NGDA Ingest System

Architecture and Development Guide

March 2006

1 [ige o [81e3 To) o FTUUTTETT TP URRUTPRPRTT 3

1.1 INtENAEA AUIENCE ...ttt 3
1.2 Definitions, Acronyms, and Abbreviationsccooeiiiiie 3
1.3 RETEIENCES ...t et e e e e e b e 4
1.3.1 Informational REfErenCeS.............omeeeeeeeieeeeeee e 4
1.3.2 Technical REfEreNCEeScccciiiiieeeeeeee e 4
2 Ingest as Part Of NGDA ... e e e e 4
2.1 NGDA IN BBt 5
2.2 NGDA System ArChite@CIUIeooooi i 5
221 Diagram: NGDA @S @ WhOIEuuuiieeeeeiiciiee s 6
3 Requirements SPECITICALION eeetaaees e e e e e e e e e eeeeeeeeaeeeessnnnnneeeennnn 7
3.1 General REQUIFEMENTS.ccciii e e ceeeeeees s e eene e e 7
3.2 Product FUNCHIONS ..o e 7
3.2.1 D= 1= W G- 11 =]] o 7
3.2.2 Compatibility with Archive Object templates.............ooovvviiiiiiiiiiiinnnnenn. 8
3.2.3 Mapping data to Archive Object componentS............cccevvvvvveveeiivinnnnnnns 8
3.24 Identifier MapPiNgooeeeeiiiiiiieee e e eeeeeees 8
3.25 Output of completed data..............ceeeeeereeeeriiiiiiiiie e eeeeeeeeend 8
3.2.6 Use of configuration fileS............eueeeemeeiiiiiiiiee e 8
3.3 User Classes, Characteristics, and ENVIrONMENtS..........cccvvvveieeeeeeeniiiinnnns 9
3.3.1 USEI ClaSSES .. ittt e e e e e e e e e eeeeeebeeenneeeeees 9
3.3.2 USer CRaraCteriStiCSuuuvuiiiitaeaaaae e e e e e e e e e es s e e e e e e e e e eeans 9
3.3.3 USEr ENVIFONMENTS......uuiiiiiie ettt e e e e e e e eeeeas 9
3.4 Assumptions and DEPENUENCIESuuummmmmmmrrrnniiiiiieeeeeeeeeeeeereeeeeeennennnnns 9
3.5 SYSIEM USE CASESeuiieiiiiiiii e eeiee ettt et e e e e e e e e eeenmnnannas 10
3.5.1 PrMary USE CaSE.......cuuuuuuiiiiiiiieiieeeeeeeeeeeeeeeessaninnnn s s a e e e e e eeeanaaes 10
4 INgeSt SYStemM ArCHItECIUIEooii i et e e e e 10
4.1 INGESt WOIKIIOW ... 10
41.1 Diagram: End to End Ingest WOrkflowcoooviiiiiiiiiiiiiiiinnnnenn. 12
4.2 SOftware ArChitECIUIE ...ttt e e e 13
42.1 Diagram: Bulk Ingest Software ArchiteCture...........cccceevveeeeeeeeiiinnnneee. 15
4.2.2 Diagram: Bulk Ingest Software Flow-of-Control..................ccceeeee. 17
4.3 Data structures and ClaSSES...........uemmeeee et 18
43.1 ArchiveObjectingeStCOMPONENT..........ammmmmeeeereeeeeeeiiiieiirree e e eeeeeaens 18
4.3.2 Databaselnterface (Interface).........cccceeeeeiiiiiiiee e, 18
4.3.3 DatabasSEWIITETccoeiiiiiiee et ee e e e 19
4.3.4 DataHaNAIET ... 19
4.3.5 D= 1z L= Tod - Vo [RS 19
4.3.6 DataPool (INterface)........cooe i 20
4.3.7 FIEPOON ... 21
4.3.8 INGESTENGING ...eeiiiiiieeee e e 21
4.3.9 IngestFilter (INtErface)e e e e eeeeeeeeeeeeerr e e e e e aaeas 21
4.3.10 INgeStVariable...........uuuuuiiiii e ———————— 22
4.3.11 MySQLDAIADASE.....cceiiiiiiieiiiii it s 22
4.3.12 OutputWriter (INTErfaCe)uuwr mmmmmreeiieeeeeeeeeeee e e e e e 22

4.3.13 PathCOmMPONENL......ccoiiiiiiiiiiiiiiieeiet e 23
4.3.14 RegularEXPreSSIONFIILEr ommmmmreeevennniasiseeeeeeeeeeeeeeeeeeesnnnnnnnns 23
4.3.15 RemoveLeadingTextFilter...........ooieeeeee e 23
4.3.16 RemoveTrailingTeXtFilter ... 24
4.3.17 VariableCompPONENt...........uuuuuuuet e e e e e e e e e e eeeeeeeeeereen s 24
4.3.18 VariableComponentFilter (INterface)....ccccccvvvveiiiiiiiiiiiiiieiieeeeeeiiiiins 24
4.3.19 XMLLOAET ... e 25
L U 11V | I = Yo | > o USSR 25

1 Introduction

1.1 Intended Audience

This is a technical document, aimed at developkrét, the details of the ingest
system will be covered in great detail, includingls aspects as flow-of-control and API
definitions. A developer seeking to maintain, exteor expand the functionality of the
ingest system should find helpful information withihis document.

