Zhang, Y., L. Collins, H. Yu, C. E. Baum, and L. Carin. 2003b. Sensing of unexploded 
ordnance with magnetometer and induction data: Theory and signal processing. 
In IEEE Trans. Geosci. Remote Sensing 41:1005–1015. 

Zhang, Z., X. Liao, and L. Carin. 2004. Detection of buried targets via active selection of 
labeled data: Application to sensing subsurface UXO. In IEEE Transactions on 
Geoscience and Remote Sensing 42:2535–2543. 

 

 



ERDC/EL TR-08-37 34 

Appendix A: Some Characteristics of the 
Dipole Model 
A.1. The relationship between a horizontal loop Tx and the transverse 
and axial  

The general approach to processing of EM data is to invert data for model 
parameters that are representative of the physical characteristics of the 
target. The ability to resolve the various polarization components is 
directly related to the ability of the transmitter loop to illuminate both 
polarizations. The optimal sensor for this purpose would generate a pri-
mary field that illuminates the target at a number of angles. This can be 
accomplished through multiple transmitter loops. Although such instru-
mentation is under development (for example Gasperikova et al. 2006), 
most sensors use a horizontal loop transmitter. Due to symmetry, the 
primary field will be vertical directly beneath the center of the loop, with 
the horizontal component of the primary field increasing when moving 
away from directly beneath the loop. Multiple angle illumination of the 
target is achieved by spatially scanning a region above the target. Away 
from the transmitter loop the signal-to-noise ratio of the signal will 
decrease significantly, thereby limiting the ability to illuminate the target.  

Figure A1 demonstrates how the axial, transverse, and total dipole 
moment changes as a function of target position and orientation relative to 
a 1- by 1-m square, horizontal loop transmitter. Directly over a horizontal 
target (x = 0.0 m), only the transverse component (L2(t) and m2(t)) con-
tribute to the measured signal. For this case, the transverse dipole (repre-
sented by the blue arrow in Figure A1(a), third drawing from the top) is 
parallel to the induced dipole (represented the red arrow in Figure A1(b), 
3rd drawing from the top). The axial component of the dipole is excited 
when the transmitter is positioned away from the target. The axial and 
transverse dipoles also contribute to the response. Figure A2 shows the 
amount of signal due to each polarization at the first time channel of 
EM-63 data for a horizontal 105-mm projectile at a depth of 1 m. The 
polarization values used to calculate the response were estimated using 
data from the USACE-ERDC test stand in Vicksburg, MS. The polariza-
tions at the first time channel are L1(t = 0.18 ms) = 134.3 and L2(t 
= 0.18 ms) = 78.1 for the axial and transverse components, respectively.  
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x = −1.00 m

 

x = −1.00 m

 
x = −0.50 m

 

x = −0.50 m

 
x = 0.00 m

 

x = 0.00 m

 
x = 0.50 m

 

x = 0.50 m

 
(a) Axial (Red) and Transverse (Blue) Polarizations (b) Induced Dipole Polarizations 

Figure A1. The strength of the induced transverse and axial dipoles for a horizontal, rod-like 
target. The relative strengths of the polarization values are L1/L2 = 1.72. 

Figure A2(a) shows, in plan view, the forward modeled data with its 
contributions from the transverse and axial polarizations for the first time 
channel. The white contour drawn at 2.07 mV represents the estimated 
standard deviation for noise. The noise statistic was estimated using data 
from an EM-63 survey carried out on the Sky Research UXO Test Site. 
Along a line x =0, the projection of the primary field along the axial direc-

tion (ˆz · B
P
) is zero, and thus the only contribution to the signal is due to 

the transverse component. The contribution of axial component makes the 
anomaly longer along the length of the target.  
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(a) Plan view of data at the first time channel (t = 0.18 ms) 
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(b) Plan view of data at time channel 20 (t = 7.1 ms) 
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(c) Profile view (d) Profile view 

Figure A2. Synthetically generated EM-63 data for a horizontal 105-mm projectile at a depth of 1 m. The 
polarizations at the first time channel are L1 (t = 0.18 ms) = 134.3 and L2 (t = 0.18 ms) =78.1 for the axial and 
transverse components, respectively. The white contour line in (a) represents the estimated standard deviation 
for noise, from an EM-63 survey carried out at the Sky Research UXO Test Site. There is no white contour line 

in (b) because, for t = 7.1 ms, the signal is smaller than the estimated standard deviation of the noise (c), 
and (d) compare the relative contributions of the axial and transverse polarizations to the measured signal 

along a line y = 0 m. 
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For many ordnance, the transverse component will have a smaller time 
constant than the axial component. In such a case, the late time data will 
be dominated by the axial component. At later time (Figure A2(b)) the 
ratio between the axial and transverse component strength is larger 
(L1/L2(t = 0.18 ms) = 1.72, compared to L1/L2(t = 7.07 ms) = 5.81/0.61 
 = 9.52). Therefore, the contribution of the axial component is greater at 
later times, and the characteristic double-peak anomaly of a horizontal 
target is observed. Figure A2(c) compares the transverse and axial polari-
zations along a profile taken at y = 0 m.  