It is assumed that the reader is technically prefit, with a working knowledge
of Java and class diagrams. Topics such as XMLdatebase connections are discussed,
but passing knowledge of these topics should biecmirit to get some use out of this
document.

1.2 Definitions, Acronyms, and Abbreviations

ADL: The Alexandria Digital Library. A system for penfising spatial searches on
geospatially referenced data. The Alexandria Biditbrary system is one method of
access for information residing in the Archive.

Archive/The Archive: An installation of the software developed on RH@DA project.

Archive Object: The logical unit of storage in the Archive. Amchive Object is
described by the NGDA Data Model. As a rule, anhisre Object consists of at least
one component and a manifest. Any further requargsare left purely as policy
decisions. As per the NGDA Data Model, Archive @it are implemented as simple
directory structures described by a manifest. J&leee the NGDA Data Model for
details.

Archive Object Component: The files that compose an Archive Object arerreteto as
components.

Archive Object Manifest: An XML document that details the content and&tite of an
Archive Object. Every Archive Object must haveeH-glescriptive manifest file at the
object’s root level. Please see the NGDA Data Mémtemore details.

Archive Object Template: An XML document that specifies a class of Arch@¥eject.
All Archive Objects adhering to a particular tentplavill have identically named
components and have the same internal structure.

Configuration File/Configuration XML/Ingest Configuration: An XML file created by
the user of the ingest system. The configuratiencbntains all the necessary
instructions to configure and run the ingest preces

Format Registry: An archival system for storing thorough, semanétrdtions for file
formats. The goal of the Format Registry is toteepas much information about a file
format as possible and preserve it for the fut®efficient information should allow for
the creation of file-reading software long afteisérg readers have faded into
obsolescence.

NDIIPP: National Digital Information Infrastructure Pregation Program. A Library of
Congress funded initiative aimed at developingtegias for the long-term support and
preservation of digital data.

NGDA: The National Geospatial Digital Archive. A projdunded by the Library of
Congress through an NDIIPP grant. Sometimes uspthce of “the Archive”, as
defined above.

NGDA Data Model: A set of rules and specifications governing thadtire of Archive
Objects and interactions with the Archive. The N&GData Model defines precisely
what comprises an Archive Object, and providesifipations for the template, manifest,
and ingest files. Please visit the NGDA Data Mdatd provided in the “References”
section of this document for more details.

1.3 References

1.3.1 Informational References

NDIIP website:
http://www.digitalpreservation.qgov

NGDA website:
http://www.ngda.org

1.3.2 Technical References

Ingest Configuration Language Reference
(Fix link later)

NGDA Data Model:
http://www.alexandria.ucsb.edu/~gjanee/ngda/dataetwod

2 Ingest as Part of NGDA

The ingest system is but a component of the ove@GDA architecture. In order
to fully understand the real purpose and role efdyistem, it is necessary to take a step
back and view it in light of the NGDA architectuae a whole.

2.1 NGDA in Brief

The National Geospatial Digital Archive was crelads a grant project under the
National Digital Information Infrastructure Presation Program. The goal of the
NDIIPP was to fund a number of cooperative invedians into the problems
surrounding long-term data preservation.

The NGDA system is the result of work completedeanthe NDIIPP grant. Like
all other NDIIPP projects, the NGDA system has di@alar focus on data preservation.
But additional constraints make the NGDA systenguai For one, the system is
focused on the unique problems surrounding thegand searching of geospatial data,
thus meeting the “geospatial” promise of the prigacame. Secondly, the NGDA
system places extra emphasis on “semantic” presenvalhe system’s answer to the so-
called “100-year problem”—that is, how do you reaplarticular file one hundred years
after it was produced, given the inevitable changechnology—is the creation and
archiving of a Format Registry.

While the Format Registry helps the contents efatchive resist obsolescence,
the archive itself must also handle this implacdbtee. For this reason, the archive
system is designed around a series of APIs andfigja¢ions. In this way, each and
every component of the system can be discardedeaimdplemented as time passes.
Data can be migrated from storage system to staggfem. All of these changes can be
handled without violating the integrity of the anahy so long as the APIs and data
models are adhered to. This document discussls ®urrent implementation of those
APIs and specifications.

The system as discussed in this document is tin@rcation of the first 18 months
of work under the NGDA grant. The architecturevshaeflects the project’s early focus
on alocal archive system. The long-term goals for the aximvolve interoperability
with other NDIIPP projects as well as other insii@dins of the archive. Future
improvements to the architecture should refle tact.

2.2 NGDA System Architecture

The NGDA system is a conglomerate, composedwdraésubsystems designed
to perform specific tasks. One reason for thigcstire is the desire to resist obsolescence,
as discussed above. Functionality is compartmieethbnd interactions handled through
strictly defined specifications, in order to all@@mponents to be easily swapped out. As
the structure of the system is discussed, pleasthsediagram (section 2.2.1) to get a
visual representation of how the various componetésact.

The central component of the NGDA system is tlohige server. The server
deals directly with the underlying storage systahowing data to be inserted or removed
as needed. The server ensures that data insetteand removed from the archive
adheres to the NGDA data model. It guaranteesAtdtive Objects adhere to the
templates that they claim to follow. It brokerbddta exchanges, and as such, is the one
component that all parts of the archive must dedd.w

A number of consumers derive their informatiomirthe server. Two of these,
the “simple web interface” and the “Format Registrgrface”, acquire information
directly from the server. The simple web interfacan interface that allows a user to
browse the archive as a file system. This is gasitomplished, as the NGDA Data

Model dictates that Archive Objects should be st@e simple (if strictly structured)
directories. The Format Registry interface is hapsimple interface that allows the user
to browse a specific (and important) subset ofigezhdata, the archive’s format registry.

2.2.1 Diagram: NGDA as a Whole

~ Format Registry " OAI/Other Interfaces

Interface

ADL Interface

imple Web Interface

ADL Middleware Interface Backends

SERVER

Another set of “more advanced” consumers existals These interfaces exist
to offer advanced functionality such as searchi@mce both the NGDA Data Model and
the archive server emphasize simplicity, neithéivaly support the sort of extended
metadata that searching requires. This is wherengitadata mapper comes into play.

The metadata mapper is a system that trolls ¢emsi stored in the archive. It
uses a set of modules that allow it to recogniztacetypes of metadata within Archive
Objects. When the mapper finds an object withpppetted type of metadata, it attempts
to map that metadata to a predefined set of fiedaired by a search interface. The
exact details of how this mapping is carried oetdictated by another set of modules,
which handle all interactions with the middlewashimd that interface. In essence, the
metadata mapper ingests data from the archivespeoialized access services.

The additional access interfaces supported byngétadata mapper and illustrated
on the diagram are an important part of the NGDgtey. These systems perform
indexing and allow for queries to be made agammstioldings within the Archive.

While these interfaces store their own informaborthe collections within the Archive,
they are merely catalogues. Requests for objegss still be made to the archive server.

Ultimately, all of these interfaces are meaningjiéshere is no data for them to
access. This is where the ingest system comeglayo The ingest system takes
information from a data source, processes and paski§ and adds items into the
Archive. The remainder of this document dealsdtad with the specifics of the ingest
system, a piece of software written for the bukdimg of data in to the Archive. It
should be noted that the ingest system in this mhecu is not intended to be the end-all
be-all ingest system for the Archive—any prograrneahg to the proper API can ingest
to the Archive, and indeed sometimes special agiphics warrant a more fine-tuned
approach—ubut is simply a solution to the Archiviegest problems.

3 Requirements Specification

3.1 General Requirements

The ingest system was designed using the followsguiding principles:
* The ingest system must taedely applicable.
* The ingest system must beensible.
* The ingest system should be tuned towaidd |oading- it should load, easily,
large numbers of mostly-homogenous Archive Objects.

3.2 Product Functions
The ingest system must provide the following fumadility:

3.2.1 Data Gathering

The ingest system must be able to connect to atiteginformation from a data
source. The information gathered must be in the fof discrete files, as this is the only

type of data that the Archive has any conceptiolmao? to store. If ‘raw’ data sources
are used, conversion routines must be specifiectsform the data acquired into
discrete files.

3.2.2 Compatibility with Archive Object templates

The ingest system must be compatible with the NGIara model concept of
object templates. The ingest system must supperassignment of data to elements
defined within Archive Object templates.

3.2.3 Mapping data to Archive Object components

The ingest system must be able to map gatheexitblthe correct Archive
Object component. The ingest system must be alidagte such mappings on the
identifier given to the file, the contents of thie for both. The ingest system must solve
this problem in a way that is compatible with “bidading”, meaning that large sets of
files must be mapped as readily as small setsgtesbbjects.

3.2.4 Identifier Mapping

The ingest system must be able to map gatheredtéleéhe correct Archive
Object identifier. Since multiple Archive Objecmponents are tied together only by
the Archive Object identifier, this functionality vital. Identifiers must be constructible
from a combination of plain text and informatiorghed from gathered files.

3.2.5 Output of completed data

The ingest system must output its finished datntotermediary between itself
and the Archive.

The data output to this location must include ¢ast) the following information:
» The location of the file to be loaded to the Arehiv
» The identifier of the Archive Object that this fiea component of.
* The name of the component this file represents.