The least favorable orientation for resolving both polarizations with a hori-
zontal loop transmitter is for a vertical target (Figure A3). The relationship 
between the polarization excitations and the transmitter position is the 
reverse of the horizontal case. The contribution of the transverse excitation 
to the measured secondary field will be smaller than for the previously 
considered horizontal target, since (1) the axial polarization will generally 
be larger than the transverse polarization, and (2) the only way to excite 
the transverse component is with the cart away from the target, where the 
signal-to-noise ratio can be small. Figure A5 compares the contributions of 
the transverse and axial polarizations to the signal from a vertical 105-mm 
projectile whose center is located at a depth of 1 m below the surface. The 
transmitter loop is assumed to be 0.4 m above the ground. Indeed, for a 
deep enough and small enough target, the signal due to the transverse 
polarization can be less than the noise level of the instrument. For such a 
case, the ability to identify the target through a data inversion for polari-
zation parameters will be more difficult (Pasion et al., in preparation).  

A.2. The similarity between rod and plate responses 

Section A1 observed how the response of a target is dependent on the 
transmitter, receiver, and target geometry. In particular, the response of a 
rod-like target can be similar to the response of a plate-like target rotated 
90 deg (Figure A6). This ambiguity leads to a local minimum at the plate 
solution when minimizing noisy data from a rod (Pasion et al., in 
preparation).  

To explain why this local minimum might occur, consider the first time 
channel data from a 105-mm projectile (L1 (t1) = 134.3 and L2 (t1) = 78.1). 
Consider a plate-like target whose polarization parameters at the first time 
channel are the reverse of the 105-mm projectile, i.e. L1 (t1) = 78.1and L2 
(t1) = 134.3.  
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(a) Axial (Red) and Transverse (Blue) Polarizations (b) Induced Dipole Polarizations 

Figure A3. Excitation of a vertical UXO. Relative contributions of the axial (red) and transverse 
(blue) polarizations are indicated in (a). Excitation of the transverse component occurs when 

the transmitter loop is positioned away from the target, such that the primary field has a 
horizontal component. The total induced dipole moment is plotted in (b). 
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(a) Axial (Red) and Transverse (Blue)  (b) Induced Dipole Polarizations 

Figure A4. Excitation of a UXO oriented with a 45-deg dip. Relative contributions of the axial (red) and 
transverse (blue) polarizations are indicated in (a). The total induced dipole moment is plotted in (b). 
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(a) Plan view of data at time channel 20 (t = 0.18 ms). 
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(b) Plan view of data at time channel 20 (t = 7.1 ms). 
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(c) Profile view along y = 0 for time channel 1. (d) Profile view along y = 0 for time channel 20. 

Figure A5. Synthetically generated EM-63 data for a vertical 105-mm projectile at a depth of 1 m. The 
polarizations at the first time channel are L1 (t = 0.18 ms) = 134.3 and L2 (t = 0.18 ms) = 78.1 for the axial 
and transverse components, respectively. The white contour line in (a) represents the estimated standard 

deviation for noise, from an EM-63 survey carried out at the Sky Research UXO Test Site. 
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Figure A6. Plate and rod geometry for examples in Figures A7 and A8.  

Figure A7 compares the response of the plate and rod oriented as illu-
strated in Figure A6. The top panels of Figures A7(a) and A7(b) indicate 
that the responses of the two targets are very similar. The difference 
between the two responses is plotted in Figure A8. The response of the rod 
or plate is identical directly above the target, since the primary field is 
vertical when the sensor is positioned directly above the target and 
L1

rod = L2
plate. 

Differences in the rod and plate response occur away from directly above 
the target when horizontal components of the primary field illuminate the 
target. The signal-to-noise ratio decreases as the sensor moves away from 
the target, and at some distance from the target, data from a rod will be 
indistinguishable from the data from a plate-like target.  

Figure A9 compares the plate and rod response over data profiles at y = 0 
and x = 0. Along a line y = 0 the response of the plate will be identical to 
the response of the rod. As symmetry suggests, the response of the rod 
along x = 0 is identical to the rod response along y = 0. The plate response 
along x = 0 is different, since there is no contribution from its axial com-
ponent, since the axial component is perpendicular to the primary field 
along this line. The difference between the rod and plate response along 

this line is due to a dipole whose strength is proportional to (y·BP) L2
plate

. 

The above comparison of rod and plate responses is an example of how 
inadequate signal-to-noise ratio and spatial coverage of the data will lead 
to ambiguities in the measured data, and thus an inability to robustly 
recover model parameters through inversion. 

 



ERDC/EL TR-08-37 42 

Measured Signal

x (m)
y 

(m
)

 

 

−2 −1 0 1 2
−2

−1

0

1

2

5

10

15

20

25

30

35

40

Transverse polarization

 

 

−2 −1 0 1 2
−2

−1

0

1

2

0

10

20

30

40

Axial polarization

 

 

−2 −1 0 1 2
−2

−1

0

1

2

0

1

2

3

4

 
(a) L1 (t1) = 78.1 and L2 (t1) = 134.3. 
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(b) L1 (t1) = 134.3 and L2 (t1) = 78.1 

Figure A7. Comparison of the response for (a) a plate-like target whose normal is 
horizontal and (b) a vertical rod-like target. Since the primary field is predominantly 

vertical, the response of the plate-like target is mainly due to the polarization induced 
in the plane of the plate (i.e., the transverse polarization) and the response of the rod 

is mainly due to the polarization along the rod (i.e. axial polarization). The white 
contour line indicates the noise level of the EM-63 at the first time channel. 
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(a) Plan view of data at time channel 20 (t = 0.18 ms). 

Figure A8. Comparison of the rod and plate data. The right panel shows that the difference between the plate 
and rod data is of the same order as the standard deviation of the EM-63 noise (σ = 2.07 mV). 
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Figure A9. Profiles of the data in Figure A7. The data profile along y = 0 m over either the plate [panel (c)] or 

rod [panel (c)] is the same. The data profile along x = 0 m is wider over the plate [panels (b)] than the rod 
[panel (d)]. 
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