3.2.6 Use of configuration files

The ingest system must be operable through tregiocreof XML-based
configuration files. These configuration files rhaow the user to select and configure
the implementations for the above-listed prograncfionality.

3.3 User Classes, Characteristics, and Environments

3.3.1 User Classes

There are two major potential classes of userferingest system: data providers, and
the archive itself.

The data provider class of user is composed ofpangon working outside of the
archive who is responsible for getting data in® d@inchive. Content producers and
accumulators (such as those operating state d=dargjhouses) are the most likely
candidates for this class.

The archive also makes up a class of user fosysgem, as circumstances may
require that ingest of a collection be performedt®yarchive itself. It is assumed that
this class will be the most common user in practice

3.3.2 User Characteristics

In general, we can safely assume that users leaweeSources to devote to the act
of archiving. We make this assumption because\anghas an act generates no
immediate or obvious payoff, meaning that potemaburces are often allocated
elsewhere.

3.3.3 User Environments

It is anticipated that users will be operating slgstem in a wide variety of
environments. Cross-platform support is therefoderived requirement.

3.4 Assumptions and Dependencies

Assumptions:

* Itis assumed that the user has a set of distilesttb load into the Archive; if
instead the user has data that must be procesdeskparated into individual files,
it is assumed that they have disk space on whistot@ generated files until they
can be loaded to the Archive.

* Itis assumed that the user has a high-speed @iteomnection through which
their system can interact with databases.

* Adequate metadata exists for the files being lodddle Archive. The definition
of the term adequate in this context depends é&ntrethe policies of whatever
individual archive the items are being ingested to.

Dependencies:
* The ingest system uses Java as a cross-platfounicsol It is assumed that the
user is operating on a platform for which Javavailable.
* The ingest system will not load any data into tteh&ve without the use of a
separate data loading utility. Therefore the sysgeedependent upon the data
loading utility.

3.5 System Use Cases

3.5.1 Primary Use Case

1. User has created and uploaded a collection tamp) the Archive.

2. User creates an ingest configuration file.

3 User initiates ingest system, directing it te tiee configuration file produced
in (2.).

4, Once ingest has completed, user runs sepakajeapns to guarantee ingest

success and load data into the Archive.

3.5.1.1 Alternate Paths

3a. If there is a problem with the user’s confaggion file, the user is notified
with an error message. The user re-edits thBgroation file and returns
to step (3.).

4a. If the user is not satisfied with the restdtend in (4.), the user re-edits

the configuration file and returns to step (3.).

4 Ingest System Architecture

4.1 Ingest Workflow

As can be seen in the NGDA Architecture diagrai®[M As a Whole, Section
2.2.1), the ingest system does not exist in a vacuillis a component of a larger,
overarching system. In a similar manner, the sarfwthis document details is only part
of a larger ingest workflow. To understand howitigest system is structured and how
it operates, it is important to understand theg@old events that surround its use.

The ingest process begins with data. At sometpaihuman being must examine
an existing set of data to determine if it beloimgthe Archive. During this process, the

10

person will note details about the data, and foqmnediminary idea of what should
constitute an Archive Object. They may notice ifebout lineage and other inter-file
relationships. The individual must also take stotthe existence of metadata, both at
the object level and the collection level. Assugninat they are confident that they have
a collection of achievable data, they move on éortext step in the process: creating a
template.

Template creation amounts to the formalizatiothefwork completed by the user
thus far. The idea of the template is to creapeification that describes the items in
the collection. Using the NGDA Data Model, theusigecifies what components each
Archive Object should possess. In collections whedividual items may vary slightly,
‘optional’ components can be defined. For morermfation about templates, the NGDA
Data Model should be consulted.

11

4.1.1 Diagram: End to End Ingest Workflow

Q.

g Create Template based
—_—— ;
ﬁ on Collection needs

Collection Examination

¥

EditPrdouce Ingest Upload Template to
Configuration Archive

'

MO

Run Ingest Software

ﬁ Status looks
————
good?

Ingest Review!
Status check

Objects Ingested,

Ingest Complate Run Data Loader -

YES

After a template has been created, the user nplsadi the file to the Archive.
Templates are treated in a special manner durit@adpand so are ingested into the
Archive in a different way than normal items. Hawg it should be noted that once they
are placed within the Archive, templates are stangtie same manner as any other
Archive Object. When a template is ingested inArchive, it is checked against the
Data Model for validity. Assuming that the templéd accepted and ingests successfully
into the Archive, the user can move on to creasingngest configuration file.

12

In the earlier parts of the workflow, the useratesl a collection template in order
to define the structure of the objects within tbection. In creating the ingest
configuration file, the user specifies how thatisture should be filled with actual data.
This is a process that requires the user to defimey different parameters, such as what
data sources to use, how data should be mappe@udpanents, etc. Entries in the
‘components’ segment of the configuration file espond directly to entries in the
collection template.

Once the user has completed the configuratior{dilgust partially completed
it—the user needs only complete a subset of thepooemts of the object as a whole),
the user can invoke the ingest software. The soéwses the configuration file as a set
of instructions for determining how data-loadingmponent-mapping, and the writing of
processed data should proceed. If any errors iexibe configuration file, an error
message is printed and any processing aborts.uddremust correct the issue and re-run
the ingest program before proceeding. If the gscans without any errors being
generated, the user can proceed. The ingest seftwaputs data into a database (unless
directed to do otherwise), where it can be usddter steps.

The next step in the process is the status chébls allows the user to get a view
of the Archive Objects that the ingest programdssembled. It can be useful to check
the status of a partially-completed ingest; the tae ensure that several components are
indeed mapping to the same Archive Object idemtifidsers can also identify ‘problem’
data, such as outliers and other items that simplgot map to the correct identifier. The
user can use this information to refine their magmr to make corrections to the data
itself. If the user has finished the configuratid@ and as such has complete Archive
Objects, they can proceed to the final step irptioeess: data loading. If not, they can
return to the configuration file armed with the krledge that the status check has
provided.

The final step in the ingest process is data lagdivhich is the physical process
of copying data into the Archive. The data loadanggram takes the information
generated by the ingest software and uses it tergeningest files, as per the NGDA
data model. The Ingest files are submitted toAttodive, along with the files to be
copied. (Itis important to note that this procedsfail if files have been moved or
renamed between the operation of the ingest saftaad the data loading software!)
The Archive reads the Ingest file as a set of utsions, and uses it to create a new
Archive Object. This process repeats for all & &Archive Objects to be created. When
the final object has loaded, the ingest processnsplete.

4.2 Software Architecture

Now that we have described what role the softyséags in the overall workflow,
we will narrow our focus to the software that thiecument is supposed to describe.

Perhaps the easiest way to explain the archiectiuthe ingest software is by
comparing it to a factory. The basis for this camgon comes from examining what
both of these entities do. Both begin with a ‘ramaterial, run several processes and
transformations, and output a regular, well-strredyproduct.

13

If the bulk ingest software is a factory, than thgestEngine class would be the
manager’s control booth. The IngestEngine classsponsible for organizing all other
components of the ingest system, and is resporfsibtiirecting flow-of-control in the
program as a whole. As the configuration fileesng loaded, items are added and
registered to the system through the IngestEngline IngestEngine then oversees the
rest of the process, initiating the loading of daten data sources and the processing of
data in the rest of the system.

If the IngestEngine is the control booth of thastbry, then the rest of the
components of the system make up an assembly Tihis assembly line begins with
data sources. The system can take input from pnece data sources, which represent
the raw materials to be used in the ingest proc&lgse resources are marshaled into the
system through a generic interface—the DataPoelfexte.

The DataPool interface allows the rest of the shgeftware to deal with data
sources in an abstract way. It operates by itegdtirough the set of items residing in the
data source, allowing data items to be loadednemory one at a time. The DataPool
class is one of the modular classes within the mgkst software, meaning that different
modules can be written to handle different datacEsi To continue the factory analogy,
the Data Pool is a generic box that travels thrabglrest of the process, allowing raw
materials from any source to be handled in the saaye

Each DataPool is tied to a DataHandler. A Datattarns a middleman between
the DataPool and any interested ArchiveObjecti@asiponent. It takes the next data
item from the DataPool (encapsulated by a DataRggkand passes it to each
ArchiveObjectingestComponent that subscribes tdite term ‘subscription’ is used to
indicate that an ArchiveObjectingestComponent madgrive data from a particular
DataPool. A DataHandler would be something likg@grammed forklift in the bulk
ingest factory, moving data from the DataPool affierimg it to the various
ArchiveObjectingestComponents.

The ArchiveObjectingestComponent represents its mmi assembly line. Each
of these ‘assembly lines’ correspond to a compoimeatfinished Archive Object. When
data is passed to it from a DataHandler, it iswat&ld by an IngestFilter. If the
IngestFilter determines that the data being exadnst®uld be mapped to this particular
component, the data is allowed to proceed dowmasisembly line. If not, the data is
rejected, and the assembly line halts until appatgpdata is found. It should be noted
that the IngestFilter is another modular segmethh@®@ingest software, so modules with
varying criteria can be dropped in to determin [farticular file or piece of data should
map to a component.

Once a piece of data has passed the IngestHilban proceed through the rest of
the processes tied to the ArchiveObjectingestCompbnThese are tied to the idea of

14

4.2.1 Diagram: Bulk Ingest Software Architecture

Physical Dgta Source
I
I

DataPool Interface

Ingestrilter

VariableComponent

Output VWriter

Ingest Storage Area

ComponentFilter

Key: Light blue ovals: interfaces'modules. Green boxes: Logic/flow of control. Grey-blue boxes:
convenience abstractions.

15

identifier mapping—that is, tying a particular coomgnt to an Archive Object-level
identifier. In the factory analogy, the next sigepo process the contents of the ‘data box’
passed along and produce a label that dictatesewth&nould be shipped. The accuracy
of this label is vital, because if it is incorrétgms will be ‘shipped’ incomplete or with
incompatible components.

The IngestVariable is responsible for performing identifier mapping for a
piece of data. It combines a template string witbrmation gleaned from the data at
hand. In this way, a user can build up an idetifvith a common prefix and combine it
with a variable postfix to create a unique ideatifi To return to the shipping label
analogy, the IngestVariable begins with a label Hags “Arizona %cityname%
%Address%”. The Arizona portion is constant, wiile two parts enclosed in
percentage marks are overwritten by informatiomtakom the data at hand.

These identifier pieces are built up using Vae&lmwmponents. For each part of
an identifier that needs to be substituted in,ghela VariableComponent that generates
the needed data. Each VariableComponent mightgyéata from a different source. It
could reach into the file header and pull out sgmeee of information. It could examine
the identifier that came with the data, such aditaeame. Or it could use some piece of
information in the file to cross-reference it wéldatabase. The details are unimportant,
because the VariableComponent class is anotherlargaiece of the bulk ingest
software. The only requirement is that the infaiorareturned must be a string. The
VariableComponent class, then, serves the purgosenachine that generates pieces of
labels for items moving through the assembly liBefore those labels can be attached,
however, one more bit of processing can occur.

The ComponentFilter exists to refine the strirggsieved by the
VariableComponent. This allows the VariableCompuirte define a general method for
creating data based off the file at hand, whilecgjerefinements such as stripping off or
reformatting data can be performed separatelyhdrfactory, the ComponentFilter is a
machine that reads and refines the label piecesrgta by the VariableComponent and
returns the cleaned up segments to the Ingest\fariab

As the data is finally labeled, it is passed sdfihal stop on the assembly line: the
OutputWriter. The OutputWriter is a modular clésat allows the ingest process to
output to any destination. To fit in to the Ing8sstem Workflow discussed above,
however, the OuptutWriter outputs to a databadee vilues it writes include the
identifier assigned to the data, the componentitlapresents, and the path to the data.
The data itself remains unmoved and uncopied. fattery has merely indexed and
organized it; another process must come and mduetlie Archive. But nonetheless, we
have reached the end of the ingest assembly line.

The next page contains a diagram detailing thege® explained above. Places
where modular code comes into play are clearlyceteid.

16

4.2.2 Diagram: Bulk Ingest Software Flow-of-Control

IngestEngine

1.IngestEngine calls each DataHandler separately, instructing
them to ingest their contents.

2. DataHandler calls on possessed DataF ool for next item

Module®

3 DataFool
4 File is passed back

5 File is passed to EACH AOQIC subscribing to the
DataHandlar 3. Module code resolves
abstract next call as a
series of commands that
generate a File

CataHandler

S

ArchiveOhjectingest
Component

. File is passed to IngestFilter, which Data Source
determines if the file belongs to the ACIC

*Module®
Ingestrilter

7. Ifthe File passes the IngestFilter, the system passes itto
the IngestWariable so it can be assigned an identifier

11, Completed identifier and
ingest information passed to

i Cutputyriter Module ey "Module®
Ingestyariable - Gty

8. The IngestVariable 10. Filtered String is passed back to the Ingest¥ariable

passes the File along and reassembled to create an identifier
to EACH component

50 that components
can be evalutated

"Module®
ComponentFilter

doidule”
‘arableCompaonent

.Each Component
resolves as a String and
gets passed to any filters
attached.

4.3 Data structures and classes

4.3.1 ArchiveObjectingestComponent

An ArchiveObjectingestComponent represents a corapp or single file, of a
completed ArchiveObiject.

Each ArchiveObjectingestComponent(AOIC) has ah'ghat dictates where in
the ArchiveObiject it should go. This means thainectly corresponds to an entry in a
collection template.

The AOIC receives files, runs them through filtergletermine if the files
actually belong in the component slot that theyesent. The AOIC then maps the item
to the correct item identifier by processing the'siname or contents.

4.3.2 Databaselnterface (Interface)

The Databaselnterface is a helper interface thattislirectly a part of the bulk
ingest system architecture. It was created tavaedl@latabase to reside in memory and be
used by multiple objects. It also has allowed germaodules to be written in other parts
of the program- such as the OutputWriter derivethDaseWriter.

Currently, MySQLDatabase is the only class impletimgrthis interface. This
may change as necessary.

4.3.2.1 API

public String getSingleValue(String tableName, String keyColumn,
String keyValue, String retrieveColumn) throws Exception;

String tableName- The name of the table to affect

String keyColumn- The name of the primary key’kiom.

String keyValue- The primary key for a databaseyen

String retrieveColumn- The name of the column goeiinterested in retrieving
data from.

Retrieve a single value from a database. Thisevabrresponds to the
entry in retrieveColumn in the row where the emirkeyColumn equals
keyValue.

public void insert(String tableName, String[] vadliehrows Exception;

String tableName- The name of the table to affect.
String [] values- The values to insert into théatlase.

18

Insert a new row into the database. Implememtatwill probably need
some initialization to configure the layout of t@umns to be inserted to, as well
as the name/location of the primary key.

public void update(String tableName, String key@uah, String keyValue,
String [] values) throws Exception;

String tableName- The name of the table to affect
String keyColumn- The name of the primary key’kiom.
String keyValue- The primary key for a databaseyen
String[] values- The values with which to upddte tow.

Update the entries in a row in the database. nEfwevalues to use reside
in the array values. The row to update is selelyefinding the entry where
keyColumn equals keyValue.

public void initializeTable(String tableName) threwzxception;
String tableName- The name of the table to affettt this Databaselnterface.

Initialize the Databaselnterface. Create any ed@bnnections any
initialize any private variables.

4.3.3 DatabaseWriter

A helper class that implements the OutputWritegrifatce. The DatabaseWriter
class is used to write the results of ingest intlatabase. The DatabaseWriter class
makes use of the Databaselnterface abstractialiéwve the user from worrying about
things like database query or update syntax.

4.3.4 DataHandler

Class responsible for tying ArchiveObjectingest@onents to the DataPools that
supply them with ingest information. More speaiflg, this class allows multiple
ArchiveObjectingestComponents to use a single DrdhRor situations where multiple
components of a single object might come out ofsérae filesystem.

This class is also used to specify storage opfionBiles produced by the
retrieveContent method of DataPools. This allowrslie local storage of content that
requires real processing work for their production.

4.3.5 DataPackage

19

The DataPackage is a conveinence abstraction.eRit#n pass around a full
DataPool object, the lighter-weight DataPackagesedd. The DataPackage carries two
basic pieces of information: the local identifier the file retrieved from the DataPool,
and a link to the DataPool itself.

When an actual File needs to be generated, tteePakage calls upon the real
machinery of the fully-implemented DataPool objiet spawned it. This “just-in-time”

file generation is useful in situations where s fitight safely be ignored based solely on
its local identifier.

4.3.6 DataPool (Interface)

Generic interface for acquiring data from a datars® and feeding it to the ingest
process. The DataPool guarantees that the ondydf/gem that the ingest process need
to concern itself with is discrete files. Any otliata must first be converted by the
DataPool into a file if it is to be placed in thechive.

4.3.6.1 API

DataPackage next();

As an iterator, retrieve the next DataPackage ftusDataPool. The first
call to this method should ‘set’ the iterator te first DataPackage—no item
should be skipped.

DataPackage retrieve(String identifier);
String identifier- The local identifier of the Backage to be retrieved.

Retrieve a DataPackage by its local identifierséme cases, this method
may need to be stubbed out (if, for example, dateeing retrieved by a stream.)
But at the moment | can’'t guarantee that suchategly wouldn’t break the rest of
the functionality. Will need to check that later.

File retrieveContent(String identifier);
String identifier- The local identifier of the ackage/file of interest.

Retrieve the File indicated by identifier.

4.3.6.2 Development Notes

| should really look into forcing this interfat® implement/derive from the
Iterator class, since some of the limits/functidyadre linked...

20

e next() MUST return null ONLY when the DataPool liesated through all items
that it stores.

* The first call to next() MUST not skip any itemstire implementing DataPool.
In other words, the first call to next() should mtathe iterator at the first item to
be returned.

» retrieve() MUST NOT disrupt the iterator model ussthext().

* When generating DataPackages for a content consiutrigesuggested that the
‘asFileld’ or 'asFile' parameter used in creatiegDataPackages be a unique
identifier for the file. While this isn't vitalhe DataHandler will detect and take
simple corrective measures for duplicates- it midlke the ingest operations faster
and make the locally stored files neater.

4.3.7 FilePool

An implementation of the DataPool class that creBtataPackages from files in a
file system. The local identifier assigned to eflehis the full path of the file in the file
system. Uses a stack-based recursion model fagatawg the file system. The FilePool
will recursively navigate subdirectories and praglaay files present at or below the root
directory provided at instantiation.

4.3.8 IngestEngine

The IngestEngine is the central class that tiesttay and drives the ingest
process.

A number of DataHandlers are registered to tigestEngine. Then a number
of ArchiveObjectingestComponents- one for each comept that will
eventually appear in the Archive Object- are reged to those
DataHandlers through the IngestEngine.

Finally, the IngestEngine runs each DataHandleenes. These DataHandlers
call upon the DataPool objects they encapsulaeting through the DataPackages that
those DataPools produce. Each new DataPackagspetched to any
ArchiveObjectingestComponent registered to the Batwller.

The files are then examined by each individual ACdd ingested or rejected
saccordingly.

4.3.9 IngestFilter (Interface)

The IngestFilter is an interface, not a classe fidie of the IngestFilter is to
determine whether or not a file being processethbeyngest system should be mapped to
a particular component. The interface is open-éndowing any sort of constraints

21

upon the contents of a DataPackage to be implemheriee IngestFilter returns true if a
file maps to the filter's associated component.

4.3.9.1 API

public boolean approve(DataPackage data);
DataPackage data- The data package to be testbdbggestFilter.

This method should examine the DataPackage aedndiee if it indeed
maps to the component associated with this filfamy implementation should
return true when data does correspond to the atedatomponent, and false
otherwise.

4.3.10 IngestVariable

This class is meant to allow the constructionalfies during the ingest process
from the DataPackage being examined.

This is used to create the identifiers that mapahponents to a single
Archive Object. It can also be used to gatherrimftion from inside files during ingest,
or from the context surrounding those files, sa gadentially important information can
be preserved.

When creating Archive Object identifiers, it isportant to remember that
different components depend on this mapping to farmomplete object. If components
of whatshould be a single object map to even slightly differidentifiers, the system
will recognize them as different objects entirelyithout a correct mapping, the
components effectively form separate objects.

4.3.11 MySQLDatabase

The MySQLDatabase class is an implementationethtabaselnterface
interface. It allows database operations to béopaed on MySQL-compliant databases.
On instantiation, it creates and holds a conneatitim a running database.

Through the use of the DatabaseWriter, (itseli@rementation of the
OutputWriter interface) data can be written to da¢éabase represented by the
MySQLDatabase class. A DataPool could be impleatetd read from it as well.

4.3.12 OutputWriter (Interface)

22

The OutputWriter is an interface, not a classe TutputWriter exists to allow
the system to output to different locations, baaitabases or flat files. The current
workflow for the ingest system as a whole depemddaia being written to a database,
but other workflows could be devised. It is foistreason that this interface exists.

43.12.1 API

The following methods must be implemented by amaggladhering to the OuputWriter
interface:

public boolean write(String key, String value, String varName);

String key- The Archive Object identifier assigriedan item.
String value- The location of the file to be ingggbsto the Archive.
String varName- The full path of the componens item belongs to.

The write method takes the data accumulated gltine ingest process
and writes it somewhere for later use in the ihgescess.

public boolean write(String key, String value);
Technically, this method is deprecated.

4.3.13 PathComponent

A VariableComponent used for capturing informaticom the path of a file. Can
be used in any scenario where the DataPackageyssghk as an identifier. The
PathComponent class implements the VariableCompamienface.

4.3.14 RegularExpressionFilter

The RegularExpressionFilter is an IngestFiltet thats the local identifier of a
DataPackage against a regular expression to detenvhether the file it represents
should be mapped to a particular component. Theafghe class may choose between
two behaviors of the filter: approving the DataRagk when the local identifier matches
the regular expression, or approving it when itsda# match the regular expression.

4.3.15 RemovelLeadingTextFilter

The RemovelLeadingTextFilter class implements thealbleComponentFilter
interface. It allows the user to strip off a pxdfly selecting a marker. Either single
characters or sub-strings can be used as markesghing before the marker will be
discarded, while the rest of the string will beureed unchanged.

23

4.3.16 RemoveTrailingTextFilter

The RemoveTrailingTextFilter class implementsWagiableComponentFilter
interface. It allows the user to strip off an umead postfix by selecting a marker. Either
single characters or sub-strings can be used dsemsarAnything after the marker will
be discarded, while the rest of the string willreurned unchanged.

4.3.17 VariableComponent

The VariableComponent class is stubbed class ntedra extended and fully
implemented. A VariableComponent should existefegry variable part of an identifier
as constructed by an IngestVariable. The Variabheg@nent represents a procedural
method for generating portions of an identifier.

43171 AP

The following methods must be implemented by aagslextending the
VariableComponent class:

public String evaluate(DataPackage data)

DataPackage data- The DataPackage you are attgnptijenerate an identifier
for.

In classes that exend this one, this method shromldome operation on
data, and return a String for substitution intdragestVariable. Since the only
argument to this method is the DataPackage, otké#nads should handle set-up
and configuration of the component.

4.3.18 VariableComponentFilter (Interface)

The VariableComponentFilter is an interface, nolsss.
VariableComponentFilters allow a user to refine $tings returned by a
VariableComponent. This additional filtering iscessary when the results returned by a
generally-implemented VariableComponent need aafditiprocessing.

4.3.18.1 API

String filter(String input);

24

String input- The string returned by a Variable@ament during identifier
creation.

Process the String input. Return an alteredeei®s a String. The
specifics of the alteration are of course depenhderthe implementing class.

4.3.19 XMLLoader

The XMLLoader loads ingest configuration files amdates the data structures
necessary to run the ingest process. It effegtivahslates the ingest configuration
language into instructions on how to run the baotkeist software.

The XMLLoader is special because it allows the tsepecify the use of
different code modules.

4.4 UML Diagrams

Please see the following pages for a UML diagrath® architecture as
discussed above.

25

